文档库 最新最全的文档下载
当前位置:文档库 › 随机信号处理实验报告讲解

随机信号处理实验报告讲解

随机信号处理实验报告讲解
随机信号处理实验报告讲解

随机信号处理实验报告

目录

一、实验要求: (3)

二、实验原理: (3)

2.1 随机信号的分析方法 (3)

2.2 随机过程的频谱 (3)

2.3 随机过程的相关函数和功率谱 (4)

(1)随机信号的相关函数: (4)

(2)随机信号的功率谱 (4)

三、实验步骤与分析 (5)

3.1实验方案 (5)

3.2实验步骤与分析 (5)

任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5)

任务二:(s1 变量)求噪声下正弦信号的相位 (8)

任务三:(s1 变量)求信号自相关函数和功率谱 (11)

任务四:(s变量)求噪声下信号的振幅和频率 (14)

任务五:(s变量)求信号的自相关函数和功率谱 (17)

3.3实验结果与误差分析 (19)

(1)实验结果 (19)

(2)结果验证 (19)

(3)误差分析 (21)

四、实验总结和感悟 (22)

1、实验总结 (22)

2、实验感悟 (23)

五、附低通滤波器的Matlab程序 (23)

一、实验要求:

(学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。

二、实验原理:

2.1 随机信号的分析方法

在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

2.2 随机过程的频谱

信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为:

()()2j ft X f x t e dt π+∞

--∞

=?

信号的时域描述只能反映信号的幅值随时间的变化情况,除只有一个频率分量的简谐波外,一般很难明确揭示信号的频率组成和各频率分量的大小。信号的频谱X(f)代表了信号在不同频率分量处信号成分的大小,它能够提供比时域信号波形更直观,丰富的信息。

在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT),因此需要利用离散信号x(nT)来计算信号x(t)的频谱。

有限长离散信号x(n),n=0,1,…,N-1的DFT 定义为:

()()1

0N kn

N n X k x n W -==∑

其中0,1,2.......1,k

N =- 2j

N

N W e

π

-=

2.3 随机过程的相关函数和功率谱

(1)随机信号的相关函数:

信号的相关性是指客观事物变化量之间的相依关系。对于平稳随机过程X(t)和Y(t)在两个不同时刻t 和t+τ的起伏值的关联程度,可以用相关函数表示。在离散情况下,信号x(n)和y(n)的相关函数定义为:

∑∑-=-+=10

1

N t

xy N /)t (y )t (x ),t (N R τττ τ

,t=0,1,2,……N-1

随机信号的自相关函数表示波形自身不同时刻的相似程度。与波形分析、频谱分析相比,它具有能够在强噪声干扰情况下准确地识别信号周期的特点。一般来说,信号与噪声在时域内有明显不同,信号前后是有关联的,存在相关性;而噪声在不同时刻基本上不存在关联,即不存在相关性.利用这种相关性原理,已成为从强噪声中提取弱信号的重要手段。这种技术的理论基础是信息论和随机过程理论,这种检测方法被称为相关检测。 (2)随机信号的功率谱

随机信号的功率谱密度是随机信号的各个样本在单位频带内的频谱分量消耗在一欧姆电阻上的平均功率之统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。它只反映随机信号的振幅信息,而没有反映相位信息。随机过程的功率谱密度为:

]2|)(|lim [)(2

T

X E x G Ti T ω∞→= -∞<ω<+∞

随机信号的平均功率就是随机信号的均方值,功率谱密度曲线下的总面积(即随机信号的全部功率)等于随机信号的均方值。随机信号的功率谱与它的自相关函数构成一对傅里叶变换对。

三、 实验步骤与分析

本实验利用Matlab 软件编程来实现数据文件中波形的仿真与分析,最后通过滤波器还原正弦信号,与结果进行比较。

3.1 实验方案

3.2 实验步骤与分析

任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (1)原理:

采用傅立叶变换将时域信号x(t)变换为频域信号X(f),并作出幅频曲线进行分析,离散信号x(n),n=0,1,…,N-1的DFT 公式如下:

()()1

0N kn

N

n X k x n W -==∑

其中0,1,2.......1,k

N =- 2j N

N W e

π-=

在Matlab 的编程实现时,运用的是快速算法傅里叶算法FFT ,它是DFT 的快速算法。因为给定的数据文件中采样点数N=4096,所以取采样频率fs=4096Hz 。

(2)Matlab仿真结果及分析

图1 随机信号的时域图形

图2 随机信号的频域图形

由时域图形可知,正弦信号被噪声“淹没”了,所以时域上看不出任何信号的特征,进行傅里叶变换,频域特征如图2所示。

已知采样频率fs=4096Hz,所以Nyquist频率为fs/2=2048Hz,傅里叶变换的数据具有对称性,整个频谱以Nyquist频率为对称轴,所以频谱分析的时候只要截取0~2048Hz范围内的频谱进行分析。

由频谱曲线可知,信号在82Hz处有一个峰值,大小为4021,所以可以得出:

信号频率:

=

82

f Hz

信号绝对幅度:

2

=?=

A

4021 1.96

N

(3)附Matlab程序及说明

clc; %清空

clear all; %清除所有变量

close all; %关闭所有窗口

load('C:\Users\caolili\Desktop\FileDat01_1.mat')

fs=4096; %设定采样频率

N=4096; %采样点数

n=0:N-1;

t=n/fs; %采样时间间隔

subplot(211); %两行一列第一幅图

plot (n,s1); %画出时域波形

xlabel('时间t(1/4096s)');

ylabel('信号s1');

title('原信号时域波形');

grid;

%进行FFT变换并做频谱图y=fft(s1,N); %进行fft变换

mag=abs(y); %求幅值

f=(0:length(y)-1)'*fs/length(y); %进行对应的频率转换

subplot(212); %两行一列第二幅图

plot(f,mag); %作频谱图

xlabel('频率(Hz)');

ylabel('幅值');

title('信号的幅频谱图N=4096');

grid;

任务二:(s1 变量)求噪声下正弦信号的相位 (1)原理

设观测数据为:

1,,...2,1,0),()2cos()(0-=++=N n n w n f A n x φπ

式中,w (n )为已知方差2

σ的高斯白噪声,正弦信号的幅度A 和频率f 0为已知。一种估计φ的估计量为

???

?????????+-=∑∑-=-=∧

10

1000)2sin()()2cos()(ln Im N n N n n f n x j n f n x ππφ

定义信噪比为2

2

2σA SNR =

。由上面已经求的信号幅度A=1.96,f=82Hz ,N=4096。

1产生服从特定概率分布的观测数据x (n ); ○

2利用估计算法计算估计量∧

φ; ○3上述过程重复M 次,产生M 个∧

φ的实现 ○4利用∑=∧

=

M i

i M

11

θμθ

确定估计量的均值。 ○5利用∧

=∧

∑∧

-=

M

i

M

1

2

2

)(1

θθ

μθσ确定估计量的方差。

6利用直方图来确定PDF :首先计算落入某指定区间的次数,然后再除以总的实现次

数得到概率,再除以区间长度得到PDF 估计。

(2)Matlab仿真结果及分析

根据利用matlab仿真得到的PDF估计如图3所示。

图3 随机信号的相位的统计特性

由上面的仿真结果可知初相位约在0时具有最大概率,所以:

θ=

(3)附Matlab程序及说明

clc; %清空

clear all; %清除所有变量

close all; %关闭所有窗口

load('C:\Users\caolili\Desktop\FileDat01_1.mat')

N=4096;

A=1.96; %A为正弦信号幅值,f为其频率

f=82;

n=0:N-1;

s0=300; %设置循环次数

for m=1:s0

y1=0;

任务三:(s1 变量)求信号自相关函数和功率谱 (1)原理:

对于噪声中信号的功率谱分析,有传统方法和现代建模方式。本次实验中主要采用传统谱估计的自相关法,又称为间接法或BT 法。具体步骤是先由)(n x N 估计出自相关函数

)(?m r ,然后对)(?m r 求傅里叶变换得到)(n x N 的功率谱,记之为)(?w P BT

,并以此作为对)(w P 的估计,即

1,)(?)(?-≤=--=∑

N M e m r w P jwm

M

M

m BT

。 (2)Matlab 仿真结果及分析

在Matlab 中主要用C (Xn) = xcorr(xn,'unbiased')函数来计算Xn 的自相关函数,然后对其进行傅里叶变换,便得到它的功率谱。

图4 随机信号的自相关函数

图4 随机信号的功率谱

原信号在时域上时被噪声淹没,经过自相关后可以看出信号为正弦信号,并且由自相关函数图象可知:

混合信号的平均功率:

2[()](0) 2.934E X n R ==

正弦信号的平均功率:

()2

220lim cos 1.922

T

T T A

P A w t dt θ-→∞=+==?

在功率谱图像上,极值点坐标为(82,27.72),正好对应正弦信号的频率为82Hz ,与上面的频谱分析一致。对功率谱密度曲线积分也可求出信号的平均功率。

(3)附Matlab程序及说明

%自相关函数

clc; %清空

clear all; %清除所有变量

close all; %关闭所有窗口

load('C:\Users\caolili\Desktop\FileDat01_1.mat')

fs=4096; %设定采样频率

N=4096; %采样点数

n=0:N-1;

t=n/fs;

Lag=300; %延迟样点数

[c,lags]=xcorr(s1,Lag,'unbiased'); %对原始信号进行无偏自相关估计subplot(1,2,1);

plot(n,s1); %绘制原信号的时域波形

xlabel('时间t(1/4096s)');

ylabel('信号s1');

title('带噪声的信号波形');

grid on;

subplot(1,2,2);

plot(lags/fs,c); %绘制自相关函数图象

xlabel('时间t');

ylabel('Rx(t)');

title('带噪声的信号自相关函数');

grid on;

%功率谱

clc; %清空

clear all; %清除所有变量

close all; %关闭所有窗口

load('C:\Users\caolili\Desktop\FileDat01_1.mat')

fs=4096; %设定采样频率

N=4096; %采样点数

n=0:N-1;

t=n/fs;

Lag=300; %延迟样点数

[c,lags]=xcorr(s1,Lag,'unbiased'); %求信号的自相关函数

fy=fft(c,N); %对自相关函数做FFT变换

t1=0:round(N/2-1);

a=t1*fs/N;

P=10*log10(fy(t1+1)); %纵坐标为相对功率谱密度,单位dB/Hz figure(gcf);

plot(a,P);

ylabel('功率谱密度dBw/Hz');

title('信号的功率谱');

grid;

任务四:(s变量)求噪声下信号的振幅和频率

(1)原理:

同“任务一”的原理相同

(2)Matlab仿真结果及分析

图5 随机信号的时域波形(s变量)

图6 随机信号的频谱(s变量)

对于频谱图的局部放大如下图所示:

图7 随机信号的局部放大的频谱(s变量)

由频域分析可以发现,信号的频谱图上有两个峰值,由Matlab 计算得两个极点分别为:

(82,4053) (86,8150)

所以信号由两个频率相近的正弦信号组成,根据图形分析,有用信号应该是两个正弦信号相加,形如:

()1122sin 2cos 2s s n n S n A f A f f f ππ????

=?+? ? ????

?

根据“任务一”的计算方式,可以得出: 有用信号的频率:

182f Hz =

286f Hz =

有用信号的绝对振幅:

12

4053 1.98A N =?=

22

8153 3.98A N

=?=

对于此处采样点数N 和采样频率fs 的确定要满足频率分辨率的要求,即:

max min

12f f f f f N

-?=-=

所以,要能有效的区分频率轴上的两个频率点f1和f2,有效数据长度必须满足以下关

系式:

122s

f f f N

<-

所以此处取采样频率4096s f Hz =,采样点数4096N =,满足要求。

(3)附Matlab 程序及说明

此处的Matlab 程序设计与“任务一”的类似,只是变量调用时改变为S ,具体参考“任务一”的Matlab 程序及说明,此处不赘述。

任务五:(s 变量)求信号的自相关函数和功率谱 (1)原理:

同“任务三”的原理相同 (2)Matlab 仿真结果及分析

在Matlab 中主要用C (Xn) = xcorr(xn,'unbiased')函数来计算Xn 的自相关函数,然后对其进行傅里叶变换,便得到它的功率谱。

图8 随机信号的自相关函数图象(s 变量)

原信号在时域上时被噪声淹没,经过自相关后可以看出信号为正弦信号,并且由自相关函数图象可知:

混合信号的平均功率:

2[()](0)10.89x E X n R ==

两个正弦信号的平均功率:

()()2222

111222lim cos sin T

T

T P A w t A w t dt θθ-→∞??=+++??? 22

122

A A +=

9.88=

也可以通过对功率谱密度曲线积分求出信号的平均功率,其图象如下所示:

图9 随机信号的功率谱密度(s 变量)

(3)附Matlab 程序及说明

此处的Matlab 程序设计与“任务三”的类似,只是变量调用时改变为S ,具体参考“任务三”的Matlab 程序及说明,此处不赘述。

3.3 实验结果与误差分析

(1)实验结果

分析可知,对于给定的两个数据文件,第一个文件数据s1只包含一个正弦波,第二个文件数据s 是两个频率相近的正弦信号相加。

实验结果如下(采样频率为4096,采样点数为4096):

1 S1中正弦波频率为82Hz ,振幅为1.96,初相位为0,正弦信号的平均功率为1.92W ,混合信号的平均功率为2.93W ,所以噪声功率为1.01W ;

信号表达式为:()1 1.96sin 2824096n S n π?

?=?? ???

, n=0,1,2…4096 ○

2 S 中两个正弦波频率分别为82Hz 和86Hz ,振幅分别为1.98和3.98,正弦信号的平均功率为9.88W ,混合信号的平均功率为10.89W ,所以噪声功率为1.01W ;

信号表达式为:(n=0,1,2…4096)

() 1.98sin 282 3.98cos 28640964096n n S n ππ???

?=??+?? ? ?????

(2)结果验证

由频谱分析可知,有用信号都是低频信号,所以可以通过一个低通滤波器把噪声滤掉,从而得出有用信号。

调用matlab 中的buttord 低通滤波器,混合信号通过次低通滤波器后得如下图10,图13波形,可见高频噪声已被滤除,但波形不规则,现在进行如下改善。

将原信号直接两重自相关,大幅度的提高信噪,然后再通过低通滤波器,得到的信号效果比较好,如下图11所示。

再通过求出的信号表达式:

()1 1.96sin 2824096n S n π?

?=?? ??

?

() 1.98sin 282 3.98cos 28640964096n n S n ππ???

?=??+?? ? ????

?

作出波形,如图12,图14所示,三者相比较发现求出的波形具有较好的符合度。

图10混合信号通过低通滤波(s1变量)

图11原波形两次自相关后滤波波形(s1变量)

图12计算出的信号表达式仿真(s1变量)

()1 1.96sin 2824096n S n π?

?=?? ???

激光脉冲测距实验报告讲解

激光脉冲测距

1 目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7) 2 一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫

反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图激光脉冲测距仪光学原理结构2() 3

图二)测距仪的大致结构组成(3 时钟脉冲门控电路、脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、 振荡器以及计数显示电路组成4)主要的工作过程(其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。参考信号和回波信号先后由光电探测器转换成为电脉冲,并加以放大和整形。整形后的参考信号能触发器翻转,控制计数器开始对晶格振荡器发出的时钟脉冲进行计数。整形后的回波信号使触发器的输出翻转无效,从而使计数器停实验装置实止工作。这样,根据计数器的输出即可计算出待测目标的距离。三单片机开放板和激光脉冲发射、接收电路验装置包括“”“”。 4 (5)激光脉冲发射、接收电路板组成及工作原理 激光脉冲发射/接收电路板原理框图如图2.3所示。图中EPM3032为CPLD;MAX3656为激光驱动器;MAX3747为限幅放大器;T22为单端信号到差分信号转换芯片;T23为差分信号到单端信号转换芯片;LD为半导体激光器;PD为光电探测器。板子上端的EPM3032被编程为脉冲发生器,输出重复频率为1KHz,脉冲宽度为48ns的电脉冲信号。此信号经MAX3656放大后驱动LD发光。板子下端的EPM3032被编程为计数器,对125MHz晶振进行计数。其计数的开门信号来自上端的TX信号,关门信号来自PD的输出。计数器的计数结果采用12 位二进制数据输出,对应的时间范围为0~32.7?s。 二激光脉冲测距的应用领域 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法.脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收.测距仪同时记录激光往返的时间.光速和往返时间的乘积的一半.就是测距仪和被测量物体之间的距离.脉冲法测量距离的精度是一般是在+/-1米左右.另外.此类测距仪的测量盲区一般是15米左右。 激光测距仪已经被广泛应用于以下领域:电力.水利.通讯.环境.建筑.地质.警务.消防.爆破.航海.铁路.反恐/军事.农业.林业.房地产.休闲/户外运动等。 由于激光在亮度、方向性、单色性以及相干性等方面都有不俗的特点,它一出现就吸引了众多科学工作者的目光,并被迅速地被应用在工业生产方面、国防军工方面、房地产业、各级科研机构、工程、防盗安全等各个行业各个领域:激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等。有关于激光的研究与生产制造也如火如荼地开展了起来。 5

《随机信号处理》课程设计

《随机信号处理》课程设计

————————————————————————————————作者:————————————————————————————————日期:

华北水利水电大学 随机信号处理上机实验报告 学院:数学与信息科学 专业:信息与计算科学 姓名:孙志攀 学号:201216511 指导老师:蒋礼 日期:2015年10月20日

实验一 1、熟悉并练习使用下列Matlab 的函数,给出各个函数的功能说明和内部参数的意义,并给出至少一个使用例子和运行结果 1.rand() (1)Y = rand(n) 生成n×n 随机矩阵,其元素在(0,1)内 (2)Y = rand(m,n) 生成m×n 随机矩阵 (3)Y = rand([m n]) 生成m×n 随机矩阵 (4)Y = rand(m,n,p,…) 生成m×n×p×…随机矩阵或数组 (5)Y = rand([m n p…]) 生成m×n×p×…随机矩阵或数组 (6)Y = rand(size(A)) 生成与矩阵A 相同大小的随机矩阵 选择(3)作为例子,运行结果如下: 2.randn() 产生随机数数组或矩阵,其元素服从均值为0,方差为1的正态分布 (1)Y = randn 产生一个伪随机数 (2)Y = randn(n) 产生n×n的矩阵,其元素服从均值为0,方差为1的正态分布(3)Y = randn(m,n) 产生m×n的矩阵,其元素服从均值为0,方差为1的正态分布(4)Y= randn([m n]) 产生m×n的矩阵,其元素服从均值为0,方差为1的正态分布选择(3)作为例子,运行结果如下: 3.normrnd() 产生服从正态分布的随机数 (1)R = normrnd(mu,sigma) 产生服从均值为mu,标准差为sigma的随机数,mu和sigma 可以为向量、矩阵、或多维数组。 (2)R = normrnd(mu,sigma,v) 产生服从均值为mu 标准差为sigma的随机数,v是一个行向量。如果v是一个1×2的向量,则R为一个1行2列的矩阵。如果v是1×n的,那么R 是一个n维数组 (3)R = normrnd(mu,sigma,m,n) 产生服从均值为mu 标准差为sigma的随机数,标量m和n是R的行数和列数。

电路分析实验报告

电压源与电流源的等效变换 一、实验目的 1、加深理解电压源、电流源的概念。 2、掌握电源外特性的测试方法。 二、原理及说明 1、电压源是有源元件,可分为理想电压源与实际电压源。理想电压源在一定的电流 范围内,具有很小的电阻,它的输出电压不因负载而改变。而实际电压源的端电压随着电流变化而变化,即它具有一定的内阻值。理想电压源与实际电压源以及它们的伏安特性如图4-1所示(参阅实验一内容)。 2、电流源也分为理想电流源和实际电流源。 理想电流源的电流是恒定的,不因外电路不同而改变。实际电流源的电流与所联接的电路有关。当其端电压增高时,通过外电路的电流要降低,端压越低通过外电路的电 并联来表示。图4-2为两种电流越大。实际电流源可以用一个理想电流源和一个内阻R S 流源的伏安特性。

3、电源的等效变换 一个实际电源,尤其外部特性来讲,可以看成为一个电压源,也可看成为一个电流源。两者是等效的,其中I S=U S/R S或 U S=I S R S 图4-3为等效变换电路,由式中可以看出它可以很方便地把一个参数为U s 和R s 的 电压源变换为一个参数为I s 和R S 的等效电流源。同时可知理想电压源与理想电流源两者 之间不存在等效变换的条件。 三、仪器设备 电工实验装置: DG011、 DG053 、 DY04 、 DYO31 四、实验内容 1、理想电流源的伏安特性 1)按图4-4(a)接线,毫安表接线使用电流插孔,R L 使用1KΩ电位器。 2)调节恒流源输出,使I S 为10mA。, 3)按表4-1调整R L 值,观察并记录电流表、电压表读数变化。将测试结果填入表4-1中。 2、实际电流源的伏安特性 按照图4-4(b)接线,按表4-1调整R L 值,将测试的结果填入表4-1中。

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某 种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于 自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被 增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一 周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模 序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2/121,)1)(1(arccos )(12''R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ??????????????--?=?=?=?+?2/12111)1)(1(arccos 1'R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫 描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜 构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦 腔)。其中一块反射镜固定不动,另一块反射镜固定在可随 外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀 系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2 总处于共焦状态。 当一束波长为λ的光近轴入射到 干涉仪内时,在忽略球差的条件 下,在共焦腔中经四次反射形成 一条闭合路径,光程近似为4l , 如右图所示 编号为1和1’ 的两组透光强分别为: 1222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即

随机信号处理实验

随机信号处理实验 专业:电子信息科学与技术 班级: 学号: 学生姓名: 指导教师:钱楷

一、实验目的 1、熟悉GUI 格式的编程及使用。 2、掌握随机信号的简单分析方法 3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 3、熟悉各种随机信号分析及处理方法。 4、掌握运用MATLAB 中的统计工具包和信号处理工具包绘制概率密度的方法 二、实验原理 1、语音的录入与打开 在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。[N1 N2]表示读取从N1点到N2点的值。 2、高斯白噪声 白噪声信号是一个均值为零的随机过程,任一时刻是均值为零的随机变量,而服从高斯分布的白噪声即称为高斯白噪声。在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。 3、均值 随机变量X 的均值也称为数学期望,它定义为:,对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为,则均值定义为E(X)=,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。 4、方差 定义为随机过程x(t)的方差。方差通常也记为 D[X (t )] ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。 5、协方差 设两个随机变量X 和Y ,定义:为X 和Y 的协方差。其相关函数为: ?? +∞∞-+∞ ∞ -= =dxdy t t y x xyf t Y t X E t t R XY XY ),,,()}()({),(212121 由此可见协方差的相关性 与X 和Y 是密切相关的,表征两个函数变化的相似性。 5、协方差 设任意两个时刻1t , 2t ,定义: 为随机过程X (t )的自相关函数,简称为相关函数。自相关函数可正,可负,其绝对值越大表示相关性越强。 7、互相关 互相关函数定义为: 如果X (t )与Y (t )是相互独立的,则一定是不相关的。反之则不一定成立。它是两个随机过程联合统计特性中重要的数字特征。 8、平滑滤波 平滑滤波可以与中值滤波结合使用,对应的线性平滑器可以仅仅用低阶的低通滤波器(如果采用高阶的系统,则将抹掉信号中应该保存的不连续性)。 121212121212 (,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞ -∞ ==???? +∞∞-+∞ ∞ -==dxdy t t y x xyf t Y t X E t t R XY XY ),,,()}()({),(212121

成都理工电力系统实验报告

电力系统自动化报告 学院: 核技术与自动化学院 专业: 电气工程及其自动化 班级: 1班 学号: 201202060227 姓名: 徐茁夫 指导老师: 罗耀耀 完成时间: 2015年7月6日

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm,左右2.54cm, 页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一:典型方式下的同步发电机起励实验 一、实验目的 ⒈了解同步发电机的几种起励方式,并比较它们之间的不同之处。 ⒉分析不同起励方式下同步发电机起励建压的条件。 二、原理说明 同步发电机的起励方式有三种:恒发电机电压Ug 方式起励、恒励磁电流Ie 方式起励和恒给 定电压UR 方式起励。其中,除了恒UR 方式起励只能在他励方式下有效外,其余两种方式起励 都可以分别在他励和自并励两种励磁方式下进行。 恒Ug 方式起励,现代励磁调节器通常有“设定电压起励”和“跟踪系统电压起励”两种起 励方式。设定电压起励,是指电压设定值由运行人员手动设定,起励后的发电机电压稳定在手动 设定的给定电压水平上;跟踪系统电压起励,是指电压设定值自动跟踪系统电压,人工不能干预, 起励后的发电机电压稳定在与系统电压相同的电压水平上,有效跟踪范围为85%~115%额定电 压;“跟踪系统电压起励”方式是发电机正常发电运行默认的起励方式,可以为准同期并列操作 创造电压条件,而“设定电压起励”方式通常用于励磁系统的调试试验。 恒Ie 方式起励,也是一种用于试验的起励方式,其设定值由程序自动设定,人工不能干预, 起励后的发电机电压一般为20%额定电压左右。 恒UR(控制电压)方式只适用于他励励磁方式,可以做到从零电压或残压开始人工调节逐渐 增加励磁而升压,完成起励建压任务。 三、实验内容与步骤 常规励磁装置起励建压在第一章实验已做过,此处以微机励磁为主。 ⒈选定实验台上的“励磁方式”为“微机控制”,“励磁电源”为“他励”,微机励磁装置菜 单里的“励磁调节方式”为“恒Ug”和“恒Ug 预定值”为400V。 ⑴参照第一章中的“发电机组起励建压”步骤操作。 ⑵观测控制柜上的“发电机励磁电压”表和“发电机励磁电流”表的指针摆动。 ⒉选定“微机控制”,“自励”,“恒Ug”和“恒Ug 预定值”为400V。 操作步骤同实验1。 ⒊选定“微机控制”,“他励”,“恒Ie”和“恒Ie 预定值”为1400mA。 操作步骤同实验1。 ⒋选定“微机控制”,“自励”,“恒Ie”和“恒Ie 预定值”为1400mA。 操作步骤同实验1。 ⒌选定“微机控制”,“他励”,“恒UR”和“恒UR 预定值”为5000mV。 操作步骤同实验1。 四、实验报告 ⒈比较起励时,自并励和他励的不同。 答:他励直流电机的励磁绕组与电枢绕组无联接关系,而由其他直流电源对励磁绕组供电的直流电机称为他励直流电机,永磁直流电机也可看作他励直流电机。并励直流电机的励磁绕组与电枢绕组相并联,作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。他励直流电动机起动时,必须先保证有磁场(即先通励磁电流),而后加电枢电压。否则在加励磁电流之前,电枢中一直为起动电流(或理解为电能只以电枢绕组中热量的形式释放)

单缝衍射实验实验报告

单缝衍射实验 一、实验目的 1.观察单缝衍射现象,了解其特点。 2.测量单缝衍射时的相对光强分布。 3.利用光强分布图形计算单缝宽度。 二、实验仪器 He-Ne激光器、衍射狭缝、光具座、白屏、光电探头、光功率计。 三、实验原理 波长为λ的单色平行光垂直照射到单缝上,在接收屏上,将得到单缝衍射图样,即一组平行于狭缝的明暗相间条纹。单缝衍射图样的暗纹中心满足条件: (1) 式中,x为暗纹中心在接收屏上的x轴坐标,f为单缝到接收屏的距离;a为单缝的宽度,k为暗纹级数。在±1级暗纹间为中央明条纹。中间明条纹最亮,其宽度约为其他明纹宽度的两倍。 实验装置示意图如图1所示。 图1 实验装置示意图 光电探头(即硅光电池探测器)是光电转换元件。当光照射到光电探头表面时在光电探头的上下两表面产生电势差ΔU,ΔU的大小与入射光强成线性关系。光电探头与光电流放大器连接形成回路,回路中电流的大小与ΔU成正比。因此,通过电流的大小就可以反映出入射到光电探头的光强大小。 四、实验内容 1.观察单缝衍射的衍射图形;

2.测定单缝衍射的光强分布; 3.利用光强分布图形计算单缝宽度。 五、数据处理 ★(1)原始测量数据 将光电探头接收口移动到超过衍射图样一侧的第3级暗纹处,记录此处的位置读数X(此处的位置读数定义为0.000)及光功率计的读数P。转动鼓轮,每转半圈(即光电探头每移动0.5mm),记录光功率测试仪读数,直到光电探头移动到超过另一侧第3级衍射暗纹处为止。实验数据记录如下: 将表格数据由matlab拟合曲线如下:

★ (2)根据记录的数据,计算单缝的宽度。 衍射狭缝在光具座上的位置 L1=21.20cm. 光电探测头测量底架座 L2=92.00cm. 千分尺测得狭缝宽度 d’=0.091mm. 光电探头接收口到测量座底座的距离△f=6.00cm. 则单缝到光电探头接收口距离为f= L2 - L1+△f=92.00cm21.20cm+6.00cm=76.80cm. 由拟合曲线可读得下表各级暗纹距离: 各级暗纹±1级暗纹±2级暗纹±3级暗纹 距离/mm 10.500 21.500 31.200 单缝宽度/mm 0.093 0.090 0.093 单缝宽度计算过程: 因为λ=632.8nm.由d =2kfλ/△Xi,得 d1=(2*1*768*632.8*10^-6)/10.500 mm=0.093mm. d2=(2*2*768*632.8*10^-6)/21.500 mm=0.090mm.

激光干涉仪报告讲解

机械工程综合实 践 实验报告 课程名称机械工程综合实践 专业精密工程 指导教师彭小强 小组成员刘强14033006 谌贵阳 吴志明 实验日期2012.4.2—2011.6.25 国防科学技术大学机电工程与自动化学院

目录 1激光干涉仪 1.1激光干涉仪介绍 1.2激光干涉仪原理 2 激光干涉仪测量机床的直线度 2.1实验器材以及平台的搭建 2.2激光干涉仪的调试 2.3直线度的测量 3 激光干涉仪测量机床的重复定位精度3.1实验器材以及平台的搭建 3.2激光干涉仪的调试 3.3重复定位精度的测量 4 实验分析与总结

目录 一、实验目的与任务 (2) 二、实验内容与要求 (2) 三、实验条件与设备 (2) 四.实验原理 (3) 1.定位精度测量 (3) 2.直线度测量 (4) 五、实验步骤 (5) 1.设定激光测量系统 (5) 2.调整激光光束,使之与机器运动轴准直。 (5) 3.数据记录与数据处理 (6) 六、实验过程和结果 (8) 1.X轴定位精度 (8) 2.X轴直线度 (9) 3.误差分析 (11) 七、实验总结与体会 (14) 1.实验总结 (14) 2.实验心得体会 (14) 3.对课程的一些建议 (14)

综合实践3 伺服系统运动精度建模与评价 一、实验目的与任务 通过对三轴机床的X轴进行定位误差实验,使学生掌握一般机构空间运动精度的测量与分析评价方法。主要内容包括了解双频激光干涉仪测量位移的基本原理,掌握利用双频激光干涉仪测量机床进给轴的定位误差的方法,深刻理解轴运动的精度的概念。在对机床进给轴运动定位误差测量的基础上,分析机床的运动误差。 二、实验内容与要求 (1)直线轴运动误差测量。利用双频激光干涉仪建立直线轴定位精度、直线度、姿态误差的测量系统,并对机床典型三维进给机构各轴的运动误差进行测量,分析测量结果的不确定度; (2)垂直度测量。任选进给机构两轴,利用双频激光干涉仪建立两轴垂直度的测量系统,并对垂直度进行测量,并对测量结果进行评价; (3)典型三维进给机构的精度建模。在分析多轴进给机构拓扑结构的基础上,用多体系统理论和变分法建立多轴进给机构运动空间各点的运动误差传递模型; (4)典型三维进给机构的精度分析与评价。在测量得到的进给机构轴运动误差的基础上,利用所建立的精度模型,对机构的典型运动轨迹如直线、圆弧、平面等的运动误差进行分析,并对分析结果的不确定度进行评价。 三、实验条件与设备 双频激光干涉仪,含直线度、定位精度测量组件。具体如图1所示。 (图1 定位精度测量组件直线度测量组件)

随机信号处理实验报告讲解

随机信号处理实验报告

目录 一、实验要求: (3) 二、实验原理: (3) 2.1 随机信号的分析方法 (3) 2.2 随机过程的频谱 (3) 2.3 随机过程的相关函数和功率谱 (4) (1)随机信号的相关函数: (4) (2)随机信号的功率谱 (4) 三、实验步骤与分析 (5) 3.1实验方案 (5) 3.2实验步骤与分析 (5) 任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5) 任务二:(s1 变量)求噪声下正弦信号的相位 (8) 任务三:(s1 变量)求信号自相关函数和功率谱 (11) 任务四:(s变量)求噪声下信号的振幅和频率 (14) 任务五:(s变量)求信号的自相关函数和功率谱 (17) 3.3实验结果与误差分析 (19) (1)实验结果 (19) (2)结果验证 (19) (3)误差分析 (21) 四、实验总结和感悟 (22) 1、实验总结 (22) 2、实验感悟 (23) 五、附低通滤波器的Matlab程序 (23)

一、实验要求: (学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。 二、实验原理: 2.1 随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。 2.2 随机过程的频谱 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: ()()2j ft X f x t e dt π+∞ --∞ =? 信号的时域描述只能反映信号的幅值随时间的变化情况,除只有一个频率分量的简谐波外,一般很难明确揭示信号的频率组成和各频率分量的大小。信号的频谱X(f)代表了信号在不同频率分量处信号成分的大小,它能够提供比时域信号波形更直观,丰富的信息。 在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT),因此需要利用离散信号x(nT)来计算信号x(t)的频谱。

电路分析实验报告-第一次

电路分析实验报告

实验报告(二、三) 一、实验名称实验二KCL与KVL的验证 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证基尔霍夫定理的正确性。 三、实验原理 KCL为任一时刻,流出某个节点的电流的代数和恒等于零,流入任一封闭面的电流代数和总等于零。且规定规定:流出节点的电流为正,流入节点的电流为负。 KVL为任一时刻,沿任意回路巡行,所有支路电压降之和为零。且各元件取号按照遇电压降取“+”,遇电压升取“-”的方式。沿顺时针方向绕行电压总和为0。电路中任意两点间的电压等于两点间任一条路径经过的各元件电压降的代数和。 四、实验内容 电路图截图:

1.验证KCL: 以节点2为研究节点,电流表1、3、5的运行结果截图如下: 由截图可知,流入节点2的电流为2.25A,流出节点2 的电流分别为750mA和1.5A。2.25=0.75+1.5。所以,可验证KCL成立。 2.验证KVL: 以左侧的回路为研究对象,运行结果的截图如下:

由截图可知,R3两端电压为22.5V,R1两端电压为7.5V,电压源电压为30V。22.5+7.5-30=0。所以,回路电压为0,所以,可验证KVL成立。 一、实验名称实验三回路法或网孔法求支路电流(电压) 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证网孔分析法的正确性。 三、实验原理 为减少未知量(方程)的个数,可以假想每个回路中有一个回路电流。若回路电流已求得,则各支路电流可用回路电流线性组合表示。这样即可求得电路的解。回路电流法就是以回路电流为未知量列写电路方程分析电路的方法。网孔电流法就是对平面电路,若以网孔为独立回

激光测距实验报告(精)

一、激光测距简介: 激光测距仪无论在军事应用方面,还是在科学技术、生产建设方面,都起着重要作用。由于激光波长单一,测量精度高,且激光测距仪结构小巧,安装调整方便,故激光测距仪是目前高精度测距最理想的仪器。激光器与普通光源有显著的区别,它利用受激发射原理和激光腔的滤波效应,使所发光束具有一系列新的特点: ①激光有小的光束发散角,即所谓的方向性好或准直性好。 ②激光的单色性好,或者说相干性好,普通灯源或太阳光都是非相干光。 ③激光的输出功率虽然有限度,但光束细,所以功率密度很高,一般的激光亮度远比太阳表面的亮度大。 若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。 世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。美国军方很快就在此基础上开展了对军用激光装置的研究。1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。 激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。它是提高坦克、飞机、舰艇和火炮精度的重要技术装备。 由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。 激光测距仪-分类: 一维激光测距仪 用于距离测量、定位; 二维激光测距仪(Scanning Laser Range finder) 用于轮廓测量,定位、区域监控等领域; 三维激光测距仪(3D Laser Range finder) 用于三维轮廓测量,三维空间定位等领域。 激光测距-方法 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。脉冲法测量距离的精度是一般是在+/- 1米左右。另外,此类测距仪的测量盲区一般是15米左右。

激光光束分析实验报告讲解

激光光束分析实验报告 引言 1960年,世界上第一台激光器诞生。激光作为一种相干光源,以其高亮度、高准直性、高单色性的优点,一直在各种生产和研究领域发挥着重要的作用。 虽然激光具有上述优点,然而严格地说,激光并不是平面光束,而是一种满足旁轴近似的旁轴波。由稳定谐振腔发出的激光束大多为高斯光束,其主要参数为光束宽度、光束发散角和光束传播因子。由于这几个参数不同,不同激光束的质量也就有了差别,因此就需要制定评价光束质量的普适方法。常用来评价光束 质量的因子有:衍射极限倍数因子、斯特列耳比、环围能量比、因子和因子的倒数K因子(通常称为光束传播因子)。其中因子为国际ISO组织推荐的评价标准,也是我们在实验中采用的评价标准。 因子的定义为: 其中为实际光束束腰宽度,为实际光束远场发散角。 采用因子时,作为光束质量比较标准的是理想高斯光束。基模(模) 高斯光束有最好的光束质量,其,可以证明对于一般的激光光束有 。因子越大,实际光束偏离理想高斯光束越远,光束品质越差。当 高斯光束通过无像差、衍射效应可忽略的透镜、望远镜系统聚焦或扩束镜时,虽然光腰尺寸或远场发散角会发生变化,但光束宽度和发散角之积不变,是几何光学中的拉格朗日守恒量。 实验原理

如图选定坐标系。设光束的束腰位置为,束腰直径为,远场发散角为。为了简化问题,假设光束关于束腰对称,则可求出传播轴上任一垂直面上的 光束直径。光束传播方程的一级近似为: 光束的因子为: 其中n为传播介质折射率,为光束波长。对于束腰宽度和远场发散角, 可用如下方法测得。 本实验中,我们采用的CCD能够测量在柱坐标系中传播轴上任一垂直面上的光束能量密度函数。由于能量密度函数关于传播轴中心对称,故在分布函数中没有自变量。对于高斯光束,可以证明: 其中: 因此只要测出能量密度函数就可以求出传播轴上任一垂直面上的光束直径。 有了测量光束直径的方法后,分别在轴向位置处测量能量密度 函数,求出光束直径和,之后将其代入光束传播的一级近似方程

随机信号处理考试

《随机信号分析与处理》期末自我测评试题(一) 一、填空题(共10小题,每小题1分,共10分)??? 1、假设连续型随机变量的概率分布函数为F(x),则F(-∞)= 0,F(+∞)= 1。 2、如果一零均值随机过程的功率谱在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关。 3、窄带正态噪声加正弦信号在信噪比远小于1的情况下的包络趋向瑞利分布,而相位则趋向均匀分布。 4、平稳随机信号通非线性系统的分析常用的方法是直接法和变换法与级数展开法。 5、对随机过程X(t),如果,则我们称X(t1)和X(t2)是不相关。如果 ,则我们称X(t1)和X(t2)是正交。如果 ,则称随机过程在和时刻的状态是独立。 6、平稳正态随机过程的任意维概率密度只由均值、协方差阵来确定。 7、典型的独立增量过程有泊松过程与维纳过程_。 8、对于随机参量,如果有效估计存在,则其有效估计就是最大后验概率估计。 9、对于无偏估计而言,均方误差总是大于等于某个量,这个量称为克拉美-罗(Cramer-Rao)下限,达到这个量的估计称为有效估计。 10、纽曼-皮尔逊准则是:约束虚警概率恒定的情况下使漏警概率最小。 二、选择题(共5小题,每小题2分,共10分) 1、是均值为方差为的平稳随机过程,下列表达式正确的有:(?b、d )(A)(B) (C)(D)

2、白噪声通过理想低通线性系统,下列性质正确的是:(a、c ) ?输出随机信号的相关时间与系统的带宽成反比 ?输出随机信号的相关时间与系统的带宽成正比 ?系统带宽越窄,输出随机过程随时间变化越缓慢 ?系统带宽越窄,输出随机过程随时间变化越剧烈 3、设平稳随机序列通过一个冲击响应为的线性系统,其输出用表示,那么,下列正确的有:(a、d ) 4、(A)(B) 5、(C)(D) 6、4、为的希尔伯特变换,下列表达正确的有:(a、c、d ) 7、(A)与的功率谱相等(B) 8、(C)(D)与在同一时刻相互正交 9、5、对于一个二元假设检验问题,判决表达式为:如果T(z)>g,则判成立,否则判成立。那么,虚警概率可表示为(a、b ) 10、(A)(B) 11、(C) (D) 三、判断题(共10小题,每小题1分,共10分) 为一个随机过程,对于任意一个固定的时刻,是一个确定值( F ) 2、随机信号的均值计算是线性运算,而方差则不是线性运算。( T )

电力系统实验报告

电力系统实验报告 实验名称:简单电力系统的短路计算 实验人:王新博 学号:20091141003 指导教师:赵宏伟 实验日期:2012-5-4 一、实验目的:掌握用PSCAD进行电力系统短路计算的方法。 二、实验原理 在电力系统三相短路中,元件的参数用次暂态参数代替,画出电路的等值电路,短路电流的计算即相当于稳态短路电流计算。单相接地,两相相间,两相接地短路时的短路电流计算中,采用对称分量法将每相电流分解成正序、负序和零序网路,在每个网络中分别计算各序电流,每种短路类型对应了不同的序网连接方式,形成了不同复合序网,再在复合序网中计算短路电流的有名值。在并且在短路电流计算中,一般只需计算起始次暂态电流的初始值。 三、实验内容及步骤 图示电力系统, G T 已知:发电机:Sn=60MV A,Xd”=0.16,X2=0.19 ; 变压器:Sn=60MV A,Vs%=10.5 ; 1)试计算f点三相短路,单相接地,两相相间,两相接地短路时的短路电流 有名值。 2)若变压器中性点经30Ω电抗接地,再作1)。 3)数据输入 4)方案定义

5)数据检查 6)作业定义 7)执行计算 8)输出结果 四、实验结果与分析(包括实验数据记录、程序运行结果等) 1、手算过程: 1)、三相短路短路电流有名值(有接地电抗): 2)、三相短路短路电流有名值(无接地电抗): 3)、单相接地短路电流有名值(有接地电抗): 4)、单相接地短路电流有名值(无接地电抗): 5)、两相相间短路电流有名值(有接地电抗): 6)、两相相间短路电流有名值(无接地电抗): 7)、两相接地短路时短路电流有名值(有接地电抗): 8)、两相接地短路时短路电流有名值(无接地电抗): 2、通过PSCAD仿真所得结果为: 1)、三相短路(有接地电抗):

激光散斑测量实验报告

实验报告 陈杨 PB05210097 物理二班 实验题目:激光散斑测量 实验目的: 了解单光束散斑技术的基本概念,并应用此技术测量激光散斑的大小和毛玻璃的面内位移。 实验内容: 本实验中用到的一些已知量:(与本次实验的数据略有不同) 激光波长λ = 0.0006328mm 常数π = 3.14159265 CCD像素大小=0.014mm 激光器内氦氖激光管的长度d=250mm 会聚透镜的焦距f’=50mm 激光出射口到透镜距离d1=650mm 透镜到毛玻璃距离=d2+P1=150mm 毛玻璃到CCD探测阵列面P2=550mm 毛玻璃垂直光路位移量dξ和dη, dξ=3小格=0.03mm,dη=0 光路参数:P1=96.45mm ρ(P1)=96.47mm P2= 550mm dξ=3小格=0.03mm (理论值) 数据及处理: 光路参数: P1+d2=15cm P2=52.5cm

d1=激光出射口到反射镜的距离+反射镜到透镜距离=33.6+28.5=62.1cm f ’=5cm d=250mm λ=632.8nm (1)理论值S 的计算: 经过透镜后其高斯光束会发生变换,在透镜后方形成新的高斯光束 由实验讲义给的公式: 2'2 012'11 '' 2)()1(d f W f d d f f λπ+--- = πλd W 01= 201W d πλ= 代入数据,可得: '' 1 21 221''12 2 22 01 02 2 2 2101102 d 15(1)() 5 62.11559.6332439.63362.12515511f d f cm P d d f f cm cm P cm cm cm cm cm cm cm cm d W W d d W d f f W λπ πλ???? ? ? ???? ?????? ?? ? ? ? ? ? ? ? ????? ???? -=-=--+-=-+ =≈-+= = -+-+= 可得 由公式-31.80010cm ≈? 此新高斯光束射到毛玻璃上的光斑大小W 可以由计算氦氖激光器的

激光拉曼光谱实验报告

激光拉曼光谱实验报告 摘要:本实验研究了用半导体激光器泵浦的3Nd + :4YVO 晶体并倍频后得到的532nm 激 光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,谱线很好地吻合了理论分析的4CCL 分子4种振动模式,且频率的实验值与标准值比误差低于2%。又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为、、、,和标准值0和比较偏大。 关键词:拉曼散射、分子振动、退偏 一, 引言 1928年,印度物理学家拉曼()和克利希南()实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。几乎与此同时,苏联物理学家兰斯别而格()和曼杰尔斯达姆()也在晶体石英样品中发现了类似现象。在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。 拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 20世纪60年代激光的问世促进了拉曼光谱学的发展。由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。拉曼光谱的分析方向有定性分析、结构分析和定量分析。

随机信号处理基础试题样题

南京理工大学课程考试试卷(学生考试用) 课程名称: 随机信号处理基础 学分: 2 教学大纲编号: 04036001-0 试卷编号: A 考试方式: 闭卷 满分分值: 100 考试时间: 120分钟 组卷日期: 2010年5月26日 组卷老师(签字): 审定人(签字): 学生班级: 学生学号: 学生姓名: 一、填充题 (30分) 1.如果随机变量X1和X2统计独立,且Y=X1十X2,则Y的特征函数和X1、X2各自特征函数关系: ;则Y的概率密度和X1、X2各自概率密度关系: 。 X t的两个不同时刻取样值之间统计独立条件为: 2.随机过程() 相互正交条件为: 互不相关条件为: 。3.在满足什么条件下: ,保证随机信号采样时 样点间的统计独立性? 4.给出奈曼-皮尔逊准则的基本思想: 。5.在高斯噪声中检测常值信号的最佳检测器是 ,其中拿什么统计量 与某门限比较。 6.自相关接收机和互相关接收机性能在什么条件 下,它们性能差不多;而在什么条件 下,它们性能差别较大, 优于 7.小输入信噪比条件下相参接收机的性能要优于非相参接收机的原因: 8.维纳滤波器的基本思想是: ;给出其中维纳霍夫方程表达式: 9.贝叶斯的参数估计中代价函数有哪几种:,

9.给出基于白化滤波器的有色噪声中已知信号检测的框图。 10.有哪两种经典功率谱估计方法?并简述其中一种方法。并画出高斯概率分布的限带白噪声的功率谱形状。 三、随机变量X 与Y 满足线性关系Y=cX 十d,X 为高斯变量(0,1)N ,c,d 为常数,求Y 的概率密度,并求X 和Y 的相关系数。 四、设源周期发射一个二元信号,“4”-4V 脉冲,“0”-0V 脉冲,10:()4():()() H x t n t H x t n t =+??=?,() n t 为(0,1)N 高斯白噪声,错误判决代价为1,正确判决代价为0,先验概率未知,利用极小极大准则给出判决门限,极小极大风险是多少?相应的先验概率是多少?同时给出虚警、漏警和发现概率表达式并在图中标出,给出最小平均错误概率相应的表达式。 五、设信号为一个视频脉冲,脉内进行编码[ 1 1 0 -1 -0.5 0 1 0.5]?,求该信号的匹配滤波器冲激响应?画出该匹配滤波器输出波形? 六、设目标的加速度是通过测量位移来估计的。若时变观察方程为2 ,1,2,i i x i a n i =+="。已知i n 服从()0,1N ,且[]0i E an =。利用前两次观察样本来计算加速度的最大似然估计,分析是否无偏估计和有效估计?如果前两次测量值分别为17m 和34m,那么加速度的最大似然估计是多少? 七、()()()2x t s t n t =+,()()t n t s ,是互相正交的随机过程。采用线性最小均方误差准则由()t x 估计()s t τ+,并给出最小的均方误差。当()s t 为白噪声时,还能否进行预测? 八、画出二相编码连续波雷达的回波波形,讨论该种雷达中目标检测及时延与多卜勒信号频率估计的方法,说明为什么该种雷达是多卜勒敏感的雷达。(注:本题方法不唯一,只要求给出方法思路)

相关文档