文档库 最新最全的文档下载
当前位置:文档库 › 1-2-2 数列递推关系综合应用 解析版

1-2-2 数列递推关系综合应用 解析版

1-2-2 数列递推关系综合应用 解析版
1-2-2 数列递推关系综合应用 解析版

专题限时训练 (小题提速练)

(建议用时:45分钟)

一、选择题

1.设数列{}a n 满足a 1=a ,a n +1=a 2n -2

a n +1

(n ∈N *),若数列{}a n 是常数列,则a =( )

A .-2 B.-1 C.0

D.(-1)n

解析:因为数列{a n }是常数列,所以a =a 2=a 21-2a 1+1=a 2

-2

a +1

,即a (a +1)=a 2-2,解得a =-2.故选A.

答案:A

2.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1

a n +2(n ∈N *),则该数列的通项为( )

A .a n =1

n B.a n =

2n +1

C .a n =2

n +2

D.a n =3n

解析:由已知2a n +1=1a n +1

a n +2,

可得

1

a n +1-1a n =1a n +2-1a n +1

, 所以??????1a n 是首项为1a 1=1,公差为1a 2-1

a 1

=2-1=1

的等差数列,所以1a n

=n ,即a n =1

n .

答案:A

3.已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),若S n =100,则n 的值为( ) A .8 B.9 C.10

D.11

解析:由S n -S n -3=51得,a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,∴S n =n (a 2+a n -1)2=100,

解得n =10. 答案:C

4.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 1

3(a 5+a 7+a 9)=( ) A .-5 B.-15 C.5

D.15

解析:∵log 3a n +1=log 3a n +1,∴a n +1=3a n .

∴数列{a n }是以3为公比的等比数列. ∵a 2+a 4+a 6=a 2(1+q 2+q 4)=9,

∴a 5+a 7+a 9=a 5(1+q 2+q 4)=a 2q 3(1+q 2+q 4)=35. ∴log 1

335=-5.故选A. 答案:A

5.已知S n 表示数列{a n }的前n 项和,若对任意n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2019=( ) A .1 008×2 020 B.1 008×2 019 C .1 009×2 019

D.1 009×2 020

解析:在a n +1=a n +a 2中,令n =1,得a 2=a 1+a 2,a 1=0;令n =2,得a 3=2=2a 2,a 2=1, 于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列.S 2019=2 019×2 018

2=1 009×2 019.

答案:C

6.在数列{a n }中,a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n +S 1)都成立,则S 15=( ) A.210 B.211 C.224

D.225

解析:n >1时,S n +1-S n =S n -S n -1+2, ∴a n +1=a n +2,∴a n +1-a n =2.

数列{a n }从第二项开始组成公差为2的等差数列,所以S 15=a 1+(a 2+…+a 15)=1+2+28

2×14=211. 答案:B

7.(2019·广东汕头市一模)设S n 是数列{a n }的前n 项和,且S n =12-1

2a n ,则a n =( ) A.13·? ????12n -1

B.12·? ????23n -1 C .2·

? ????13n -13

D.? ????13n 解析:由题意,得S 1=a 1=12-12a 1,所以a 1=13.又当n ≥2时,S n -S n -1=a n =12-12a n -12+12a n -1,即

a n

a n -1=13,所以数列{a n }是首项为13,公比为13的等比数列,所以a n =? ????13n

.故选D.

答案:D

8.已知数列{a n }满足a 1=1,a n +1=a n

a n +2(n ∈N *),则数列{a n }的通项公式为( )

A .a n =2n -1

B.a n =2-

1

3n -1

C .a n =1

2n -1

D.a n =

13n -2

解析:由题意得1

a n +1=2a n +1,则1a n +1+1=2? ????

1a n +1,

易知1

a 1

+1=2≠0,

所以数列????

??1a n +1是以2为首项,2为公比的等比数列,

则1a n +1=2n ,则a n =1

2n -1.故选C.

答案:C

9.已知函数f (n )=n 2cos(n π),且a n =f (n ),则a 1+a 2+…+a 100=( ) A .0 B.100 C.5 050

D.10 200

解析:a 1+a 2+a 3+…+a 100 =-12+22-32+42-…-992+1002 =(22-12)+(42-32)+…+(1002-992) =3+7+…+199=50(3+199)

2=5 050.故选C.

答案:C

10.已知数列{a n }满足a 1=0,a n +1=a n +2a n +1+1,则a 13=( ) A .143 B.156 C.168

D.195 解析:由a n +1=a n +2a n +1+1,

可知a n +1+1=a n +1+2a n +1+1=(a n +1+1)2, a n +1+1=a n +1+1,又a 1+1=1,

故数列{a n +1}是首项为1,公差为1的等差数列,所以a n +1=n ,所以a 13+1=13,则a 13=168.故选C. 答案:C 11.定义

n

p 1+p 2+…+p n

为n 个正数p 1,p 2,…,p n 的“均倒数”.若已知数列{a n }的前n 项的“均

倒数”为12n +1,且b n =a n +14,则1b 1b 2+1b 2b 3+…+1

b 10b 11

=( ) A.111

B.9

10

C.1011

D.1112

解析:由已知,得n a 1+a 2+…+a n =1

2n +1,

∴a 1+a 2+…+a n =n (2n +1)=S n . 当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1. 验证知,当n =1时此式也成立, ∴a n =4n -1.∴b n =a n +1

4=n . ∴

1b n ·b n +1=1n -1

n +1

, ∴1b 1b 2+1b 2b 3+…+1b 10b 11

=? ????1-12+? ????12-13+…+? ????110-111=10

11.故选C. 答案:C

12.已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n -1+a 2n +1(n ≥2),b n =

1

a n +a n +1

,记数列{b n }的前n 项

和为S n ,则S 33的值是( ) A.99 B.33 C.4 2

D.3

解析:∵2a 2n =a 2n -1+a 2n +1(n ≥2),∴数列{a 2n }为等差数列,首项为1,公差为22-1=3.∴a 2

n =1+3(n

-1)=3n -2.a n >0.∴a n =3n -2.

∴b n =1a n +a n +1=13n -2+3n +1=13(3n +1-3n -2),故数列{b n }的前n 项和为

S n =13[(4-1)+(7-4)+…+(3n +1-3n -2)]=1

3(3n +1-1). 则S 33=1

3(3×33+1-1)=3.故选D. 答案:D 二、填空题

13.已知等比数列{a n }的前n 项和为S n ,且S n =m ·2n -1-3,则m = . 解析:a 1=S 1=m -3,

当n ≥2时,a n =S n -S n -1=m ·2n -2, ∴a 2=m ,a 3=2m ,又a 22=a 1a 3, ∴m 2=(m -3)·2m ,整理得m 2-6m =0,

则m =6或m =0(舍去). 答案:6

14.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n = . 解析:当n ≥2时,a n =S n -S n -1=2n +1; 当n =1时,a 1=S 1=4≠2×1+1. 因此a n =???

4,n =1,

2n +1,n ≥2.

答案:???

4,n =1,

2n +1,n ≥2

15.若数列{a n }的前n 项和S n =23a n +1

3,则{a n }的通项公式a n =________.

解析:当n =1时,由已知S n =23a n +1

3, 得a 1=23a 1+1

3,即a 1=1;

当n ≥2时,a n =S n -S n -1=? ????2

3a n +13-? ????23a n -1+13=23a n -23a n -1,所以a n =-2a n -1,

所以数列{a n }为以1为首项,-2为公比的等比数列, 所以a n =(-2)n -1. 答案:(-2)n -

1

16.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰是由6颗珠宝构成如图1所示的正六边形,第三件首饰是由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第六件首饰上应有 颗珠宝;则前n 件首饰所用珠宝总数为 颗.(结果用n 表示)

解析:由题意,知a 1=1,a 2=6,a 3=15, a 4=28,a 5=45,a 6=66,….

∴a 2-a 1=5,a 3-a 2=9,a 4-a 3=13,a 5-a 4=17,a 6-a 5=21,…,a n -a n -1=4n -3. ∴(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+(a 6-a 5)+…+(a n -a n -1) =a n -a 1=5+9+13+17+21+…+(4n -3) =

(n -1)(5+4n -3)2

=2n 2

-n -1.

∴a n =2n 2-n ,其前n 项和为S n =2(12+22+32+…+n 2)-(1+2+3+…+n ) =2×n (n +1)(2n +1)6-n (n +1)2=4n 3+3n 2-n 6.

答案:66 4n 3+3n 2-n

6

专题限时训练 (大题规范练)

(建议用时:60分钟)

1.在数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0. (1)求数列{a n }的通项公式; (2)设S n =|a 1|+|a 2|+…+|a n |,求S n .

解析:(1)∵a n +2-2a n +1+a n =0,∴a n +2-a n +1=a n +1-a n , ∴a n +1-a n 为同一常数,

∴数列{a n }是以a 1为首项的等差数列. 设a n =a 1+(n -1)d .

则a 4=a 1+3d ,∴d =2-8

3=-2,∴a n =10-2n . (2)由(1)知a n =10-2n ,令a n =0,得n =5.

当n >5时,a n <0;当n =5时,a n =0; 当n <5时,a n >0. 设T n =a 1+a 2+…+a n .

∴当n >5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n )=T 5-(T n -T 5)=2T 5-T n =n 2-9n +40.

当n ≤5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =9n -n 2.∴S n =?

??

9n -n 2(n ≤5),n 2-9n +40(n >5).

2.(2019·东莞市模拟)设{a n }是单调递增的等比数列,S n 为数列{a n }的前n 项和.已知S 3=13,且a 1+3,3a 2,a 3+5构成等差数列. (1)求a n 及S n ;

(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明理由. 解析:(1)由题意得???

a 1+a 2+a 3=13,

6a 2=a 1+a 3+8,

∴a 2=3,a 1+a 3=10,

得3q +3q =10,解得q =3或q =1

3(舍). ∴a n =a 2q

n -2

=3

n -1

,S n =1×(1-3n )1-3

=3n -12.

(2)假设存在常数λ,使得数列{S n +λ}是等比数列. ∵S 1+λ=1+λ,S 2+λ=4+λ,S 3+λ=13+λ, ∴(4+λ)2=(1+λ)·(13+λ),解得λ=1

2, 此时S n +12=3n

2,∴S n +12

S n -1+12

3n

23n -12

=3(n ≥2), ∴存在常数λ=12.使得数列{S n +12}是首项为a 1+12=3

2,公比为3等比数列. 3.设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=1+S n (n ∈N *). (1)求数列{a n }的通项公式;

(2)若数列{b n }为等差数列,且b 1=a 1,公差为a 2

a 1

.当n ≥3时,比较b n +1与1+b 1+b 2+…+b n 的大小.

解析:(1)因为a n +1=1+S n ,① 所以当n ≥2时,a n =1+S n -1,②

①-②得a n +1-a n =a n ,即a n +1=2a n (n ≥2). 因为当n =1时,a 2=1+a 1=2,

所以a 2

a 1=2,所以a n +1a n

=2(n ∈N *),

所以数列{a n }是首项为1,公比为2的等比数列, 所以a n =2n -1.

(2)因为b n =1+(n -1)×2=2n -1, 所以b n +1=2n +1, 1+b 1+b 2+…+b n =1+

n (1+2n -1)2

=n 2

+1. 因为(n 2+1)-(2n +1)=n (n -2), 当n ≥3时,n (n -2)>0,

所以当n ≥3时,b n +1<1+b 1+b 2+…+b n .

4.(2019·安徽省淮南市第四次联考)已知数列{a n }的前n 项和为S n ,且对任意正整数n ,都有4a n =3S n +2成立.记b n =log 2a n .

(1)求数列{a n }和{b n }的通项公式; (2)设c n =

4(b n +1)·(b n +1+3)

,数列{c n }的前n 项和为T n ,求证:13≤T n <3

4.

解析:(1)在4a n =3S n +2中,令n =1得a 1=2.因为对任意正整数n ,都有4a n =3S n +2成立,当n ≥2时,4a n -1=3S n -1+2,两式作差得,4a n -4a n -1=3a n ,所以a n =4a n -1,又a 1≠0,所以数列{a n }是以2为首项,4为公比的等比数列,∴a n =2×4n -1,∴b n =log 2a n =log 222n -1=2n -1. (2)证明:∵b n =2n -1,∴c n =4

(b n +1)·(b n +1+3)

=4

(2n -1+1)·(2n +1+3)

1n ·(n +2)=12×? ??

??1

n -1n +2.

∴T n =12? ????1-13+12? ????12-14+12? ????13-15+…+12? ????1

n -1-1n +1+12? ????1n -1n +2

=12? ?

???1+12-1n +1-1n +2=34-12? ??

??1n +1+1n +2, ∴对任意n ∈N *,T n <34,又c n >0,所以,T n 为关于n 的增函数,所以T n ≥T 1=c 1=13. 综上,13≤T n <3

4.

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

(完整版)数列的递推公式教案

数列的递推公式教案 普兰店市第六中学陈娜 一、教学目标 1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。 2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。 3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。 二、教学重点、难点和关键点 重点:数列的递推定义以及应用数列的递推公式求出通项公式。 难点:数列的递推公式求通项公式。 关键:同本节难点。 三、教学方法 通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题……经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。 四、教学过程 环节1:新课引入 一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把

现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉……… 一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马? 通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。 环节2:引例探究 (1)1 2 4 8 16……… (2) 1 ()1cos ()1cos cos ()]1cos cos[cos ……. (3)0 1 4 7 10 13 ……. 通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。 递推公式定义: 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 环节3:应用举例及练习 例1:已知数列{a n }的第1项是1,以后的各项由公式 (n ≥2)给出,写出这个给出,写出这个数列的前5项. 解:据题意可知:a 1=1, 1 11n n a a -=+2111112,1a a =+=+=3211311,22a a =+=+=4312511,33a a =+=+=5413811.55a a =+ =+=

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

高中数学几种常见的数列递推关系式专题辅导

高中数学几种常见的数列递推关系式 数列的递推关系是指数列中的前一项(前几项)与后一项的关系式。递推数列是数列中的重要内容,通过递推关系,观察,探求数列的规律,进而可求出整个数列的通项公式。通过递推关系的学习,可以培养学生的观察能力,归纳与转化能力,综合运用知识等能力,因此,是近几年高考与竞赛的热点。 下面针对几种高中常见的递推形式及处理方法做一总结。 一. 定义法 常见形式: 已知:a a a a d n n 11==++, ① 或a a a a q n n 110=≠=+, ② (其中,d 常数,q ≠0为常数) 定义法即高中所学的两大基本数列——等差数列与等比数列的基本定义式。 已知首项,与递推关系,数列的通项即知,在此不做赘述。但这两个基本数列的求通项公式的方法在后续学习中,在方法上起到了指导作用。即我们下面要介绍的方法。 二. 迭代法 常见形式:已知 a a a a f n n n 110=≠=++,() ③ 或a a a a f n f n n n 110=≠=+,,()()不恒为零 ④ (这里的f n ()是关于n 的关系式)。 这两个形式的递推关系式,虽然不是等差与等比数列,但表达方式上非常接近。我们可以利用迭代的方法来求出通项a n 也可以分别称为叠加法和叠乘法。 如:③a a f 211-=() a a f 322-=() …… a a f n n n N n n -=-≥∈-112()()*, 将以上n -1个式子叠加,可得 a a f f f n n n N n -=+++-≥∈11212()()()()*…, 这里,我们只须已知数列的首项a 1利用求和求出上述等式右端的和,即可求出数列 {}a n 的通项公式来。 如:④的具体例子: 例1. (2006年东北三省三校一模试题21)已知数列{}a n ,S n 是数列的前n 项和, a S n a n n 212 ==,。求S n 。 解:因为S n S S n n N n n n =-≥∈-2 21()()*, 所以n S n S n n 22 21-=- S S n n n n N n n -= -≥∈123()*, S S S S S S S S n n n n n n N n n n n 324312131425364132 3·…····… ·,---=---≥∈()*

数列的递推关系

数列的递推关系 ? 教学重点: 数列的任意连续若干项能满足的关系式称为该数列的一个递推公式,由递推公式和相应有尽有前若干项可以确定一个数列.这种表示方法叫做递推公式法或递推法. ? 教学难点: 1.根据数列的首项和递推公式写出它的前几项,关归纳出通项公式. 2.n n S a 的关系 ???-=-1 1S S S a n n n )1() 2(=≥n n . ? 教学过程: 一、复习 数列的定义,数列的通项公式的意义(从函数观点出发去刻划). 二、递推公式 钢管的例子 3+=n a n 从另一个角度,可以: 1 4 11+==-n n a a a Λ ) 2() 1(≥=n n “递推公式”定义:已知数列{}n a 的第一项,且任一项n a 与它的前一项1-n a (或前n 项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式. 例1.已知21=a ,41-=+n n a a 求n a . 解一:可以写出:21=a ,22-=a ,63-=a ,104-=a ,…… 观察可得:)1(42)4)(1(2--=--+=n n n a n 解二:由题设: 41-=-+n n a a

∴ Λ Λ4 4 432211-=--=--=------n n n n n n a a a a a a ) +412-=-a a )1(41--=-n a a n ∴ )1(42--=n a n 例2.若记数列{}n a 的前n 项之和为S n 试证明:?? ? -=-1 1 S S S a n n n ) 1()2(=≥n n 证:显然1=n 时 ,11S a = 当1≠n 即2≥n 时, n n a a a S +++=Λ21 1211--+++=n n a a a S Λ ∴ n n n a S S =--1 ∴???-=-1 1S S S a n n n )1() 2(=≥n n 注意:1? 此法可作为常用公式; 2? 当)(11S a =时 满足1--n n S S 时,则1--=n n n S S a . 例3.已知数列{}n a 的前n 项和为① n n S n -=22 ② 12 ++=n n S n ,求数列{}n a 的 通项公式. 解:1.当1=n 时,111==S a 当2≥n 时,34)1()1(222 2-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合 34-=n a n 2.当1=n 时,311==S a 当2≥n 时,n n n n n a n 21)1()1(12 2=-----++= ∴ ?? ?=n a n 23 ) 2()1(≥=n n 例4.已知21=a ,n n a a 21=+ 求n a .

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

几类常见递推数列的解题方法

叠加、 叠乘、迭代递推、代数转化 ——几类常见递推数列的教学随笔 已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、叠加相消. 类型一:形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消. 例1:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1) ∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3) = 2 1 [1+(2n -3)]( n -1)=( n -1)2 n ∈N + 练习1:⑴.已知数列{a n },a 1=1, n ∈N +,a 1+n =a n +3 n , 求通项公式a n . ⑵.已知数列{a n }满足a 1=3,)1(2 1 +=-+n n a a n n ,n ∈N +,求a n . 二、叠乘相约. 类型二:形如)(1n f a a n n =+.其中f (n ) =p p c mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或n n a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1). 例2:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0 ∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0 ∴1 1+=+n n a a n n ∴n n n n n n n a a a a a a a a a a n n n n n n n 112 12 31 2111 23 22 11 =???--?--?-=?????=----- 练习2:⑴已知数列{a n }满足S n = 2 n a n ( n ∈N * ), S n 是{ a n }的前n 项和,a 2=1,求a n .

数列的递推公式练习

数列的递推公式练习 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

课时作业5数列的递推公式(选学) 时间:45分钟满分:100分 课堂训练 1.在数列{a n}中,a1=,a n=(-1)n·2a n-1(n≥2),则a5=() A.- C.- 【答案】 B 【解析】由a n=(-1)n·2a n-1知a2=,a3=-2a2=-,a4=2a3=-,a5=-2a4=. 2.某数列第一项为1,并且对所有n≥2,n∈N,数列的前n项之积为 n2,则这个数列的通项公式是() A.a n=2n-1 B.a n=n2 C.a n=D.a n= 【答案】 C 【解析】∵a1·a2·a3·…·a n=n2,a1·a2·a3·…·a n-1=(n-1)2,∴两式相除,得a n=. 3.已知数列{a n}满足:a4n-3=1,a4n-1=0,a2n=a n,n∈N+,则a2009= ________,a2014=________. 【答案】10 【解析】考查数列的通项公式. ∵2009=4×503-3,∴a2009=1, ∵2014=2×1007,∴a2014=a1007,

又1007=4×252-1,∴a1007=a4×252-1=0. 4.已知数列{a n},a1=0,a n+1=,写出数列的前4项,并归纳出该数列的通项公式. 【解析】a1=0,a2==,a3===,a4===. 直接观察可以发现,把a3=写成a3=, 这样可知a n=(n≥2,n∈N+). 当n=1时,=0=a1, 所以a n=(n∈N+). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n}满足:a1=-,a n=1-(n≥2),则a4=() C.- 【答案】 C 【解析】∵a1=-,a n=1-(n≥2), ∴a2=1-=1-=5, a3=1-=1-=, a4=1-=1-=1-=-. 2.数列{a n}满足a1=,a n=-(n≥2,n∈N+),则a2013=() B.- C.3 D.-3 【答案】 A

专题由递推关系求数列的通项公式含答案

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a = ,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积 例3 已知数列{n a }中1n n s na =- ,求数列{n a }的通项公式 评注 此类问题关键是化 ()1 n n a g n a -=,且式子右边累乘时可求积,而左边中间项可消。 4、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法 称为转化法。常用的转化途径有: ⑴凑配、消项变换——如将一阶线性递推公式1n n a qa d +=+(q, d 为常数,0,1q q ≠≠)通过凑配变成 11n d a q ++ -=1n d q a q ??+ ?-?? ,或消常数项转化为()211n n n n a a q a a +++-=- 例4、已知数列{n a }中,11a =,()1212n n a a n -=+≥,求数列{n a }的通项公式 点评: 此类问题关键是利用配凑或消项变换将其转化为等比数列

数列递推公式的九种方法

求递推数列的通项公式的九种方法 利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法 例1 在数列{}中,31 =a , ) 1(11++ =+n n a a n n ,求通项公式. 解:原递推式可化为:1 111 +- + =+n n a a n n 则, 2 11112 -+=a a 3 12123-+ =a a 4 13134-+ =a a ,……,n n a a n n 1111--+ =-逐项相加得:n a a n 111- +=. 故n a n 14- =. 二、作商求和法 例 2 设数列{}是首项为1的正项数列,且 0)1(12 2 1 =+-+++n n n n a a na a n (n=1,2,3…) ,则它的通项公式是=▁▁▁(2000年高考15题) 解:原递推式可化为: ) ]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0, 1 1+=+n n a a n n 则 ,4 3,32,21342312===a a a a a a ……,n n a a n n 11 -= - 逐项相乘得: n a a n 1 1=,即=n 1. 三、换元法 例3 已知数列{},其中9 13,3421 == a a ,且当n ≥3时, ) (3 1 211----=-n n n n a a a a ,求通项公式(1986年高考文科第八

题改编). 解:设1 1 ---=n n n a a b ,原递推式可化为: } {,3 1 21n n n b b b --=是一个等比数列,9 1 3491312 1 =-= -=a a b ,公比为3 1.故n n n n b b )3 1 ()31(91)31(2211 ==?=---.故n n n a a )3 1 (1=--.由逐差法可得: n n a )3 1(2123-= . 例4已知数列{},其中2,12 1 ==a a ,且当n ≥3时,122 1 =+---n n n a a a ,求通项公式。解 由122 1 =+---n n n a a a 得:1)()(2 1 1 =------n n n n a a a a ,令1 1 ---=n n n a a b ,则上式为12 1 =---n n b b ,因此是一个等差数列,1121=-=a a b ,公差为1.故n b n =.。 由于112312121-=-++-+-=+++--n n n n a a a a a a a b b b ΛΛ 又2 )1(12 1 -= +++-n n b b b n Λ 所以)1(2 1 1-= -n n a n ,即)2(2 12 +-= n n a n 四、积差相消法 例5设正数列,,…,,…满足2 -n n a a 2 1---n n a a = ) 2(≥n 且11 ==a a ,求的通项公式. 解 将递推式两边同除以2 1--n n a a 整理得:122 1 1=----n n n n a a a a 设= 1 -n n a a ,则0 11 a a b = =1,1 21=--n n b b ,故有 1 212=-b b ⑴122 3 =-b b ⑵ … … … …

数列的几种递推公式

数列的几种递推公式 一、 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 二、 n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321=a ,n n a n n a 1 1+= +,求n a 。

例3:已知31=a ,n n a n n a 2 31 31+-=+ )1(≥n ,求n a 。 解:1231 32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---= 3437 52633134 8531n n n n n --= ????=---。 变式:已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则 {a n }的通项1 ___n a ?=?? 12n n =≥ 解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32, 用此式减去已知式,得 当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+, 又112==a a , n a a a a a a a a a n n =???====∴-1 3423121,,4,3,1, 1, 将以上n 个式子相乘,得2 ! n a n =)2(≥n 三、 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元法转化为等比数列求解。

常见递推数列通项公式的求法典型例题及习题

.. . 常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -= ---n n a a n n ……

.. . 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- = (2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得: 1-= k a A ,2)1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-1 1)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n

求数列通项公式的11种方法

求数列通项公式的11种方法方法 总述:一.利用递推关系式求数列通项的11种方法: 累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、 换元法(目的是去递推关系式中出现的根号)、 数学归纳法(少用) 不动点法(递推式是一个数列通项的分式表达式)、 特征根法 二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、 等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-=

两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 例2 已知数列{}n a 满足11231 3n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211 122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13) 2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以1 3 n +,得 111 21 3333 n n n n n a a +++=++, 则 111 21 3333n n n n n a a +++-=+,故

特征方程解数列递推关系

用特征方程与特征根解数列线性递推关系式的通项公式 一.特征方程类型与解题方法 类型一 递推公式为An+2=aAn+1+bAn 特征方程为 X 2 =aX+b 解得两根X 1 X 2 (1)若 X 1≠X 2 则A n =pX 1n +qX 2 n (2)若X 1=X 2=X 则A n =(pn+q)X n (其中p.q 为待定系数,由A 1.A 2联立方程求得) (3)若为虚数根,则为周期数列 类型二 递推公式为 特征方程为X = d c b a X X ++ 解得两根X 1 X 2 (1)若X 1≠X 2 则计算2111x A x A n n --++=21 x d cA b aA x d cA b aA n n n n -++-++=k 2 1x A x A n n -- 接着做代换B n =2 1 x A x A n n -- 即成等比数列 (2)若X 1=X 2=X 则计算x A n -+11=x d cA b aA n n -++1 =k+x A n -1 接着做代换B n =x A n -1 即成等差数列 (3)若为虚数根,则为周期数列 类型三 递推公式为 特征方程为X =d c b ax X ++2 解得两根X 1 X 2 。然后参照类型二的方法进行整理 类型四 k 阶常系数齐次线性递归式 A n+k =c 1A n+k-1+c 2A n+k-2+…+c k A n 特征方程为 X k = c 1X k-1+c 2X k-2+…+c k (1) 若X 1≠X 2≠…≠X k 则A n =X k n 11+X k n 22+…+X k k n k (2) 若所有特征根X 1,X 2,…,X s.其中X i 是特征方程的t i 次重根,有t 1+t 2+…+t s =k 则

数列四种递推公式解题

浅谈四种数列递推公式求通项公式的方法 寿县一中数学组 邵兵荣 摘要:本文是介绍数列通项公式的求法,数列的通项公式是研究数列性质的关键,对数列的单调性,数列的最大项,最小项,数列的求和等都有重大作用,通过构造等比数列将四种数列的递推公式转化为等比数列,先有等比数列的通项公式再求所求数列的通项公式。 关键词:等比数列 递推公式 通项公式 数列的递推公式是数列的一种表示方法,它反映的是数列相邻项之间的关系式,如果要研究某个数列的性质,我们就要确定其通项公式。本文就介绍了四种根据数列的递推公式求通项公式的方法。 一、数列}{n a 中,已知q pa a a a n n +==-11,,()+∈>N n n ,1,0,1≠≠q p ,求数列}{n a 的通项公式。 解析:可以设()x a p x a n n +=+-1,化简得()x p pa a n n 11-+=- 比较系数得到(),1q x p =-即1 -=p q x , 所以数列}{n a 满足:??? ? ??-+=-+-111p q a p p q a n n 即数列}1{-+p q a n 是以首项为1 -+p q a ,公比为p 的等比数列。 即111-??? ? ??-+=-+n n p p q a p q a 所以111--???? ? ?-+=-p q p p q a a n n ,(0,1,≠≠∈+q p N n ) 【例1】设数列}{n a 满足, 23,111+==-n n a a a ()+∈>N n n ,1,求数列}{n a 的 通项公式。 解:根据231+=-n n a a 可以得到()1311+=+-n n a a 即数列}1{+n a 是以211=+a 为首项,公比为3的等比数列。 所以1321-?=+n n a 即1321-?=-n n a 二、数列}{n a 中,已知a a =1,r qn pa a n n ++=-1,()+∈>N n n ,1,R r q a p ∈≠≠≠,0,0,1 ,求数列}{n a 的通项公式。 解析:可以设()]1[1y n x a p y xn a n n +-+=++-,可以得到

(完整版)数列递推公式练习(带答案)

数列递推公式练习 1、数列 Λ,99 10,638,356,154,32中第8项是 ( ) A. 19514 B. 25516 C. 32318 D. 39920 2、已知数列{}n a 满足()n n n n a a a 111-+=--且11=a ,则=3 5a a ( ) A. 1516 B. 34 C. 158 D. 3 8 3、数列{}n a 中,已知() *1221,2,1N n a a a a a n n n ∈-===++,则=2002a ( ) A. 1 B. 1- C. 2- D. 2 4、已知() *1133,21N n a a a a n n n ∈+==+,则=n a ( ) A. 52+n B. 42+n C. 53+n D. 4 3+n 5、数列{}n a 满足341+=-n n a a 且01=a ,则此数列第5项是 ( ) A. 15 B. 255 C. 16 D. 63 6、数列{}n a 中,02,311=-=+n n a a a ,数列{}n b 的通项n b 满足关系式 ()()*1N n b a n n n ∈-=,则=n b 。 7、设数列{}n a 满足11=a ,()1111 >+ =-n a a n n ,写出这个数列的前5项。 8、设数列{}n a 满足51=a ,n n a a 31=+,写出这个数列的前5项并归纳猜想通项公式。 9、数列{}n a 中,n n n a a a a a +==+12,11,写出这个数列的前4项,并根据前4项观察规律,

写出数列的一个通项公式。 10、设数列{}n a 满足11=a ,13321++=-+n n a a n n ,写出这个数列的前5项并归纳通项 公式。 11、已知数列{}n a 满足q pa a a n n +==+11,1,且15,342==a a ,求q p ,的值。 参考答案: 1、 B 2、 B 3、 B 4、 C 5、B

数列的递推公式练习

课时作业5 数列的递推公式(选学) 时间:45分钟 满分:100分 课堂训练 1.在数列{a n }中,a 1=1 3,a n =(-1)n ·2a n -1(n ≥2),则a 5=( ) A .-16 3 C .-83 【答案】 B 【解析】 由a n =(-1)n ·2a n -1知a 2=23,a 3=-2a 2=-4 3,a 4=2a 3 =-83,a 5=-2a 4=163. 2.某数列第一项为1,并且对所有n ≥2,n ∈N ,数列的前n 项之积为n 2,则这个数列的通项公式是( ) A .a n =2n -1 B .a n =n 2 C .a n =n 2 n -12 D .a n =n +12 n 2 【答案】 C 【解析】 ∵a 1·a 2·a 3·…·a n =n 2,a 1·a 2·a 3·…·a n -1=(n -1)2,∴两式相除,得a n =n 2 n -12 . 3.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N +,则a 2 009=________,a 2 014=________. 【答案】 1 0 【解析】 考查数列的通项公式.

∵2 009=4×503-3,∴a 2 009=1, ∵2 014=2×1 007,∴a 2 014=a 1 007, 又1 007=4×252-1,∴a 1 007=a 4×252-1=0. 4.已知数列{a n },a 1=0,a n +1=1+a n 3-a n ,写出数列的前4项,并归 纳出该数列的通项公式. 【解析】 a 1=0,a 2=1+a 13-a 1=13,a 3=1+a 23-a 2=1+13 3-13=1 2,a 4=1+a 33-a 3 =1+12 3-12 =3 5. 直接观察可以发现,把a 3=12写成a 3=2 4, 这样可知a n =n -1 n +1(n ≥2,n ∈N +). 当n =1时,1-1 1+1=0=a 1, 所以a n =n -1 n +1 (n ∈N +). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n }满足:a 1=-14,a n =1-1 a n -1(n ≥2),则a 4=( ) C .-14 【答案】 C

相关文档
相关文档 最新文档