文档库 最新最全的文档下载
当前位置:文档库 › 金属物理专业_课程教学大纲

金属物理专业_课程教学大纲

金属物理专业_课程教学大纲
金属物理专业_课程教学大纲

金属材料物理专业实验课程教学大纲

一、课程说明

(一)课程名称、所属专业、课程性质、学分;

课程名称:金属材料物理专业实验

所属专业:金属材料

课程性质:专业实验课

学分:4

(二)课程简介、目标与任务;

课程简介:金属材料物理专业实验是专业实验教学部的重要组成部分,其前身是原物理系金属物理专业,始建于1956年,是我国第一批设置的金属物理专业,是与吉林大学、北京大学、南京大学、中山大学同期先后设置的专业,也是建国初期按照地理区域和行政区域划分的全国八大金属材料研究基地之一。主要培养有色金属、复合材料、粉末冶金、材料热处理、材料腐蚀与防护及表面等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面的人才。本专业实用性很强,研究成果可以直接应用到现实生产,所取得的进展和人民群众的日常生活密切相关,专业就业前景广阔。

目标和任务:从基础性的技能训练实验、综合性创新性实验和研究性科研训练等三个层次上进行实验内容、层层深入地培养与训练学生的综合实验素质及创新能力:精选基础性实验,建设并加强综合性实验和研究创新性实验。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;

《金属物理学》《金属热处理》

(四)教材与主要参考书。

教材:自编中

参考书:

1.《金属热处理综合实验指导书》,王志刚、刘科高主编,高等学校“十二五”实验实训规

划教材,冶金工业出版社;

2.《金属材料及热处理实验教程》,周小平主编,华中科技大学出版社;

3.《金属热处理原理与工艺》,王顺兴主编,哈尔滨工业大学出版社;

4.《金属热处理工艺学》,夏立方主编,哈尔滨工业大学出版社

(五)主讲教师。

主讲:卓仁富,闫徳

教师梯队:王君,耿柏松,门学虎,吴志国

二、课程内容与安排

第一章金属热处理(退火、正火、淬火)

(一)教学方法与学时分配

8学时,必做实验。先讲授,然后自己动手完成实验

(二)内容及基本要求

主要内容:热处理是一种很重要的金属加工工艺方法,热处理的主要目的是改善钢材性能,提高工件使用寿命。钢的热处理工艺特点是将钢加热到一定的温度,经一定时间的保温,然后以某种速度冷却下来,通过这样的工艺过程能使钢的性能发生改变。

热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织发生了质的变化。采用不同的热处理工艺过程,将会使钢得到不同的组织结构,从而获得所需要的性能。

普通热处理的基本操作有退火、正火、淬火及回火等。热处理操作中,加热温度、保温时间和冷却方式是最重要的三个关键工序,也称热处理三要素。正确选择这三种工艺参数,是热处理成功的基本保证。Fe-FeC相图和C-曲线是制定碳钢热处理工艺的重要依据。

【重点掌握】:含碳量、加热温度、冷却速度等因素与碳钢热处理后组织及性能的关系。

【掌握】:熟悉碳钢的基本热处理(退火、正火、淬火)工艺方法

【难点】:学会采用不同的热处理工艺,将会得到不同的组织结构,从而使钢的性能发生变化。

第二章金属热处理(回火)

(一)教学方法与学时分配

8学时,必做实验。先讲授,然后自己动手完成实验

(二)内容及基本要求

主要内容:

低温回火:保持了钢的高硬度、高强度和良好耐磨性,适当提高了韧性。

中温回火:中温回火后共计爱你的淬火应力基本消失,钢具有高的弹性极限,较高的强度和硬度,良好的塑性和韧性。

高温回火:习惯上将淬火和随后的高温回火相结合的热处理工艺成为调制处理。

经调制处理后,钢具有优良的综合力学性能。

【重点掌握】:回火温度对钢性能的影响

【掌握】:回火的工艺方法

第三章金相试样的制备

(一)教学方法与学时分配

8学时,必做实验。先讲授,然后自己动手完成实验

(二)内容及基本要求

主要内容:样品制备的基本步骤为取样、镶嵌、磨光、抛光、侵蚀五个步骤。

取样:显微试样的选取应根据研究的目的,取其具有代表性的部位。用切割机把试样截下,采用直径20mm,高15mm的圆柱体。切取过程中不宜使试样的温度过于

升高,以免引起金属组织的变化,影响分析结果。

镶样:当试样尺寸太小时,直接用手磨制很困难,用试样镶嵌机把试样镶嵌在胶木粉中。

磨制:分为粗磨和细磨两道工序。

粗磨:粗磨的目的是为了获得一个平整的表面。通常在砂轮机上进行,但在磨制时应主意:试样对砂轮的压力不宜过大,否则会在试样表面形成很深的磨痕,增加精磨和抛光的难度;要随时用水冷却试样,以免受热引起组织变化;试样边缘的棱角若无保存表要,可先行磨圆(倒角),以免在细磨及抛光时撕破砂纸或抛光布,甚至造成试样从抛光机上飞出伤人。

细磨:经粗磨后试样表面虽较平整,但仍还存在有较深的磨痕。细磨的目的就是为了消除这些磨痕,以得到平整而光滑的磨面,为下一步的抛光做好准备。细磨是在一套粗细程度不同的金相砂纸上,由粗到细一次顺序进行的。细磨时将砂纸贴在带有旋转圆盘的预磨机上,手指紧握试样,并使磨面朝下,均匀用力向下压在砂纸上。每更换一号砂纸时,须将试样的研磨方向调转90度。

抛光:抛光的目的是去除细磨时遗留下来的细微磨痕而获得光亮的镜面,制备时采用机械抛光,在专用的抛光机上进行。抛光机主要由电动机和抛光圆盘组成,抛光圆盘转速为300~500转/分。抛光盘上铺以细帆布、呢绒、丝绸等。抛光时在抛光盘上不断滴注抛光液。抛光液通常采用A1203、Mg0或Cr203等细粉末(粒度约为0.3~1um)在水中的悬浮液。机械抛光就是靠极细的抛光粉与磨面间产生相对磨削和滚压作用来消除磨痕的。操作时将试样磨面均匀地在旋转的抛光盘上,并沿盘的边缘到中心不断作径向往复运动。抛光时间一般为3~5分钟。

抛光结束后,试样表面看不出任何磨痕而呈光亮的镜面。

浸蚀:经抛光后的试样若直接放在显微镜下观察,只能看到一片亮光,除某些非金属夹杂物(如MnS及石墨等)外,无法辨别出各种组成物及其形态特征。必须使用浸蚀剂对试样表面进行“浸蚀”,才能清楚地显示出显微组织的真是情况。钢铁材料最常用的浸蚀剂为3~4%硝酸酒精溶液。浸蚀的方法是将试样磨面浸入浸蚀剂中,活用棉花沾上浸蚀剂擦拭表面。浸蚀时间要适当,一般试样磨面发暗时就可停止,如果浸蚀不足可重复浸蚀。浸蚀完毕后立即用清水冲洗,接着用酒精冲洗,最后用吹风机吹干。这样制的金相试样即可在显微镜下进行观察和分析研究。

【掌握】:熟悉金相试样制备过程中的取样、镶嵌、磨光、抛光四个步骤的操作方法

【了解】:热镶嵌及冷镶嵌的差别及需要的实验用品

第四章显微镜的使用、摄影

(一)教学方法与学时分配

8学时,必做实验。先讲授,然后自己动手完成实验

(二)内容及基本要求

主要内容:显微分析是研究材料内部组织和缺陷的主要方法之一,它在材料研究中占有重要的地位。利用金相显微镜将试样放大100~1500倍来研究材料内部组织的方法称为金相显微分析法,是研究金属材料微观结构最基本的一种实验技术。显微分析可以研究材料内部的组织与其化学成分的关系;可以确定各类材料经不同加工及热处理后的显微组织;可以判别材料质量的优劣,如金属材料中诸如氧化物、硫化物等各种非金属夹杂物在显微组织中的大小、数量、分布情况及晶粒度的大小等。在现代金相显微分析中,使用的主要仪器有光学显微镜和电子显微镜两大类。这里主要对常用的光学金相显微镜作一般介绍。

【重点掌握】:金相显微镜的成像原理、基本构造、各主要部件及元件的作用

【掌握】:光学显微摄像CCD系统的运用

第五章组织观察(平衡及非平衡、不锈钢、焊接)

主要内容:碳钢经退火、正火可得到平衡或接近平衡组织;经淬火得到的是不平衡组织。得到不同的组织,各组织的显微特征大概包含如下:

1. 索氏体(S)是铁素体与渗碳体的机械混合物,其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。

2. 屈氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层。

3. 贝氏体(B)为奥氏体的中温转变产物,它也是铁素体与渗碳体的两相混合物。在显微形态上,主要有三种形态;

(1)上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的非层状组织。

(2)下贝氏体是在片状铁素体内部沉淀有碳化物的两相混合物组织。它比淬火

马氏体易受浸蚀,在显微镜下黑色针状。在电镜下可以见到,在片状铁素体基

体中分布有很细的碳化物片,它们大致与铁素体片的长轴成55~60°的角度。

(3)粒状贝氏体是最近十几年才被确认的组织。在低、中碳合金钢中,特别是连续冷却时(如正火、热轧空冷或焊接热影响区)往往容易出现,在等温冷却

时也可能形成。它的温度范围大致在上贝氏体转变渐度区的上部,由铁素体和

它所包围的小岛状组织所组成。

4. 马氏体(M)是碳在αFe的过饱和固溶体。以马氏体的形态按含碳量主要分两种,即板条状和针状。

(1)板条状马氏体一般为低碳钢或低碳合金钢的淬火组织。其组织形态是由尺寸大致相联系贩细马氏体条定向平行排列组成马氏体束或马氏体领域。在马氏

体束之间位向差较大,一个奥氏体晶粒内可形成几个不同的马氏体领域。板条

马氏体具有较低的硬度和较好的韧性。

(2)针状马氏体是含碳量较高的钢淬火后得到的组织。在光学显微镜下,它呈竹叶状或针状,针和针之间成一定的角度。最先形成的马氏体较粗大,往往横

穿整个奥氏体晶粒,将奥氏体加以分割,使以后形成的马氏体片的大小受到限

制。因此,针状马氏体的大小不一。同时有些马氏体有一条中脊线,并在马氏

体周围有残留奥氏体。针状马氏体的硬度高而韧性差。

5. 残余奥氏体(A残)是含碳量大小0.5%的奥氏体淬火时被保留到室温不转变的那部分奥氏体。它不易受硝酸酒精溶液的浸蚀,在显微镜下呈白亮色,分布在马氏体之间,无固定形态。

6. 钢的回火组织与性能

(1)回火马氏体。是低温回火(150~250℃)组织。它仍保留了原马氏体形态特征。针状马氏体回火析出了极细的碳化物,容易受到浸蚀,在显微镜

下呈黑色针状。低温回火后马氏体针变黑,而残余奥氏体不变仍呈白亮色。

低温回火后可以部分消除淬火钢的内应力,增加韧性,同时仍能保持钢的

高硬度。

(2)回火屈氏体。是中温回火(350~500℃)线织。回火屈氏体是铁素体与粒状渗碳体组成的极细混合物。铁素体基体基本上保持了原马氏体的形态

(条状或针状),第二相渗碳体则析出在其中,呈极细颗粒状,用光学显微

镜极难分辨。中温回火后有很好的弹性和一定的韧性。

(3)回火索氏体:是高温回火(500~650℃)组织。回火索氏体是铁素体与较粗的粒状渗碳体所组成的机械混合物。碳钢回火索氏体中的铁素体已经

通过再结晶,呈等轴细晶粒状。经充分回火的索氏体已没有针的形态。在

大于500倍的光镜下,可以看到渗碳体微粒。回火索氏体具有良好的综合

机械性能。

应当指出,回火屈氏体、回火索氏体是淬火马氏体回火时的产物,它们的渗碳体是颗粒状的,且均匀地分布在铁素体基体上;而淬火索氏体和淬火屈氏体是奥氏体过冷时直接形成的,其渗碳体是呈片状。回火组织较淬火组织在相同硬度下具有较高的塑性与韧性。

【重点掌握】:观察并熟悉碳钢经不同热处理后的基本组织

【难点】:碳钢几种典型热处理组织——M、T、S、M

回火、S

回火

等组织的形态及特

征。

第六章硬度实验

(一)教学方法与学时分配

8学时,必做实验,先讲授然后学生自己动手完成。

(二)内容及基本要求

主要内容:硬度的测定是材料在力学性能研究中最简便,最常用的一种方法。所谓硬度,是材料对一更硬物体压入其内时所表现的抵抗能力。硬度计在生产和科研中应用十分广泛,常用的硬度测试试验方法有:布氏硬度、洛氏硬度、维氏硬度、显微硬度,以及里氏、肖氏硬度等。

【重点掌握】:硬度的概念,分类以及测试原理

【掌握】:掌握洛氏、布氏以及显微硬度计的使用和维护方法

第七章热分析实验

(一)教学方法与学时分配

8学时,选做,先讲授然后学生自己动手完成。

(二)内容及基本要求

主要内容:热分析是物理化学分析的基本方法之一。综合热分析研究物质在加热过程中发生相变或其他物理化学变化时所伴随的能量、质量和体积等一系列的变化,可

以确定其变化的实质或鉴定矿物。热分析技术种类很多,比较常用的方法有(1)差热法(DTA),(2)热重法(TG)[包括微分热重(DTG)],(3)差示扫描量热法(DSC)。

【重点掌握】:掌握热重-差热分析原理和ZRY-1P型综合热分析仪的操作方法,了解其应用范围。

【掌握】:对草酸钙进行热重及差热分析,测量化学分解反应过程中的分解温度【了解】:测量物质在加热过程中所发生的物理化学变化,绘制相应曲线,从而研究材料的反应过程。

第八章电化学腐蚀

(一)教学方法与学时分配

8学时,选做,先讲授然后学生自己动手完成。

(二)内容及基本要求

主要内容:腐蚀广泛涉及人类生产实践活动特别是工业文明进步的各个方面,并有着巨大的反作用,可以说人类一切工业文明进步史就是与腐蚀进行顽强拼搏的斗争史。目前,已被广泛接受的金属腐蚀的定义是:金属与周围环境(介质)之间发生化学或电化学作用而引起的破坏或变质。

【重点掌握】:用电化学工作站测量塔菲尔极化曲线的方法

【掌握】:用塔菲尔极化曲线求得自腐蚀电位和腐蚀速度

【了解】:掌握金属的自腐蚀电位和腐蚀速度的概念

【一般了解】:塔菲尔曲线的推导过程

第九章电化学阻抗

(一)教学方法与学时分配

8学时,选做,先讲授然后学生自己动手完成。

(二)内容及基本要求

主要内容:电化学阻抗谱(Electrochemical Impedance Spectroscopy,简写为EIS),

早期的电化学文献中称为交流阻抗(AC Impedance)。阻抗测量原本是电学中研究线性电路网络频率响应特性的一种方法,引用到研究电极过程,成了电化学研究中的一种实验方法。电化学阻抗谱是在平衡电极电位附近,给电化学系统施加一个频率不同的小振幅(≤5 mV)的交流正弦电势波,测量交流电势与电流信号的比值(系统的阻抗)随正弦波频率错误!未找到引用源。的变化,或者是阻抗的相位角错误!未找到引用源。随错误!未找到引用源。的变化。因为所施加的正弦波振幅很小,又是在平衡电极电位附近,因此电流与电极电位的关系往往可以线性化,这给动力学参数的测量和分析提供了很大的方便。使用EIS研究必须满足三个条件,即因果性条件、线性条件和稳定性条件。

利用EIS研究一个电化学系统的基本思路是,将电化学系统看作是一个等效电路,这个等效电路是由电阻(R)、电容(C)、电感(L)等基本元件按串联或并联等不同方式组合而成,通过EIS,可以测定等效电路的构成以及各元件的大小,利用这些元件的电化学含义,来分析电化学系统的结构和电极过程的性质等。

EIS常见的表示方法有两种:尼奎斯特图(Nyquist plot)和波特图(Bode plot),其中,尼奎斯特图更为常见。

【重点掌握】:掌握用电化学工作站测量电化学阻抗谱的方法

【掌握】:掌握电化学阻抗谱的基本思路及其用途

【了解】:了解电化学阻抗谱的拟合

第十章金属粉体筛分、密度、比表面积

(一)教学方法与学时分配

8学时,选做,先讲授然后学生自己动手完成。

(二)内容及基本要求

主要内容:分为金属粉体的筛分、密度、比表面积三大块。

筛分:在粉体的研究和应用中,往往要求超细粉体产品处于一定的粒度分布范围,当前制备的粉体中往往只有一部分产品达到了粒度要求,而另一部分产品却未达到粒度要求,为得到合格产品,在超细粉体生产过程中要对产品进行分级处理,使所制得的粉体粒度处于所需分布范围。

密度:粉体振实密度相对于其松装密度增大的百分数,是粉体多种物理性能(如粉体粒度及其分布、颗粒形状及其表面粗糙度、比表面积等)的综合体现。粉体振实密度

是粉体重要的一种工艺性能,对粉体压制用模具的设计以及贮存和运输用贮罐或贮袋的设计都有指导作用。

比表面积:低温吸附法测定固体比表面和孔径分布是依据气体在固体表面的吸附规律。在恒定温度下,在平衡状态时,一定的气体压力,对应于固体表面一定的气体吸附量,改变压力可以改变吸附量。平衡吸附量随压力而变化的曲线称为吸附等温线,对吸附等温线的研究与测定不仅可以获取有关吸附剂和吸附质性质的信息,还可以计算固体的比表面和孔径分布。

【重点掌握】:粉体分级、振实密度及比表面积测试的主要方法及原理

【掌握】:熟悉多功能振动筛、振实密度测试仪及ASAP 2020型物理吸附仪的结构及原理及测试操作。

第十一章摩擦学实验

(一)教学方法与学时分配

8学时,选做,先讲授然后学生自己动手完成。

(二)内容及基本要求

主要内容:摩擦磨损试验,测定材料抵抗磨损能力的一种材料试验。摩擦是两个相互接触的物体在外力的作用下发生相对运动或者相对运动趋势时,在切相面见间产生切向的运动阻力,这一阻力又称为摩擦力。磨损是任一工作表面的物质,由于表面相对运动而不断损失的现象。

通过这种试验可以比较材料的耐磨性优劣。磨损试验比常规的材料试验要复杂。首先需要考虑零部件的具体工作条件并确定磨损形式,然后选定合适的试验方法,以便使试验结果与实际结果较为吻合。

【重点掌握】:摩擦学实验的基本方法,学会有关仪器设备的使用方法

【了解】:了解不同材料配副、不同摩擦状态时摩擦系数及磨损量的变化情况

第十二章化学、物理气相沉积过程

(一)教学方法与学时分配

8学时,选做,先讲授然后学生自己动手完成。

(二)内容及基本要求

主要内容:分为CVD/PVD两种:

化学气相沉积CVD(Chemical Vapor Deposition)是利用加热,等离子体激励或光辐射等方法,使气态或蒸汽状态的化学物质发生反应并以原子态沉积在置于适当位置的衬底上,从而形成所需要的固态薄膜或涂层的过程。一般来说是利用气体原料在气相中通过化学反应形成基本粒子并经过成核、生长两个阶段合成薄膜、粒子、晶须或晶体等固体材料的工艺过程。它包括5个主要阶段:反应气体向材料表面扩散;反应气体吸附于材料的表面;在材料表面发生化学反应;生成物从材料的表面脱附;产物脱离材料表面。目前CVD技术的工业应用有两种不同的沉积反应类型即热分解反应和化学合成反应。它们的共同点是:基体温度应高于气体混合物;在工件达到处理温度之前气体混合物不能被加热到分解温度以防止在气相中进行反应。

物理气相沉积(Physical Vapor Deposition,PVD)是指把固态(液态)镀料通过高温蒸发、溅射、电子束、等离子体、离子束、激光束、电弧等能量形式产生气相原子、分子、离子(气态,等离子态)进行输运,在固态表面上沉积凝聚,生成固相薄膜的过程。物理气相沉积的主要方法有:真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。

【掌握】:掌握化学、物理气相沉积方法制备纳米材料的基本流程及注意事项。

【了解】:了解化学、物理气相沉积制备纳米材料的基本原理

制定人:卓仁富

审定人:

批准人:

日期:2016.6.20

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

材料科学基础Ι_课程教学大纲

材料科学基础Ι课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:材料科学基础 所属专业:材料物理,材料化学 课程性质:专业基础课 学分:8 (二)课程简介、目标与任务; 课程简介: 本课程是材料学科本科生的一门专业基础课。它的主要任务是使学生对材料的生产、科研、应用以及它的过去、现在和未来有初步了解,以及对材料科学与工程有一个较全面而又概括的了解同时,使学生掌握较完整全面的材料科学基础知识。本课程的覆盖面较宽,要介绍工程材料的结构与性能,生产制备,科研和应用的概况,材料的发展历史,目前状况和发展趋势。各章节除介绍有关材料的基本知识外,尽可能反映该领域的新成果、新发展及其在新技术中的应用。用必要的例子生动地描述出该领域的基本情况、动态和趋势。从这个意义上说,它不是一门传统的导论课,而是学生掌握材料科学基础知识的基础课。它让学生了解这一领域的基础、现状和前景。课程对材料研究的若干方法也做一些简介。 目标与任务: 通过本课程教学,使学生对材料科学基础知识以及材料的生产过程有一个较全面、较概括的了解;对当前材料科学研究的前沿有初步了解;培养学生对材料科学的兴趣。初步掌握各类工程材料的基本概念,包括组织结构、性能、生产过程和应用等;初步了解材料科学的研究前沿以及我校材料学科的科研工作简况。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程是材料专业的专业基础课,本课程的学习需要学生具备高等数学、大学物理、大学化学作基础,同时又是材料专业的专业课(如金属材料学、陶瓷材料学、高分子材料、功能材料等)的基础。 (四)教材与主要参考书。 1. W.D. Callister, Jr., Materials Science and Engineering: An Introduction,6th edition, John Wiley and Sons, Inc., New York,2003.

材料科学与工程专业简介

材料科学与工程专业简介 材料科学与工程专业简称材料专业。 大千世界中的材料无所不包、无处不在。吃、穿、住、行,每个人每天会碰到诸如金属、橡胶、磁性、光电等众多材料,小到一根针、一张纸、一个塑料袋、一件衣服,大到交通工具、医疗器械、工程建筑、信息通讯、航天航空,处处都有材料科学的身影。 材料科学与工程是一个涉及材料学、工程学和化学等方面的较宽口径专业。该专业以材料学、化学、物理学为基础,主要研究的是材料成分、结构、加工工艺与其性能和应用。事实上,人类文明发展史,就是一部如何更好地利用材料和创造材料的历史,材料的不断创新和发展,也极大地推动了社会经济的发展。 材料科学与工程专业依据各地区的发展历史,专业教学的侧重点略有不同。比如,材料专业中材料可以分为金属、无机非金属、高分子材料等。辽宁省各个高校由于历史沿乘的原因,多以金属材料为主。金属材料包括钢铁、有色金属及新型金属材料。 各高校材料专业学生,在大学二年级下学期会接触到本专业课程。主要的专业课程有:材料科学基础、金属学、金属学与热处理、材料力学性能等。 在专业课学习之前,需要学习一些涉及化学、机械的相关课程。 比如:工程制图、机械设计、电工电子技术、普通化学、物理化学等。

材料专业的学生除了需要掌握材料的相关知识和技能,还需掌握机械、电子等知识及技能。 材料专业学生除了要掌握课程内容外,还需掌握建模软件、有限元分析软件、科学分析软件等工具。 就业去向 材料科学与工程专业的毕业生多从事工艺、技术、质检、检验、研发等工作。除此之外,还有从事采购、高精尖大型设备的技术售后等工作。职业发展较好,由于材料专业的特点,使得材料专业的用处存在于产品的研发、性能的保障、产品的质量检验等重要的核心环节中,从业人员可快速展现自己的专业优势。

大学物理B课程教学大纲

《大学物理B(2)》课程教学大纲一、课程基本信息

第5章:真空中的静电场 课程内容: 1、电荷和电场库仑定律 2、电场强度场强的叠加原理连续分布电荷的场强 3、电场线电通量高斯定理高斯定理的应用 4、静电场力做功电势能电势电势差电势的叠加原理场强与电势的关系※ 5、电偶极子 6. 电流和电流密度欧姆定律电动势 基本要求: 1、掌握电场强度和电势的概念以及场的叠加原理。 2、掌握用叠加原理计算简单的典型的场源所产生的电场强度和电势。 3、理解高斯定理和环路定律,能熟练地用高斯定理求具有特殊对称性分布电荷的场强。 4、掌握电场力的功与电势差和移动电荷之间的关系。 5、理解电场是保守力场。 6、掌握电势与场强的积分关系。 7、了解解电场线、等势面的概念。 8、了解场强和电势梯度的关系。 9、了解电偶极子,电偶极矩的概念。 10、理解电流、电流密度、电动势的概念。 11、掌握欧姆定律 本章重点: 1、电场强度和电势的概念、场的叠加原理。 2、掌握高斯定理和环路定律的应用 3、会计算电场力的功。 4、电流密度、欧姆定律 本章难点: 1、利用叠加原理计算简单的典型的场源所产生的电场强度和电势。 2、用高斯定理求具有特殊对称性分布电荷的场强。 模块分类及要求:

※第6章:静电场中的导体和电介质 课程内容: 1、静电场中的导体 2、静电场中的电介质 3、电位移有电介质时的高斯定理 4、电容电容器 5、静电场的能量能量密度 6、静电的应用 基本要求: 1、理解导体静电平衡条件及导体表面电荷分布。 2、掌握电容的定义及其物理意义,能计算平板、球、圆柱形电容器的电容。 3、了解电介质极化的微观解释和极化强度矢量。 4、理解电介质中的高斯定理和各向同性介质中电位移与电场强度的关

固体物理教学大纲2018

《固体物理》课程教学大纲 一、课程简介: 固体物理学融汇了力学、热力学与统计物理学、电动力学、量子力学和晶体学等多学科的知识,在现代科学技术中起着非常重要的作用,是物理学的重要组成部分,是物理专业的必修基础课。 二、教学目的 本课程主要介绍固体物理学的基础知识和基本理论,为进一步学习和研究固体物理学各种专门问题及相关领域的内容建立初步的理论基础。在课程教学过程中,进一步培养学生的现代科学意识,提高分析问题与解决问题的综合能力及创新思维的能力。 三、教学要求 1.了解固体物理学发展的主要历程及固体物理对现代物理学与现代科学技术发展的作用。 2.了解固体物理学及凝聚态领域的当代前沿概况。 3.掌握固体物理学的基本概念与基础理论。 4.掌握固体物理学分析与处理问题的基本手段和思想方法。 5.掌握固体的结构及其组成粒子(原子、离子、电子)之间的相互作用、运动规律,晶体结构与物质力学、热学、光学性质的之间的关系。重点是晶体结构、晶体结合、晶格振动、金属自由电子论、能带论等。 四、课程重点与难点 课程重点:一是晶格理论,二是固体电子理论。晶格理论包括:晶体结构的基本特点和类型及对称性质;确定晶体结构的X射线衍射方法;晶体的结合类型与特点;晶格振动与晶体的热学性质。固体电子论包括:固体中电子的能带理论;金属自由电子理论和电子的输运性质。 课程难点:倒点阵的性质及其与正点阵的关系;晶体X射线衍射的分析;晶格振动的色散关系与模式密度;布洛赫定理及推论;晶体中电子的准经典运动与有效质量。 五、选用教材及参考书目 1.使用教材

基泰尔,《固体物理导论》,化学工业出版社,2013年6月第8版; 2.教学参考书目 (1)方俊鑫,陆栋,《固体物理学》(上册),上海科学技术出版社,1980年12月第1版; (2)阎守胜,《固体物理基础》,北京大学出版社2003年8月第二版; (3)陆栋,蒋平,徐至中,《固体物理学》,上海科学技术出版社,2003年12月第1版; (4)胡安,章维益,《固体物理学》,高等教育出版社,2005年6月第1版; (5)黄昆原著,韩汝琦改编,《固体物理学》,高等教育出版社,1988年10月第1版。 六、课程内容: 基本内容有两大部分:一是晶格理论,二是固体电子理论。晶格理论包括:晶体的基本结构;晶体中原子间的结合力和晶体的结合类型;晶格的热振动及热容理论;晶格的缺陷及其运动规律。固体电子论包括:固体中电子的能带理论;金属中自由电子理论。 教学时间分配表 第1章晶体结构 第一节原子的周期性阵列 第二节晶格的基本类型 第三节晶面指数系统 第四节简单晶体结构 第五节原子结构的直接成像 第六节非理想晶体结构 第七节晶格结构的有关数据

《金属材料学》课程教学大纲

《金属材料学》课程教学大纲 以下是为大家整理的《金属材料学》课程教学大纲的相关范文,本文关键词为金属材料学,课程,教学大纲,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在教师教学中查看更多范文。 《金属材料学》课程教学大纲 一、课程说明 (一)课程名称:金属材料学所属专业:材料物理专业课程性质:专业基础课学分:3 (二)课程简介:《金属材料学》是一门综合性和应用性较强的专业必修课。根据材料物理专业先修课程和教学内容,本课程包括金属学和金属材料两大部分,其中金属学的内容作为《材料科学基础》课程的补充和深入,金属材料部分在《材料科学基础》、《材料力学性能》等课程的基础上,系统介绍金属材料合金化的一般规律及金属材料的成分、工艺、组织、性能及应用的关系。课程的学习,使学生系

统掌握有关金属材料学方面的知识,培养学生研究开发和合理应用金属材料的初步能力。 目标与任务;通过本课程的学习主要掌握:1.金属材料的成份、组织结构及性能三者间的关系,金属的基本理论和知识。2.合金元素在钢中的作用、原理和规律;3.钢的热处理原理以及其与合金化的配合;4.掌握各类铸铁的成分组织和性能特点;5.常用有色金属及其合金的成分、性能和热处理特点. (三)先修课程:《材料科学基础》、《材料力学性能》等。 (四)教材与主要参考书。 教材:《金属学与热处理》第二版,崔忠圻主编,哈尔滨工业大学出版社。参考书: 《金属材料学》第二版,吴承建陈国良强文江等编著,冶金工业出版社。《金属材料学》第二版,戴起勋主编程晓农主审,化学工业出版社。《材料科学基础》,胡赓祥、蔡荀主编,上海交通大学出版《材料科学基础》,潘金生等编,清华大学出版社 二、课程内容与安排绪论 (一)讲授,2学时(二)内容及基本要求1.金属材料的发展概况。 2.了解金属材料在国民经济中的地位与作用。 3.本课程的性质、

大学物理实验课程教学大纲

大学物理实验课程教学大纲 课程名称:大学物理实验 英文名称:College Physics Experiment 实验课程编号:110309 课程性质:基础必修课 课程属性:工科各专业本科生必修 教材名称:《大学物理实验》 实验指导书名称: (无) 课程总学时:56 实验总学时:56 开设实验项目数:17 总学分:3.5 应开实验学期:一年级第2学期,二年级第1学期 适用专业:工科各专业本科生 先修课程:高等数学 本大纲主撰人:凌亚文 审核人:王占民 一、 课程的目标及基本要求 物理学是一门实验科学。物理规律的发展及其理论的建立,都必须以严格的物理实验为基 础,并受到实验的检验。 为了适应社会飞速发展的要求,需要培养大量有创造性的工程技术人才。为此要求工科大 学毕业生,不仅要具有较宽广的基础理论知识, 而且还要具有能从事现代科学实验的较强能力。 物理实验是学生入学后,受系统实验技能训练的开端,是一系列实验训练的重要基础。因此, 在整个物理学的教学过程中,必须十分注意实验技能的训练,物理实验应与理论教学具有同等 重要的地位,而不是作为理论课的附属环节。 二、 课程实验的目的要求 在一定的物理知识和中学物理实验的基础上,对学生进行实验方法和技能的基础训练。要 求学生弄懂实验原理,了解一些物理量的测量方法。要求学生熟悉常用仪器的基本原理和性能, 并了解使用方法。要求学生能够正确记录、处理实验数据,分析判断实验结果,并能写出比较 完整的实验报告。培养和提高学生观察、分析实验现象的本领和独立工作能力。并通过实验中 的观察、测量和分析,加深对物理学中某些概念、规律和理论的理解。培养学生严肃认真的工 作作风,实事求是的科学态度和爱护国家财产、遵守纪律的优良品德。 三、 适用专业 工科各专业本科生。 四、实验方式与基本要求 西安建筑科技大学 负责人:史彭

固体物理学教学大纲-北京航空航天大学

北京航空航天大学2016级博士研究生招生入学考试 《固体物理学》科目考试范围 一、晶体结构(掌握) 1、晶体中原子的周期性列阵 2、点阵的基本类型 3、晶列和晶面指数 4、简单晶体结构 二、晶体衍射(掌握) 1、倒易点阵 2、周期函数的付里叶分析 3、劳厄衍射条件 4、基元的几何结构因子及原子形状因子 5、X射线衍射的实验方法 三、晶体结合(掌握) 1、晶体结合的基本形式 2、分子晶体与离子晶体,范德瓦尔斯互作用,马德隆常数 四、声子(晶体振动及热学性质)(掌握) 1、一维原子链的振动 单元子链双原子链声学支光学支 2、格波 简正坐标格波能量量子化声子

3、长波近似 4、固体热容 爱因斯坦模型德拜模型 5、非简谐效应 热膨胀热传导 6、中子的非弹性散射测声子能谱 五、晶体缺陷(了解) 1、晶体缺陷线缺陷面缺陷点缺陷 2、热缺陷及其运动 3、扩散及微观机理 4、杂质在外力作用下的扩散 5、位错的物理特性 六、固体电子论基础(掌握) 1、金属自由电子的物理模型 2、金属自由电子的热容 3、金属的电导 4、电子在外加电磁场中的运动 漂移速度方程霍耳效应 5、金属热导率 七、能带理论(掌握) 1、布洛赫定理 2、布里渊区

3、近自由电子模型 4、平面波法紧束缚近似法赝势法 5、电子的准经典运动 6、金属半导体和绝缘体空穴的概念 7、费密面及费密面结构 八、专题(了解) 金属与合金半导体固体磁性固体的光学性质 铁电体超导电性非晶态物质固体的表面与界面低维固体与纳米结构

《现代光学》科目考试范围 一、光的传播和基本性质 1、光的电磁波理论(平面波和球面波) 2、惠更斯原理 3、费马原理 4、光传播的几何光学定律,折射率与光速和波长关系 5、光的电磁波基本性质及其证明 6、光度学基本概念(发光强度、亮度、朗伯余弦定律和光照度) 二、几何光学成像 1、近轴成像 2、理想系统成像理论 (1)光学系统基点基面,光焦度 (2)物像关系作图法 (3)利用牛顿公式和高斯公式计算物像关系 3、光学成像仪器及其原理 4、像差基础(像差的种类、产生原理、校正的方法) 三、波动光学 1、光波前函数的指数和复振幅描述 2、光的干涉 (1)干涉的充要条件 (2)衬比度 (3)分波前干涉(杨氏干涉,其它干涉装置)

《材料物理》 课程教学大纲

《材料物理》课程教学大纲 一、课程名称(中英文) 中文名称:材料物理 英文名称:Physics of Materials 二、课程代码及性质 课程代码:0801142 课程性质:专业基础课、专业必修课 三、学时与学分 总学时:40(理论学时:40学时;实践学时:0学时) 学分:2.5 四、先修课程 大学物理、材料科学基础 五、授课对象 本课程面向材料科学与工程专业、功能材料专业学生开设。 六、课程教学目的(对学生知识、能力、素质培养的贡献和作用) 本课程的教学目的: 1、掌握材料物理(能带论、晶格振动、材料磁性)的基本理论,具备解决和分析问题的能力; 2、掌握功能材料的物理(电学、热学、磁学、光学)现象与本质规律,培养学生开发新型功能材料的能力; 3、了解功能材料的发展趋势和动态,培养学生学习新知识的能力。

七、教学重点与难点: 教学重点: 影响材料物理性质的基本理论。晶体结合、能带论、晶格振动与热学性质、

材料的磁性 教学难点: 能带论、材料的磁性、材料的介电性、超导电性 八、教学方法与手段: 教学方法: (1)以课堂讲授为主,阐述该课程的基本内容,保证主要教学内容的完成; (2)从材料的物理性质及物理现象为引导、探讨产生光、电、磁的材料物理本质,掌握重要的理论。。 教学手段: (1)运用现代教学工具,在课堂上通过PPT讲授方式,实现图文并茂,形象直观; (2)强调研究思路的创新过程,注重理论与实践相结合。每一个基本理论学习介绍后再增加介绍其带来新功能材料与器件的研究突破,引导学生的学习兴趣。 九、教学内容与学时安排 (1)总体安排 教学内容与学时的总体安排,如表2所示。 (2)具体内容 各章节的具体内容如下: 绪论(2h) 第一章晶体结构(4h) 1.1 晶格的周期性 1.2晶格的对称性 1.3 倒格子 1.4 准晶 第二章晶体结合 (4h) 2.1晶体结合的普遍描述 2.2 晶体结合的基本类型及特性

(完整版)金属材料常识简介

金属材料常识简介 一、钢: 1. 钢与铁的区别主要在含碳量上,一般含碳量在 2.11%以下的铁碳合金称为钢;一般含碳量在2.11%以上的铁碳合金称为铁。 2. 钢的分类:按照化学成分分为碳素钢、中低合金钢、高合金钢。 按冶炼工艺分为平炉钢、转炉钢、电炉钢、感应炉钢、电渣炉钢等。 按脱氧程度分为镇静钢(脱氧完全的钢)、半镇静钢(脱氧较完全的钢)、沸腾钢(脱氧不完全的钢) 按用途分为结构钢、工具钢、特殊性能钢。结构钢用于制造工程结构和机械零件。工程结构用钢一般属于低碳钢范围内,在轧制或正火状态下使用,很少进行热处理,适用于焊接。机械零件用钢大多需要进行热处理。 二、碳素钢 1.碳素钢分类按碳的质量分数又可分为低碳钢(<0.25%);中碳钢(=0.25%~0.60%);高碳钢(>0.60%)。 按钢的冶金质量和钢中有害杂质元素硫、磷的质量分数分普通质量钢;优质钢;高级优质钢。 普通质量钢又分为只保证化学成分不保证机械性能的和只保证机械性能不保证化学成分的两种。 2 、钢的编号 (1)普通碳素结构钢碳素结构钢牌号表示方法由代表屈服点屈字的汉语拼音字母、屈服极限数值、质量等级符号及脱氧方法符号四个部分按顺序组成。 牌号中Q表示“屈”;A、B、C、D表示质量等级,它反映了碳素钢结构中有害杂质(S、P)质量分数的多少,(C、D)级硫、磷质量分数最低、质量好,可作重要焊接结构件。例如Q235AF,即表示屈服点为235N/mm2、A等级质量的沸腾钢。D级质量最好,A级最差。 普通碳素结构钢的硫、磷含量较多,但由于冶炼容易,工艺性好,价格便宜,

在力学性能上一般能满足普通机械零件及工程结构件的要求,因此用量很大,约占钢材总量的70%。 (2)优质碳素结构钢其牌号用两位数字表示,两位数字表示钢中平均碳质量分数的万倍。例如45钢,表示平均ωc =0.45%;08钢表示平均ωc =0.08%。优质碳素结构钢按锰的质量分数不同,分为普通锰钢(ωMn=0.25%~0.80%)与较高锰的钢(ωMn=0.70%~1.20%)两组。较高锰的优质碳素结构钢牌号数字后加“Mn”,如45Mn。优质碳素结构钢S、P含量较低,非金属夹杂物也较少,因此机械性能比碳素结构钢优良,被广泛用于制造机械产品中较重要的结构钢零件,为了充分发挥其性能潜力,一般都是在热处理后使用。 08F、10F钢的碳的质量分数低,塑性好,焊接性能好,主要用于制造冲压件和焊接件。 15、20、25钢属于渗碳钢,这类钢强度较低,但塑性和韧性较高,焊接性能及冷冲压性能较好。可以制造各种受力不大,但要求高韧性的零件;此外还可用作冷冲压件和焊接件。渗碳钢经渗碳、淬火十低温回火后,表面硬度可达60HRC以上,耐磨性好,而心部具有一定的强度和韧性,可用来制作要求表面耐磨并能承受冲击载荷的零件。 30、35、40、45,50、55钢属于调质钢,经淬火十高温回火后,具有良好的综合力学性能,主要用于要求强度、塑性和韧性都较高的机械零件,如轴类零件, 这类钢在机械制造中应用最广泛,其中以45钢更为突出。 60、65,70钢属于弹簧钢,经淬火十中温回火后可获得高的弹性极限、高的屈强比,主要用于制造弹簧等弹性零件及耐磨零件。 优质碳素结构钢中较高锰的一组牌号(15Mn~70Mn),其性能和用途与普通锰的一组对应牌号相同,但其淬透性略高。

大学物理教学大纲

《大学物理》(I)教学大纲 <总学时数:48,学分数:3> 一.课程的性质、任务和目的 大学物理课程是理工类大学生一门必修的重要基础课,它为学生学习后继课程和解决实际问题提供了必不可少的物理基础知识及常用的物理方法。在课程学习中,要求以应用为目的,加强与实际应用较多的基础知识和基本方法的训练。通过各个教学环节,使学生具有较完整的物理理论基础和比较熟练的运用物理知识解决实际问题的能力和创新能力。 二.课程基本内容和要求 (一)质点运动学 1.理解质点模型和参照系等概念。 2.掌握描述质点运动的物理量:位置矢量、位移、路程、速度、加速度等。 3.能借助于直角坐标系熟练地计算质点在平面内运动时的速度和加速度。理解速度与加速度的瞬时 性、矢量性和独立性等基本特性。 4.掌握圆周运动的角量表示及角量与线量之间的关系。能够计算质点作圆周运动时的角速度和角加 速度、切向加速度和法向加速度。 5.了解相对运动的基本概念,并能解决一些简单问题。 (二)牛顿运动定律 1.理解牛顿运动三定律的物理内容,了解其适用范围。 2.能够使用隔离法分析物理对象,熟练应用牛顿运动定律分析和解决基本力学问题。 (三)动量守恒定律和能量守恒定律 1.掌握动量、冲量的概念,明确其物理意义,并熟练应用动量原理、动量守恒定律求解质点在平面 内的动力学问题。 2.理解功、动能、势能、保守力和机械能概念,明确其物理意义,并能进行有关的计算。 3.掌握动能定理、机械能守恒定律,理解功能原理、能量守恒定律及其意义。 (四)刚体的转动 1.了解刚体模型和刚体的基本运动,理解刚体运动与质点运动的区别和联系。

2.理解描述刚体定轴转动的角坐标、角位移、角速度和角加速度等概念及其运动学公式。 3.理解转动惯量的意义及计算方法,能够计算典型几何形体的转动惯量。 4.理解转动定律,能够结合力矩概念构造动力学方程求解定轴转动的问题。 5.理解力矩的功,刚体的转动动能,刚体的重力势能等的计算方法;能够应用动能定理及机械能守 恒定律解决刚体定轴转动的问题。 6.理解刚体的动量矩(角动量)概念,能计算刚体或质点对固定轴的动量矩。理解动量矩守恒定律 及其适用条件,并能对含有定轴转动刚体在内的系统正确应用角动量定理及角动量守恒定律分析、计算有关问题。 (五)机械振动 1.理解谐振动模型,掌握简谐振动的基本特征及描述简谐振动的基本特征量:频率、相位、振幅的 意义及确定方法,能够进行一些简单的计算。 2.掌握旋转矢量法,并能用以分析有关问题(如确定初相、运动时间、写出振动方程)。 3.理解两个同方向、同频率谐振动合成的规律,以及合振动振幅极大和极小的条件。了解两个互相 垂直、同频率和不同频率谐振动的合成规律,了解李萨如图形。 (六)机械波 1.理解描述波动的各物理量的物理意义及各量之间的相互关系。 2.理解机械波产生的条件。掌握根据已知质元的振动表达式建立平面简谐波的波函数的方法以及波 函数的物理意义,理解波形图线。了解波的能量传播特征及能流、能流密度等概念。 3.理解惠更斯原理和波的叠加原理。掌握波的相干条件,能应用位相差和波程差的概念分析和确定 相干波叠加后振幅加强和减弱的条件。 4.理解驻波及其形成的条件和特点,建立半波损失的概念,了解驻波和行波的区别。 (七)波动光学 1.了解原子发光的特点,理解光的相干条件及获得相干光的基本原理和一般方法。 2.掌握光程概念以及光程差与相位差的关系,了解反射时产生半波损失的条件。能正确计算两束相 干光之间的光程差和相位差,并写出产生明条纹和暗条纹的相应条件。 3.掌握杨氏双缝干涉的基本装置和实验规律,了解干涉条纹的分布特点及其应用,并能做相应的计 算。掌握薄膜等厚干涉的规律及干涉位置的计算,理解等倾干涉条纹产生的原理,了解薄膜干涉原理在实际中的应用。了解迈克尔逊干涉仪的结构、原理及其应用。 4.理解惠更斯-菲涅耳原理及其对光衍射现象的定性解释。了解分析单缝夫琅和费衍射的半波带法, 能够根据衍射公式确定明、暗条纹分布。了解光栅衍射条纹的成因和特点,掌握光栅公式,了解

《材料性能》课程教学大纲

《材料性能》课程教学大纲 一、课程基本信息 1、课程代码:MT322 2、课程名称(中/英文):材料性能/Properties of Materials 3、学时/学分:51/3 4、先修课程:大学物理,固体物理,材料科学基础、材料加工原理 5、面向对象:材料科学与工程专业 6、开课院(系)、教研室:材料科学与工程学院 7、教材、教学参考书: 1)《材料性能学》张帆, 周伟敏. 上海交通大学出版社(2009) 2)《材料性能学》王从曾. 北京工业大学出版社(2001) 3)《材料的力学行为》匡震邦, 顾海澄, 李中华. 高等教育出版社(1998) 4)《材料物理性能》田莳.北京航天航空大学出版社(2002) 二、课程性质和任务 本课程是材料科学与工程专业的专业基础主干课程。随着现代科学技术的发展,研制与开发新型结构材料以及新型功能材料、电磁材料等具有特殊物理性能的新材料已成为近代材料研究的发展方向,材料力学性能与物理性能测试方法与技术在现代材料研究领域中也显示出重要作用。其任务是通过教学和实验的手段,使学生掌握材料力学性能和物理性能的概念,测试及计算的基本原理,培养学生综合分析、解决问题的能力和实验技能,为学生在走上工作岗位以后,无论是从事工程技术工作,科学研究工作或者是开拓新技术领域打下坚实的实验技能基础。 三、教学内容和基本要求 第0章绪论 1、知识点群 材料性能的概念及划分;材料性能的宏观表征方法;微观本质;影响因素;材料性能测试的一般概念。 2、教学内容

第一节材料性能的研究意义 第二节材料性能的概念及划分 第三节材料性能的宏观表征 第四节材料性能的微观本质 第五节材料性能的影响因素 第六节材料性能的测试 3、教学安排及教学方式(课堂教学总学时数1 ) 4、教学目标 对本课程的重要性、范畴、主要内容、教学方法和要求等有一个初步了解,为本课程的学习打下基础。 第1章材料的常规力学性能 1、知识点群 拉伸、压缩、弯曲、扭转、剪切等静载试验方法及相应的力学性能指标;材料的缺口效应;材料的硬度试验方法;材料的冲击韧性试验方法;材料的强度统计学特性。 2、教学内容与教学方法 1.1 单向静拉伸试验及性能 1.1.1 单向静拉伸试验 1.1.2 拉伸曲线 1.1.3 单向静拉伸基本力学性能指标 1.2 其它静载下的力学试验及性能 1.2.1 应力状态软性系数 1.2.2 压缩 1.2.3 弯曲 1.2.4 扭转 1.2.5 剪切 1.2.6 几种静载试验方法的比较 1.3 缺口效应 1.3.1 缺口处应力分布及缺口效应 1.3.2 缺口敏感度 1.4 硬度 1.4.1 布氏硬度 1.4.2 洛氏硬度 1.4.3 维氏硬度

“材料性能学”课程教学大纲

“材料性能学”课程教学大纲 武汉大学物理科学与技术学院 ========================================== 一、课程英文名称:An Introduction to Materials Properties 二、适用专业:材料科学与技术试验班,材料物理等本科专业学生 三、课程性质:指定选修 四、总学时(学分):54学时(3学分); 五、授课方式: 1、课堂授课(为主); 2、实验(电镜断口观察)、 3、课堂讨论(每一位学生选择一个专题,写一篇综述论文,并且在课堂上讲解 和讨论,与作业一起作为平时成绩,平时成绩占总成绩的50%。) 六、使用教材: 《材料性能学》王从曾主编,刘会亭主审,北京工业大学出版社,2001年。 七、参考书目 1、《工程材料力学性能》刘瑞堂、刘文博、刘锦云编,哈尔滨工业大学出版社, 2001年。 2、《材料物理性能》田莳编著,北京航空航天大学出版社,2001年。 3、《材料物理导论》熊兆贤编著,科学出版社,2001年。

八、课程主要内容简介: 《材料性能学》是一门专业指定选修课。该课程涉及知识面宽,信息量大,基础性强。主要讲授材料各种性能的基本概念、物理(化学)本质、影响材料性能的因素及性能指标的测试原理与工程应用等。材料性能涉及到材料科学和工程两部分内容。性能的物理本质部分告诉我们“为什么”,工艺一结构、性能及其测试分析技术告诉我们“如何做”,其载体和桥梁就是具体的材料。学习过程中把这两部分有机地结合起来,有利于学生掌握材料各种性能研究领域的整体,促进积极思维和创造精神。 主要内容包括:1)材料的力学性能:材料在静载条件下的力学性能、冲击韧性、断裂韧性、疲劳性能、磨损性能,以及高温力学性能等;2)材料的物理性能:材料的热学性能、磁学性能、电学性能、光学性能、压电及铁电性能等;3)材料的腐蚀及老化性能等。 九、教学目的与要求: 本课程是“材料科学与工程”一级学科的专业课程之一。目的在于使学生了解材料常见力学性能和物理性能的本质及其变化规律;初步熟悉有关力学性能和物理性能的测试方法和在材料科学研究中的运用;掌握材料韧性、脆性、疲劳性能、热性、电性、磁性、弹性、内耗等的本质、基本变化规律、以及与组织结构的关系;掌握测试的基本原理和分析方法;了解在材料研究及实际工业生产中的运用。

金属材料工程专业方向

金属材料工程专业方向 一、专业简介及培养目标 金属材料工程是国家经济建设的支柱,在航空航天、能源化工、国防军工、冶金机电等各行业均发挥着至关重要的作用,也是西安交通大学优势学科之一,在国内外享有较高的知名度。金属材料工程主要研究金属材料性能优化的基本理论,探索提高材料使用性能的有效途径,了解金属材料的性能特点及其工程应用。学生通过院级课程的学习已经具备了材料科学与工程方面的基础理论和一定的实验技能,本专业重点向学生介绍金属材料合金理论、常见工程构件的失效分析、材料内部缺陷的检测技术、金属功能材料、复合材料等相关知识,使学生掌握金属材料合金化基础理论知识,熟悉几种重要的金属材料及其力学性能与应用。培养学生选择材料和使用材料的科学思路。使学生能从事工程零构件的失效分析工作,提出预防零件失效的具体措施,使学生掌握金属材料内部缺陷无损检测技术,提出预防零件失效的具体的措施,了解复合材料、生物材料及功能材料的基本理论及要求,培养学生完整的金属材料知识体系。本专业的培养目标是使学生具备现代化建设所要求的系统材料知识、基础理论知识及工程技术知识,具有新材料、新产品、新工艺研究开发能力。金属材料工程专业具有学士、硕士、博士授予权,设有博士后流动站,是"211工程"建设学科的二级学科。金属材料工程专业的科学研究紧密结合国家科技发展的重大需求,瞄准国际前沿,开拓研究思路,不断提高研究水平,保持本学科在国内外的特点和优势。 二、课程设置 根据培养目标,金属材料工程专业方向的课程设置主要以金属材料为核心,课程体系包括合金与强化理论、材料选择与应用、零件失效分析、组织缺陷检测等主要内容。主要课程有:金属材料及热处理,失效分析与防止,金属功能材料,复合材料,材料无损检测技术,生物材料。 表1 金属材料工程专业课程

大学物理实验--教学大纲

大学物理实验课教学大纲 大学物理实验课程体系、内容和教学模式 (1) 一级物理实验(基础物理实验) (3) 二级物理实验(综合性、设计性实验) (4) 三级物理实验(现代物理实验技术) (5) 四级物理实验(研究型实验) (7) 开放实验 (8) 物理学在人的科学素质培养中具有重要的地位,实验为物理学的基础,它反映了理工科实验的共性和普遍性问题,在人才科学素质培养中起着不可替代的重要作用.20世纪中叶以来,以计算机信息科学技术、生命科学、空间科学、材料科学等为代表的新的科学技术革命,极大地加速了科学技术的发展和各学科之间的相互交叉和渗透,新的综合化趋势已成为科学发展的主流。因此,物理实验课程体系,教学内容和教学方法、手段必须由封闭型向开放型转变。大学物理实验作为大学生在进校后的第一门科学实验课程,不仅应让学生受到严格的、系统的实验技能训练,掌握科学实验的基本知识、方法和技巧,更主要的是要培养学生严谨的科学思维能力和创新精神,培养学生理论联系实际、分析和解决实际问题的能力,特别是与科学技术的发展相适应的综合能力,适应时代的发展,科技进步的创新能力。 大学物理实验课程体系、内容和教学模式 1.素质教育为目标,建立物理实验课程新体系: 打破了传统的力、热、电、光、近代物理实验教学的封闭体系。建立以基本实验、综合性实验、设计性实验、研究性实验等组成的新的实验课程体系,形成从低到高、从基础到前沿、从接授知识到培养综合能力,逐级提高的四级基础物理实验课程新体系。每一级物理实验大致用一个学期的时间完成,不同的级标志着不同实验技能和科学思维水平。使学生从较高起点进入大学物理实验,一个台阶、一个台阶地走向科学的高峰。 2.注重物理实验的时代性与先进性,改革实验教学内容: 物理实验必须与现代科学技术接轨,才能激发学生的学习积极性与热情,也才能使现代科技进步的成果渗透到传统的经典课程内容之中,例如将计算机技术、光纤技术、磁共振技术、核物理技术、X射线技术、电子显微技术、光谱技术、真空技术、传感器技术等现代技术及科研成果融用于学生物理实验之中。 3.营造培养创新人才的多元化教学模式和环境)

薄膜物理与技术课程教学大纲

薄膜物理与技术课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:薄膜物理与技术 所属专业:电子器件与材料工程 课程性质:必修课 学分:3 (二)课程简介、目标与任务; 本课程讲授薄膜的形成机制和原理、薄膜结构和缺陷、薄膜各项物理性能和分析方法等物理内容;讲授薄膜各种制备技术。通过本课程学习,使学生具备从事电子薄膜、光学薄膜、以及各种功能薄膜研究与开发的能力 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 《量子力学》、《热力学与统计物理》、《固体物理》、《电子技术》、《电路分析》等。 (四)教材与主要参考书。 教材:杨邦朝,王文生. 《薄膜物理与技术》,成都:电子科技大学出版社,1994 主要参考书:1.陈国平.《薄膜物理与技术》,东南大学出版社,1993 2.田民波,薄膜技术与薄膜材料,清华大学出版社,2006-8 二、课程内容与安排 本课程全部为课堂讲授。重点:真空的获得和真空测量的工作原理;物理气相沉积和化学气相沉积的原理及方法;薄膜生长的机理。 难点:磁控溅射的机理及控制;MOCVD技术;薄膜形成过程的机理 (一)绪论2学时 1、薄膜的概念和历史 2、薄膜材料与薄膜技术的发展 3、薄膜科学是边缘交叉学科 4、薄膜产业是腾飞的高科技产业

(二)真空技术基础2学时 1、真空的基本知识 2、真空的获得 3、真空的测量 (三)真空蒸发镀膜4学时 1、真空蒸发原理 2、蒸发源的蒸发特性及膜厚分布 3、蒸发源的类型 4、合金及化合物的蒸发 5、膜厚和淀积速率的测量与控制 (四)溅射镀膜4学时 1、溅射镀膜的特点 2、溅射的基本原理 3、溅射镀膜类型 4、溅射镀膜的厚度均匀性 (五)离子镀膜2学时 1、离子镀原理 2、离子镀的特点 3、离子轰击的作用 4、离子镀的类型 (六)化学气相沉积镀膜4学时 1、化学气相沉积的基本原理 2、化学气相沉积的特点 3、化学气相沉积方法简介 4、低压化学气相沉积 5、等离子体化学气相沉积 6、其他化学气相沉积 (七)溶液镀膜法2学时 1、化学反应沉积 2、阳极氧化法

金属物理专业_课程教学大纲

金属材料物理专业实验课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:金属材料物理专业实验 所属专业:金属材料 课程性质:专业实验课 学分:4 (二)课程简介、目标与任务; 课程简介:金属材料物理专业实验是专业实验教学部的重要组成部分,其前身是原物理系金属物理专业,始建于1956年,是我国第一批设置的金属物理专业,是与吉林大学、北京大学、南京大学、中山大学同期先后设置的专业,也是建国初期按照地理区域和行政区域划分的全国八大金属材料研究基地之一。主要培养有色金属、复合材料、粉末冶金、材料热处理、材料腐蚀与防护及表面等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面的人才。本专业实用性很强,研究成果可以直接应用到现实生产,所取得的进展和人民群众的日常生活密切相关,专业就业前景广阔。 目标和任务:从基础性的技能训练实验、综合性创新性实验和研究性科研训练等三个层次上进行实验内容、层层深入地培养与训练学生的综合实验素质及创新能力:精选基础性实验,建设并加强综合性实验和研究创新性实验。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 《金属物理学》《金属热处理》 (四)教材与主要参考书。 教材:自编中

参考书: 1.《金属热处理综合实验指导书》,王志刚、刘科高主编,高等学校“十二五”实验实训规 划教材,冶金工业出版社; 2.《金属材料及热处理实验教程》,周小平主编,华中科技大学出版社; 3.《金属热处理原理与工艺》,王顺兴主编,哈尔滨工业大学出版社; 4.《金属热处理工艺学》,夏立方主编,哈尔滨工业大学出版社 (五)主讲教师。 主讲:卓仁富,闫徳 教师梯队:王君,耿柏松,门学虎,吴志国 二、课程内容与安排 第一章金属热处理(退火、正火、淬火) (一)教学方法与学时分配 8学时,必做实验。先讲授,然后自己动手完成实验 (二)内容及基本要求 主要内容:热处理是一种很重要的金属加工工艺方法,热处理的主要目的是改善钢材性能,提高工件使用寿命。钢的热处理工艺特点是将钢加热到一定的温度,经一定时间的保温,然后以某种速度冷却下来,通过这样的工艺过程能使钢的性能发生改变。 热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织发生了质的变化。采用不同的热处理工艺过程,将会使钢得到不同的组织结构,从而获得所需要的性能。 普通热处理的基本操作有退火、正火、淬火及回火等。热处理操作中,加热温度、保温时间和冷却方式是最重要的三个关键工序,也称热处理三要素。正确选择这三种工艺参数,是热处理成功的基本保证。Fe-FeC相图和C-曲线是制定碳钢热处理工艺的重要依据。 【重点掌握】:含碳量、加热温度、冷却速度等因素与碳钢热处理后组织及性能的关系。

金属材料质量检测专业简介

金属材料质量检测专业简介 专业代码530404 专业名称金属材料质量检测 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握金属材料、金属热处理、焊接基本知识,具备金属材料检测工艺编制、检测工艺实施、检测设备维护与管理、现场生产管理能力,从事化学分析、力学性能、金属金相、射线、超声波、磁粉、渗透检测等工作的高素质技术技能人才。 就业面向 主要面向冶金、装备制造业,在检验、检测和计量岗位群,从事金属材料、构件、管道与压力容器的无损检测、理化检测,分析检验工艺的编制与实施、检测设备的安装、调试工作以及实验室的组织管理和质量技术监督、监理等工作。主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备读图、识图、绘图能力,掌握 CAD 基本方法和尺寸检验的操作技能; 3.具备金属材料检测工艺编制能力; 4.具备射线检测、超声波检测、磁粉、渗透检测能力; 5.掌握金属材料物理力学性能基本知识,具备金属材料力学性能检测能力; 6.掌握金属学与热处理原理及基本知识,具备金相组织检测能力; 7.掌握工业化学分析基本知识,具备化学分析的操作能力。

核心课程与实习实训 1.核心课程 工业化学分析、金属学与热处理、金属材料学、金相组织分析技术、金属材料力学性能检测技术、焊接生产技术、无损检测技术等。 2.实习实训 在校内进行金属学、力学性能、金相检测、无损检测、工业化学分析专题实验和实训。在冶金、机械等企业进行实习。 职业资格证书举例 物理性能检验工金相检验工无损检测工化学分析工 衔接中职专业举例 工程材料检测技术机电产品检测技术应用 接续本科专业举例 金属材料工程

大学物理教学大纲.

《大学物理》教学大纲 一、课程简介 大学物理是一门重要的专业基础课,大学物理课程既为学生打好必要的物理基础,又在培养学生科学的世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神、创新意识等方面,具有其他课程不能替代的重要作用。 物理学的理论体系具有完美性和系统性。物理思想的表述,定律、定理的表达式,问题的科学处理方法,物理常量的测量等形成了完美的理论体系,对学生后续课程的学习具有重要的意义。近代物理内容的教学,使学生了解科学发展的前沿问题,为学生的创新奠定基础。 二、课程目标 通过本课程的学习,要求学生能够: 1、通过本课程的学习,要求学生能够对物理学的内容和方法、概念和物理图像、物理学的工作语言、物理学发展的历史、现状和前沿、及其对科学发展和社会进步的作用等方面在整体上有一个比较全面的了解,对物理学所研究的各种运动形式,以及它们之间的联系,有比较全面和系统的认识,并具有初步应用的能力。 2、注重物理学思想、科学思维方法、科学观点的传授。通过介绍科学研究的方法论和认识论,启迪学生的创造性思维和创新意思,培养学生的科学素质。 3、熟练掌握矢量和微积分在物理学中的表示和应用。了解物理学在自然科学和工程技术中的应用,以及相关科学互相渗透的关系。 4、通过学习科学的思维方法和研究方法,使学生具备综合运用物理学知识和数学知识解决实际问题的能力,提高发现问题、分析问题、解决问题的能力和开拓创新的素质。为学生进一步学习专业知识奠定良好的基础,也为学生将来走向社会从事科学技术工作和科学研究工作打下基础。 5、通过该课程的学习,使学生树立科学的唯物主义的世界观、方法论和认识论,具备独立分析和处理相关问题的能力,具有较强的自学和吸收新知识的能力。

相关文档
相关文档 最新文档