文档库 最新最全的文档下载
当前位置:文档库 › 壳聚糖及其结构特点

壳聚糖及其结构特点

壳聚糖及其结构特点
壳聚糖及其结构特点

第一章 绪 论

1.1 壳聚糖及其结构特点

壳聚糖(Chitosan)是甲壳素(Chitin)脱乙酰基后的产物,是甲壳素最基本、最重要的衍生物。甲壳素又名甲壳质、几丁质,化学名为(1,4)—2—乙酰胺—2—脱氧—β—D—葡聚糖,主要存在于虾、蟹、蛹及昆虫等动物外壳以及菌类、藻类植物的细胞壁中。节肢类动物的干外壳约含20~50%甲壳素。自然界中甲壳素有三种结构:α、β、γ,其中最为常见、普通的是α型。地球上每年甲壳素的生物合成量为数十亿吨,是产量仅次于纤维素的天然高分子化合物。下图1-1是甲壳素和壳聚糖的结构:

图1-1 甲壳素、壳聚糖分子的结构示意图

Fig.1-1 The configuration schematic of chitin and chitosan

纯净的甲壳素和壳聚糖均为白色片状或粉状固体,比重0.3,常温下能稳定存在。甲壳素分子之间存在强烈的氢键作用,使得甲壳素形成高度的结晶结构,因而甲壳素分子高度难溶。甲壳素不溶于水及绝大多数有机溶剂,也不溶于稀酸、稀浓碱,只溶于浓酸和某些溶剂。壳聚糖分子的活性基团为氨基而不是乙酰基,因而化学性质和溶解性较甲壳素有所改善,可溶于稀酸、甲酸、乙酸,但也不溶于水和绝大多数有机溶剂。由于氨基和羟基比较活泼,壳聚糖的化学性质较甲壳素活泼,可以发生多种化学反应,比如烷基化、酰基化反应等等。

1.2 壳聚糖及其衍生物产品的应用

壳聚糖及其衍生物由于其可再生性、生物相容性以及结构中的多种活性基团,具有多种优良的性质,已经广泛应用于化妆品、食品、医药、农业、环保等多个行业中。

1.2.1 在环保中的应用

壳聚糖及其衍生物能够通过分子中的氨基和羟基与多种金属离子形成稳定的整合物且可帮助微粒凝聚,故广泛用作化工、轻工纺织等废水处理中的吸附剂和絮凝剂。壳聚糖作为吸附剂和絮凝剂,能够有效地捕集溶液中的重金属离子和

有机物,并可以抑制细菌生长,使污水变清,特别是对于汞、铬、铜、铅、钴、3n n

甲壳素壳聚糖

锌和砷等元素的离子有明显的吸附滤除作用[1-2]。

1.2.2在食品中的应用

壳聚糖在食品中的应用很广,此处只提它在补充微量元素方面的应用。人体需要吸收微量元素。在适宜的pH值条件下,壳聚糖分子所含有的氨基和羟基可以有效地螯合某些金属离子。把这些螯合物添加到食品中,就可以制成微量元素补充剂。此外,在食品中添加壳聚糖,可以在胃内的环境下结合一些微量元素,起到防止这些微量元素流失的作用。

1.2.3在日用化妆品工业中的应用

壳聚糖及其衍生物具有极强的附着力,同时有成膜、保温、防尘、抗静电等优良性能,因此可用于制备发型固定剂、毛发保护剂、柔软剂等,不仅能使头发蓬松、易于梳理、保持头发的色泽,而且还具有促进毛发生长的作用,广泛应用于配制香波、润肤剂、固发摩丝和洗发水等,其性能优于传统的配料产品。

1.2.4在医药工业中的应用

在医药工业中,由壳聚糖制得的手术缝合线机械强度好,可长期存放,能用常规方法消毒,能被人体内组织液降解而吸收,伤口愈合后无须拆除手术线。由壳聚糖制成的人造皮肤,具有柔软、舒适的特点,覆盖在烧伤面上能减轻痛苦,加速伤口愈合,促进皮肤再生[3]。此外,壳聚糖还可用于微型胶囊的制备和疫苗的缓释,用作消炎眼膏的载体和用于制造隐形眼镜等。

1.2.5在纺织工业中的应用

用壳聚糖醋酸溶液作直接染料和疏化染料的固化剂,不仅可以增进织物和花布的耐光和耐磨性,而且可使织物富有滑爽和硬挺的外观。

1.2.6在造纸工业中的应用

壳聚糖及其衍生物可有效地提高纸张的干、湿强度和改善表面印刷性,广泛地应用于印刷的生产,以适应高速印刷、高粘度油墨的要求。

1.3国内外壳聚糖的市场现状及前景展望

1.3.1世界壳聚糖市场的概况

全世界每年由生物合成的甲壳素约为100亿吨,可提取壳聚糖20亿吨以上。在日本,壳聚糖类保健品是该国政府特许的唯一准许宣传疗效的功能型保健食品;而欧洲及美国的营养学界称壳聚糖为六大要素之一,并投入大量人力、物力、财力研制开发生产以壳聚糖为主要原料的第四代保健食品。

壳聚糖在国际市场上供不应求,仅美国、日本每年壳聚糖的消费量就分别高达400吨和2000吨,这一半以上需要是通过进口来满足国内市场的需求。

由于国际市场壳聚糖需求趋旺,日本和美国等从我国大量购买壳聚糖粗品,生产壳聚糖精品和壳聚糖衍生物,再以高科技产品返销我国,成倍获取利润。

1.3.2我国壳聚糖市场的概况及前景展望

我国具有丰富的壳聚糖生产原料——甲壳素来源,发展壳聚糖产业具有得天独厚的优势条件,市场潜力大,前景看好。主要是因为:

国内对壳聚糖的需求势头旺盛。1999年产量为400吨,而国内需求量则高达800吨,仅能满足市场容量底线,处于供不应求的状态。

壳聚糖的应用范围不断扩大。近些年来,随着各国对壳聚糖的认识不断提高和应用研究的进一步深化进行,壳聚糖已应用于许多领域中,其中化妆品,保健品,食品工业等行业对壳聚糖的需求增长最快;在医药、化工、造纸、农业、环保、轻纺等领域中正在得到广泛的应用。

据了解,目前甲壳素的市场售价约为每吨4.5万元,经进一步加工制得的壳聚糖价格为每吨15万元,而其原料的湿虾壳仅为每吨200元。结合其他成本,按照这样测算,建设一套年产食品工业级壳聚糖生产装置,其利润是可观的。

1.4壳聚糖改性现状及其意义

壳聚糖、甲壳素在许多领域都展示了良好的应用前景。但是,由于甲壳素的高度紧密晶体结构,不溶于普通溶剂,壳聚糖也只溶于稀酸和某些特定的溶剂,大大限制了它的应用。因此,对壳聚糖进行化学修饰,引入其它官能团,开发更加高级的用途,是壳聚糖研究中最热门最活跃的课题之一。

目前,对壳聚糖进行化学改性主要集中在酰化反应、烷基化反应、羧甲基化反应、交联反应、希夫碱反应等几个领域。这里主要介绍本课题研究得较多的羧甲基化反应。

壳聚糖的羧甲基化

在碱性环境中,壳聚糖可以与氯乙酸反应引入羧甲基形成具有强极性的羧酸盐基结构,因而直接溶于水。

壳聚糖结构式表示为:

的电负性大于氮的电负性,因而-OH基的亲核反应大于-NH2基;C3和C6中,伯

醇基(C 6)的反应速度大于仲醇基(C 3),而且仲醇基上的氢原子可能与-NH 2基上的未共用电子对形成氢键,使C 3-OH 上的氢不易离去,因而羧甲基化反应主要在壳聚糖的伯醇基C 6上进行,氨基上也可发生,即生成的产物主要为O-羧甲基壳聚糖和N-羧甲基壳聚糖[4]。其结构式为

O-羧甲基壳聚糖

1.5 羧甲基壳聚糖的性质及其运用

1.5.1 羧甲基壳聚糖的种类

羧甲基壳聚糖是壳聚糖经羧甲基化反应后的一类甲壳素衍生物,由于壳聚糖分子中存在游离氨基,反应时取代基团可进入O 和N ,则相应的产物有O-羧甲基壳聚糖,N-羧甲基壳聚糖和N,O-羧甲基壳聚糖。壳聚糖在碱性介质与一氯乙酸发生反应,取代反应局限于C 6的伯羟基,生成的产物为O-羧甲基壳聚糖。壳聚糖与二羟乙酸反应生成水溶液性胶状亚胺(席夫碱),然后用适当的还原剂如氰基硼氢化物还原,则取代反应只发生在C 2的伯胺上,生成N-羧甲基壳聚糖。壳聚糖在浓碱液中与一氯乙酸反应,适当控制反应条件,则可以得到N,O-羧甲基壳聚糖[5]。

1.5.2 羧甲基壳聚糖的优良性能

(1)水溶性

羧甲基壳聚糖的水溶性,除了因为它是一种羧酸盐而溶于水外,还有一个原因是羧甲基的导入,破坏了壳聚糖分子的二次结构,使其结晶度大大降低,几乎成为无定形。取代度大于0.6的羧甲基壳聚糖易溶于水,取代度愈高,水溶性越好,其溶液的透明度也愈好[6]。

(2)保湿性

羧甲基壳聚糖上的羧基及胺基都是亲水基团,有着较强的吸水性,0.25%的羧甲基壳聚糖溶液的吸湿度和20%的丙三醇相当,溶液的粘度恒定。

(3)成模性

羧甲基壳聚糖有较好的成模型,其膜有光泽,透明而柔韧,并有较好的透气性。

(4)高分子性能

羧甲基壳聚糖对胶体有稳定作用,有增稠及凝胶的作用和气泡稳定性。

(5)安全无毒性

COOH O n n

羧甲基壳聚糖安全,无毒,无害。

1.5.3羧甲基壳聚糖的应用

(1)食品工业上的应用

N,O-羧甲基壳聚糖水溶液形成的薄膜对气体有选择性的通透,特别适合于作为水果保鲜剂。美国和加拿大有一种商品名为“Nutri-save”的NOCC水果保鲜剂即将上市。国内近几年来,研究了N,O-羧甲基壳聚糖对猕猴桃、草毒、水蜜桃等水果的保鲜作用[7]。N—羧甲基壳聚糖的螫合作用在保存肉类方面也发挥了有利的作用,它能避免己醛和不愉快气味的形成,起抗氧化的效果。

(2)化妆品工业上的应用

O-羧甲基壳聚糖和N-羧甲基壳聚糖由于优良的水溶性、乳化性、成膜性而适用于做为水质化妆品的功能性成分。0.25%的N-羧甲基壳聚糖和O-羧甲基壳聚糖水溶液的粘度比其它种类的保湿剂要高,且持续保湿能力优于透明质酸,并且在广泛的pH范围内,即使是高温和长时期加热,都非常稳定,特别适合用于那些需要加热或杀菌的化妆品,如清洗液,洗面奶等。尤其在N-羧甲基壳聚糖中,带有大量的甘氨酸基团,它在皮肤中是大量存在的,将十分有助于皮肤的保健。另外,N-羧甲基壳聚糖与壳聚糖和其它改性壳聚糖,具有增强抗菌作用。这也是应用在化妆品的又一个优点。特别是对口腔中典型的蛀齿细菌有非常高的抑菌作用,可作为牙膏的配方成分[8]。

(3)农业上的应用

在收获前的庄稼如玉米、花生中存在的黄曲霉素对人体和动物有毒害作用。据报道,N-羧甲基壳聚糖可使黄曲霉素减少90%以上,而真菌生长降低到一半以下。产毒性真菌细胞显示,N-羧甲基壳聚糖的存在抑制了孢子发芽和真菌体孢子形成。当玉米、马铃薯用N—羧甲基壳聚糖处理时,可使贮存蛋白质的含量增加2~3成。N-羧甲基壳聚糖通过增加氨离子的利用而使庄稼贮存蛋白质含量增加。同样。N-羧甲基壳聚糖能使玉米种子中蛋白质含量翻倍,整个细胞的RNA含量提高。这些结果不仅对增加玉米和其它庄稼的食用和经济价值有重要意义,也为研究植物代谢调节机制提供了新途径[8]。

(4)医学上的应用

已经发现N-羧甲基壳聚糖适合于阻止组织间粘结[8],以其凝胶或膜的形式用于外科伤口。由于粘度和弹性大于血浆,可阻止血液在组织表面凝结从而阻止粘结。O-羧甲基壳聚糖具有诱导半抗原特异性抗体的免疫功能和作为控制释放的药物载体[9]。对于低分子量的N一羧甲基壳聚糖,若在C3、C6位羟基和C2位氨基进行磺化,其产物对HIV-1和RLV病毒具有抗回复活性。N-羧甲基壳聚糖的磺化物也具有类似肝素的活性,可专一性地作用于内凝血因子.而不与体外及普通凝血因子反应,其作用机制与肝素截然不同,这对抗凝血处理是重要的。

1.6微波及其在壳聚糖改性中的应用

1.6.1微波及其特性

微波是频率大约在300MHz~300GHz,即波长在100cm至1mm之间的电磁波,位于电磁波谱的红外辐射(光波)和无线电波之间。

一般地,微波可以容易穿透一些材料,如玻璃、陶瓷、某些塑料(聚四氟乙烯)等,也可以被一些材料如水、木材、食品、橡胶等吸收而产生热。因此微波可以作为一种能源在家用、工业、科研和其它很多领域得到广泛应用,这种应用是属于非通讯领域的应用。为了避免干扰通讯,目前,民用的微波频率一般为2.45GHz。

微波作用于物质时,是通过和物质耦合而产生热能的。当外电场不存在时,物质分子的运动是无定向的,而在外电场作用下,物质分子或离子产生定向迁移。在微波交变电场作用下,物质分子或离子不断改变运动方向及取向,产生频繁的摩擦而生热,这就是微波的致热效应。由此可见,微波对物质加热是内外同时加热的。这种加热方式称为“体加热”[10]。

除了热效应之外,一般认为微波还具有“非热效应”。微波频率和分子的转动频率一致。在微波作用下,物质分子的某些化学键会发生共振而断裂,直接促使化学反应的发生。目前,人们对微波“非热效应”的探讨还处在实验数据收集阶段,还没有成熟的理论依据。

1.6.2微波在有机化学中的应用

微波化学是微波在化学领域里应用的结果。随着微波在化学中应用越来越广泛,1992年在荷兰召开了首届世界微波化学大会,宣告微波化学的正式诞生。目前,微波化学已经形成了微波等离子体化学、微波凝聚态合成化学、微波分析化学等多门分支学科,下面着重介绍微波在有机化学反应中的应用。

1986年,加拿大人Gedye和他的合作者首次将微波应用于有机化学反应中,他们研究了微波辐射下酯化、水解、氧化等有机反应体系,发现微波大大加快了有机反应的速率。这一发现向传统的有机化学加热手段发出了挑战,为有机化学的研究注入了新的思维。正因为如此,微波加速有机化学反应引起了广泛的注意。在短短的十几年时间内,微波促进有机反应的研究已经发展为一门新的分支学科——MORE化学(Microwave-Induced Organic Reaction Enhancement Chemistry)。(1)微波有机实验技术

虽然目前已经有了许多专用的微波炉,但是绝大多数的微波合成还是使用普通的家用微波炉。和专用微波炉相比,家用微波炉有下面一些缺点:没有提供测量辐射样品温度的测温设备,也没有聚集辐射的设备,甚至不能改变微波频率。即使这样,家用微波炉还是适用于很多合成反应,而且在微波炉内可以同时进行几个反应。

如果反应混合物不能充分吸收微波,则需要使用载体或加入其它物质(比如极性溶剂)。但是这两种手段都有缺点。使用载体会大大削弱微波加热的优点,使得加热只是在载体和反应物的界面进行而不是在反应物内部进行。而溶剂的引入可能会在反应中导致起火甚至爆炸,高沸点溶剂在反应后分离较为困难。

有时反应还需要催化剂。一般是使用非均相催化剂,这样在反应结束后比较容易和产物分离。

(2)微波在有机反应中应用现状

微波技术已经应用于有机反应的几乎所有领域,如取代反应、加成反应、开环反应和高分子反应等等,它的使用已经大大促进了反应的进行,提高了反应的效率,并且能生成常规加热所难以获得的物质。但是,微波促进有机化学反应化学还远远没有发展成熟。微波应用于有机反应还受到很多限制,还有许多不为人

知的地方。比如微波促进有机反应的真正机理尚未被了解;微波对有机反应除了促进作用外,是否还有其他作用;微波目前只能应用于实验研究,还不能用于工业生产;微波反应中控温、动力学研究都比较难;微波溶剂反应中的安全性问题等,所有这些都限制了这门分支学科的发展。但正是因为这些缺点的存在,才使微波有机化学显示出诱人的风采,吸引了越来越多的有机化学工作者加入到微波化学行列中来,使这门学科显示出勃勃的生机。

这里我们主要介绍它的糖类化合物反应和高分子反应。

糖类化合物反应

Pagnotta 等发现α—D—葡萄糖的变旋光反应在微波照射下有很快的速率,而且溶剂不同时两者的比例会发生变化,从而使旋光度发生变化。对于1:1的D 2O:EtOH ,α:β的比值随着时间而增加[11]。

高分子反应

微波还广泛应用于高分子领域的研究中,表现出一定的优越性。微波加热所合成或改性的高分子材料,在某些方面的性能上比用普通方法制备的更优良

[12]。

Zurawsky 等人报导了利用脉冲微波能辐射可引发一系列含有不同官能团的单体如丙腈、丙烯腈、环己烯、丙烯酸、丙烯酸甲酯等发生聚合反应。研究结果表明,对不含有氧原子的单体,随脉冲频率的增加,热离解速率增大,脉冲微波引起的能热离解速率总是低于连续微波能引起的热离解速率。对于含有氧原子的单体,则结果刚好相反[13]。

1.7 本研究的目的、内容

1.7.1 目的

壳聚糖因其独特的生物学特性,具有安全、生物可降解、耐热耐晒、抗静电等特点,因而在食品、医药、纺织、印染、化妆品以及环境保护等工业领域有着广泛的应用。

但是由于壳聚糖不能直接溶于水,制约了其应用范围的进一步扩大。羧甲基壳聚糖是对壳聚糖进行化学修饰,使其分子中的氢原子被羧甲基取代所得到的产品。羧甲基壳聚糖是一种水溶性壳聚糖衍生物,有许多特性,如抗菌性强,具有保鲜作用,是一种两性聚电解质等。因而,它在农业、食品、纺织品、化妆品、以保鲜、医药等各个领域均具有更广泛的用途。本实验通过分别研究在以有机溶剂和水为分散介质的壳聚糖羧甲基化反应,初步得出能制出性质优良的水溶性壳聚糖的优化工艺。

另外,人们在壳聚糖改性上使用的加热方法一般是使用传统的热传导方法。

这些方法速度慢,加热不均匀,加热效果差,容易造成壳聚糖局部变焦,而且产

率低,生产成本高。这些缺点阻碍了壳聚糖改性的进一步发展。因此,如果能改变传统的加热手段,引入更加高效的技术和方法,对壳聚糖改性也许会得到一个良好的效果。微波辐射用于化学反应,具有反应速度快、加热均匀、产率高、能耗低、洁净等特点。微波技术有可能克服壳聚糖改性传统加热手段的缺点,解决长期困扰人们的问题,因而,把微波辐射技术应用于壳聚糖的化学改性将有非常可观的前景。目前,将微波应用于壳聚糖改性的工作开展得还很少。本论文将微波辐射技术应用于壳聚糖的改性中,用微波对壳聚糖改性反应提供热能,并期望得到一些有别于传统加热手段的结果。

1.7.2研究内容

本研究拟采用普通家用微波炉作为加热工具,并且进行必要的改装。通过对壳聚糖进行改性,旨在制备出具有优良性能的水溶性的壳聚糖,为壳聚糖改性开拓出一条全新的途径。主要内容如下:

(1)以虾壳、蟹壳作为原料,探讨微波辐射下由虾壳、蟹壳制备壳聚糖的工艺。(2)以异丙醇、乙醇、正丁醇和乙二醇为有机分散介质,对壳聚糖进行羧甲基化,研究各种反应条件对生成物水溶性的影响,并确定微波辐射下在有机介质中壳聚糖羧甲基化的最佳实验条件。

(3)以水为分散介质对壳聚糖进行羧甲基化,研究异于传统做法,不用有机分散介质的羧甲基化反应是否能进行。若能进行则进一步确定微波辐射下在水中壳聚糖羧甲基化的最佳实验条件。

(4)初步考察微波对壳聚糖改性的作用机理。

羧甲基壳聚糖制备方法

羧甲基壳聚糖制备方法 (1)将壳聚糖溶于稀乙酸中,用过量的丙酮沉淀,得到壳聚糖乙酸盐,转入带有 搅拌的反应瓶中,加入一定量的NaOH溶液和异丙醇,边搅拌边滴加氯乙酸的异丙醇溶液,控制反应温度为70℃,反应数小时,冷却至室温,用稀酸调pH值 至中性,用85%甲醇洗涤,干燥,即得羧甲基壳聚糖。[2] (2)将纯化好的壳聚糖装入带有搅拌的反应瓶中,加入一定量的20%NaOH溶液和异丙醇,在室温下搅拌60min,然后滴加氯乙酸的异丙醇溶液,在室温下反应 5h,然后用稀盐酸中和至pH值为7,用丙酮沉淀产物,过滤,用85%甲醇溶液 洗涤直至无氯离子,再用无水甲醇洗涤,60℃下真空干燥,即得产品。[2] (3)将2鲍壳聚糖加到200mL正丁醇中,室温搅拌溶胀20min,分6次加入 lOmol/L NaOH溶液,每次50mL, 40min一次,最后一次加完后再搅拌40rnin,得到碱性壳聚糖,然后把24g固体氯乙酸分5次加入,5min一次,在55~75℃ 搅拌反应3h,接着加入17mL水,用冰醋酸调pH值至7,抽滤,用70%甲醇 300mL分次洗涤,抽干后,再用300mL无水乙醇分次洗涤,于60℃真空二干燥,得产品。羧甲基化反应温度分别为55℃, 60℃, 65℃, 70℃和75℃,产量分别为31. 0g,33.8g, 36.58, 34.0g和33.2g, 65℃时最高。[2] (4)把甲壳素于一定温度下在40%~60%NaOH溶液中浸泡0. 5~5h,然后边搅拌边 加入氯乙酸,再在0~70℃反应0. 5~5h,碱酸质量比控制在(1.2~1.6):1,在 0-80℃保温5~36h,然后用稀盐酸中和,分离产物,用75%乙醇溶液洗涤,于60℃干燥。这个方法也可制备羧甲基壳聚糖。[2] (5) 15g壳聚糖先在50%(w/w) NaOH溶液中碱化,然后加150mL异丙醇搅拌, 加入18g氯乙酸,在65℃反应2h,用酸中和,70%甲醇多次洗涤,然后溶于水中,再用丙酮沉淀,过滤,用无水乙醇反复洗涤,过滤,真空干燥,得到精制 的羧甲基壳聚糖。[2] (6) 3g粉状壳聚糖悬浮于100mL浓度分别为25%, 30%, 35%,40%的NaOH溶液中,加入5g氯乙酸与冰醋酸的混合液(摩尔比为1:1),在30℃下反应,每隔1h加 入5g氯乙酸与冰醋酸的混合液搅拌反应6h,最后用盐酸中和,过滤,用甲醇 反复洗涤,干燥,得产物。[2] (7) 10g壳聚糖溶于1000mL 1%乙酸溶液中,加入200mL氯乙酸钠(氯乙酸用氢 氧化钠溶液中和)及50%氢氧化钠溶液150mL,室温间歇搅拌反应4h,用酸中和 停止反应,离心分离沉淀,溶于碱,过滤,滤液再中和,离心分离沉淀,用甲 醇洗涤,干燥,得产物。[2] (8)超声波法制备羧甲基壳聚糖,可显著缩短反应时间,提高羧甲基的取代度。将0. 5g壳聚糖与5mL异丙醇、10ml 30 %NaOH溶液混合,再加入溶于10rnl异丙醇的氯 乙酸(壳聚糖与氯乙酸的质量比为1:4~5),在三角瓶中摇荡几分钟后,置于超声波清洗器中,用水作振荡介质,调节输出功率40W,升温到60℃反应3h,之后倾去上层 清液,向粘状物中加入40rnL水,充分搅拌溶解,用1000盐酸中和到pH值为7,滤去不溶物,滤液中加入适量甲醇沉淀,过滤,无水乙醇洗涤,100℃烘干,即得产物。

壳聚糖抑菌性能研究

壳聚糖抑菌性能研究 甲壳素-壳聚糖是一种极有前途的天然高分子聚合物,自20世纪60年代以来,人们对它们的研究、生产、应用变得十分活跃。特别是近几年,研究人员认识到它们的抑菌效能,通过深入研究,有些甲壳素 -壳聚糖的抑菌产品已经问世。 甲壳素脱乙酰基产物为壳聚糖。据研究,壳聚糖的抑菌作用可能有两种机理,一种是壳聚糖通过正电荷的-NH3吸附带负电荷的细胞壁,使壳聚糖吸附在细胞膜表面形成一层高分子膜,改变了细胞膜的选择透过性,阻止营养物质向细胞内的运输,致使细胞质流失、细胞质壁分离,从而起到抑菌杀菌作用;另外一种机理是壳聚糖通过渗入进细胞体内,吸附细胞体内带有阴离子的细胞质,并发生絮凝作用扰乱细胞正常的生理活动,从而杀灭细菌。近几年,随着对该特性认识的加深,人们不仅对能够影响其抑菌性能的机理进行了深入的研究,而且,也开始应用化学方法对其进行改性,从而提高壳聚糖的抑菌性能,最终达到扩大其应用范围的目的。目前,针对影响壳聚糖抑菌性能方面的研究主要有以下几个方面:分子量对壳聚糖抑菌性能的影响多数研究认为,寡聚糖和低分子量的壳聚糖的抑菌效果较好,随分子量上升效果逐渐下降。特别是对大肠杆菌,壳聚糖分子量越小,抑菌作用愈明显。例如:宋献周等就几种不同分子量的α-壳聚糖对几种常见菌(大肠杆菌、金黄色葡萄球菌、枯草杆菌、产气荚膜杆菌)的抑制研究表明,低分子量的α-壳聚糖的抑菌效果优于高分子量的α-壳聚糖。夏文水等采用E.coli作为试验菌株,测得分子量为1500的壳低聚糖抑菌效果最强。但是,也有一些研究利用不同的试验菌得出结论认为,壳聚糖分子量较大时,其抑菌能力更强。例如:Yousook等报导分子量为4万的壳聚糖在浓度为0.5%时,对S.taureus 和E.coli的杀灭率为90%:分子量为18万的壳聚糖在浓度为500PPM时,对S.taureus和E.coli的杀灭率为100%:分子量在30万以下时,壳聚糖对金黄色葡萄球菌的抑制作用随分子量减小而逐渐减弱。 pH值对壳聚糖抑菌性能的影响 严钦等人研究认为,壳聚糖因为具有质子化铵,能与细菌大负电荷的细胞膜作用,干扰细菌细胞膜功能,造成细菌体内细胞质流失,扰乱细胞的正常生理代谢,从而达到杀菌的目的。而在pH为中性时,壳寡糖中的氨基没有被质子化,因而不能抑制细胞的生长,反而是作为一种糖被细菌利用。由此可见,通常在微酸条件下,壳聚糖具有明显的抑菌作用,但是当pH值为7时,壳聚糖不但没有抑菌效果,反而还有一定的促进细菌生长的作用。晶体形状对壳聚糖抑菌性能的影响甲壳质有3种晶型,即α、β和γ-壳二糖聚合物,目前,人们对壳聚糖的研究绝大多是针对α晶型,对其他两种研究甚少。蒋霞云等通过对比α-壳聚糖和β-壳聚糖的抑菌性能得出,具有高黏度和高脱乙酰度的β-壳聚糖的抑菌性能强于α-壳聚糖, 从而填补了壳聚糖抑菌性能研究在该方面的空白。 辐射对壳聚糖抑菌性能的影响 目前,由辐射方法改变壳聚糖的抑菌性研究已经逐步深入进行,分别有金黄色葡萄球菌、酵母菌等多个菌种被测试,并分别得出了不同的作用效果及不同的作用浓度。王勇、张成刚等人将壳聚糖经 100Kgy60Coγ-射线辐射处理后,发现其对金黄色葡萄球菌抑菌效果最强,比为辐射前增加100倍,且最适作用浓度为0.01%。孟玲、张中泽通过对酵母菌的抑菌试验验证,经辐射处理后壳聚糖的抑菌活性明显增强,并且0.2g/L的辐射壳聚糖具有明显的抑菌活性。 化学改性对壳聚糖抑菌性能的影响 羧甲基化羧甲基壳聚糖是目前研究的较多一种物质,由于羧甲基化后其水溶性增强,因此大大拓宽了壳聚糖的应用范围。目前,羧甲基壳聚糖大多被用于食品保鲜方面。李治等人经实验证实,羧甲基壳聚糖在羧甲基化度小于0.6~0.8时,抗菌性均大于壳聚糖,当羧甲基化度0.3~0.6范围内,羧甲基壳聚糖具有较强的抗菌性,羧甲基化度大于或小于此范围,抗菌性均有所下降。 磺化由于壳聚糖上具有较多的活泼集团,因此较容易进行各类集团的转化与连接。黎碧娜等对磺化壳聚糖的抑菌性能进行了研究认为,磺化壳聚糖对大肠杆菌、枯草杆菌、葡萄球菌、黑曲霉、假丝酵母都有抑制作用,并且浓度越高,抑菌效果越好。此外,磺化羟丙基壳聚糖和黄原酸壳聚糖也具有一定的抑菌性。

医用壳聚糖凝胶

术亿宁 医用几丁糖凝胶使用说明书 成份:本品内含的几丁糖,用生理平衡液配制而成。 作用机理:医用几丁糖是由蟹壳提纯的高分子化合物几丁质(),经脱乙酰基再深加工后制成的一种聚氨基葡萄糖,是一种具有良好生物相容性、生物可降解性及生物学活性的医用高分子多糖类物质。其防止术后组织粘连的机理有:()医用几丁糖具有选择性促进上皮细胞、内皮细胞生长而抑制成纤维细胞生长的生物学特性,从而促进组织生理性修复,抑制疤痕形成,减少组织粘连。()医用几丁糖具有局部止血作用及抑制血纤维蛋白束形成,从而减少了因血肿机化而造成的组织粘连。()医用几丁糖凝胶有润滑作用及生物屏障作用,能有效地阻止粘连发生。针对腹部手术肠腔内表面大,而且易发生粘连的浆膜粗糙面不易被发现等因素,为了使整个肠管、脏器表面都能均匀涂布上医用几丁糖凝胶,就必须增加使用剂量,从而能达到更为理想的防粘连效果。 适用范围:普通外科、妇产科等腹、盆腔手术,可预防术后肠粘连和盆腔粘连。 物理性状:本品为无色、透明粘稠状胶体。 用法:在关腹前将本品均匀涂布于腹、盆腔肠管、脏器表面和壁层腹膜,然后关腹。注意事项:.本品为无菌制品,应严格无菌操作。 .本品仅适用于局部使用,不得静脉注射。 .包装破损禁止使用。 .用于预防组织粘连,必须在充分止血条件下使用,否则会将低使用效果。禁忌症:目前未有明确禁忌。 副作用:本品为高度纯化、无毒、无致敏的天然聚糖,但医生应有使用任何天然生物材料具有潜在过敏性危险的意识。目前尚未发现其它不良反应。 规格:支,支, 支, 支 贮存:避光,~℃冷藏,不能冰冻。 有效期:两年。 生产企业许可证编号:冀食药监械生产许号 产品注册号:国食药监械(准)字第号 产品标准编号:国-《医用几丁糖凝胶》 生产批号:见产品标签或外包装盒。 生产企业名称:石家庄亿生堂医用品有限公司 注册、生产地址:石家庄市新石北路号号楼 售后服务单位:石家庄亿生堂医用品有限公司 邮编:服务电话:- 1 / 1

壳聚糖的结构、性质及其应用--综述

壳聚糖的结构、性质及其应用 张洁海洋药学0844130 摘要:生物相容性好、可降解、对组织和细胞无毒副作用的生物材料一直是生物医学领域研究的热点。壳聚糖(α(1-4)2-氨基2-去氧β-D葡聚糖)是甲壳素脱乙酰得到的天然多糖中惟一的碱性多糖,具有很多优良的特性。本文就壳聚糖的结构、性质及其应用进行综述。 关键词:壳聚糖,结构,性质,应用 壳聚糖(Chitosan,简称CTS),壳聚糖是由N-乙酰糖胺组成,其中糖胺的含量超过90%,具有黏多糖相似的结构特点,而黏多糖在组织中分布广泛,是细胞膜有机组成成分之一,故壳聚糖具有优异的生物相容性⑴~⑵。表现为无毒、无刺激、无免疫抗原、无热原反应、不溶血,有抗菌消炎、促进伤口愈合,抗酸、抗溃疡、降脂和降低胆固醇的作用⑶~⑸。而且具有直接抑制肿瘤细胞的作用,并可通过活化免疫系统显示抗癌活性,与现有的抗癌药合用可增强抗癌效果,近年来其作为药物微球材料的研究也受到了极大的重视⑹,是一种安全可靠的天然生物活性多糖。本文就壳聚糖的结构、性质及其应用进行综述。 一.壳聚糖的结构与性质 1.壳聚糖的来源—甲壳素 壳聚糖来源于一种自然资源十分丰富的线性聚合物一甲壳素,是甲壳素经脱乙酰化反应后得到的一种生物高分子Ⅲ。甲壳素是一种天然多糖类生物高分子聚合物,在自然界中广泛存在于低等生物菌类、藻类的细胞,节支动物虾、蟹、昆虫的外壳,软体动物(如鱿鱼、乌贼)的内壳和软骨,高等植物的细胞壁等,将甲壳动物的外壳通过酸碱处理,脱去钙盐和蛋白质,即可得到甲壳素。甲壳素化学名为[(1,4)一2一乙酰胺基一2一脱氧一B—D-葡萄糖],分子式为(C8H13N05)。,单体之间以B(1-4)糖苷键连接,分子量一般在lO6左右,理论胺含量为6.9%。甲壳素的化学结构与植物中广泛存在的纤维素结构非常相似(见图l),故又称为动物纤维素。 (a)甲壳素(b)纤维素 图1甲壳素和纤维素的结构

改性壳聚糖的研究进展

改性壳聚糖的研究进展 1壳聚糖的理化性质 壳聚糖(chitosan,(1,4)-2-氨基-2-脱氧-β-D-葡聚糖)是甲壳素(chitin,(1,4)-2-乙酰氨基-2-脱氧-β-D-葡聚糖)部分脱乙酰化的产物。甲壳素广泛存在于蟹、虾以及藻类、真菌等低等动植物中,含量极其丰富,自然界每年产量约在100亿吨,是仅次于纤维素的第二大多糖。它是由葡萄糖结构单元组成的直链多糖,此多糖中含有数千个乙酰己糖胺残基,因此在分子间形成很强的氢键,导致其不溶于水和普通有机溶剂,这就大大限制了其应用范围。 将甲壳素在碱性条件下加热,脱去N-乙酰基后可生成壳聚糖。人们常将N-脱乙酰度和粘度(平均相对分子质量)作为衡量壳聚糖性能的两项指标。N-脱乙酰度是判定壳聚糖溶解性的依据,脱乙酰度越高,分子链上的游离氨基就越多,在酸中的溶解性就越好;而壳聚糖相对分子质量越大,分子之间的缠绕程度就越大,溶解度就越小。壳聚糖是自然界中唯一的一种碱性多糖,它一般是白色无定型、半透明、略有珍珠光泽的固体。壳聚糖可溶于大多数稀酸,如盐酸、醋酸、苯甲酸溶液,且溶于酸后分子中氨基可与质子结合,使自身带上正电荷。甲壳素及壳聚糖的结构式如图1所示:

图1壳寡糖与壳聚糖的结构式 甲壳素和壳聚糖在自然界可以被各种微生物降解。微生物中的甲壳素酶(chitinase)可以随机地水解甲壳素的N-乙酰-β-(1-4)糖苷键。而壳聚糖可以被多种酶水解,包括壳聚糖酶(chitosanase)、麦芽糖酶、脂肪酶、以及各种来源的蛋白酶。在人体内甲壳素酶和壳聚糖酶并非普遍存在,通过测定显示N-乙酰壳聚糖在人血清中可以被人体内普遍存在的溶菌酶(lysozyme)降解。 壳聚糖的主链结构中引入了2-氨基,化学性质区别于3,6-羟基,与甲壳素相比增加了反应选择性的功能基团。由于C6-OH是一级羟基,C3-OH是二级羟基,空间位阻不同反应活性也不同,再加上C2-NH2,壳聚糖就具有三个活性不同的可供修饰的基团。根据不同的需要,被修饰的壳聚糖作为一种功能大分子广泛用于各种领域。由于壳聚糖只在酸性水溶液中溶解,而在中性或碱性水溶液中以及多数有机溶剂中不溶,限制了它的应用范围,因此科学家们采用衍生化的方法对壳聚糖进行改性获得了多种水溶性和可溶解于某些有机溶剂的衍生物,大大扩展了壳聚糖的应用范围。其中包括对壳聚糖进行N-,O-酰化,含氧无机酸酯化,醚化,N-烷基化,C6-OH和C3-OH的氧化,以及鳌合、交联等,在此过程中获得了许多性能良好,甚至是

壳聚糖特性及其应用

壳聚糖特性及其应用 作者简介:孔佳琦,女,本科,西北民族大学化工学院,专业:制药工程。 力芬,女,本科,西北民族大学化工学院,专业:环境工程。 摘要:壳聚糖是自然界中储量丰富天然高分子化合物,壳聚糖及其衍生物具有各种优良的性质,本文主要介绍了壳聚糖的特性以及其在不同方面的应用情况,为壳聚糖的研究发展提供依据和思路。 关键词:壳聚糖;特性;应用 壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。纯甲壳素和纯壳聚糖都是一种白色或灰白色透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。在特定的条件下,壳聚糖能发生水解、烷基化、酰基化、羧甲基化、磺化、硝化、卤化、氧化、还原、缩合和络合等化学反应,可生成各种具有不同性能的壳聚糖衍生物,从而扩大了壳聚糖的应用围。本文就壳聚糖的特性和应用进行阐述,为其研究和发展提供依据和思路。

1.特性 1.1抗菌性。壳聚糖是唯一一种天然的弱碱性多糖在弱酸溶剂中易于溶解,溶解后的溶液中含有氨基(NH2+),这些氨基通过结合负电子来抑制细菌。壳聚糖的抗菌性会随着其浓度的增加而增强。壳聚糖对大肠杆菌、金黄色葡萄球菌等有较强的抑制作用。 1.2吸附性。壳聚糖具有很强的吸附功能,特别是对重金属离子的吸附如对铜、汞、铅等离子的吸收。壳聚糖的吸附活性可以有选择地发挥作用。当然还可以吸附胆固醇、甘油三酯、胆酸、油脂[1]等。 1.3保湿性。壳聚糖衍生物分子中有许多活泼的亲水极性基团如-OH、-COOH及-NH2,这些基团可以使其显示出保湿性。对于羧基化壳聚糖,其羟基的含量远大于其他衍生物,且羧基的亲水性所以能够结合更多的水分。因此羧基化壳聚糖的吸湿、保湿性也就明显高于其他类型的壳聚糖衍生物。 1.4成膜性。壳聚糖是线性高分子聚合物,理化性能稳定,可生物降解,粘合性好,成纤成膜性能优良。吴国杰[2]等人研究了壳聚糖膜的制备方法和性能,探讨了壳聚糖溶液成膜的最佳工艺条件。 1.5调节作用。壳聚糖可激活体具有免疫功能的淋巴细胞,使其能分辨正常细胞和癌细胞,并杀死癌细胞。还能调

羧甲基壳聚糖

羧甲基壳聚糖因为有良好的水溶性、保湿性和成膜性,安全无毒并具有抗菌、抑菌、乳化稳定作用,在日化、食品、造纸、制药等方面有重要的用途。 1保鲜剂 壳聚糖是甲壳素脱乙酰基的产物,是一种天然的阳离子高分子多糖,它来源丰富,无毒无害,无污染及可降解,已广泛应用于化工、食品、化妆品、环保及医药等诸多领域。但壳聚糖仅溶于某些酸性介质,限制了其应用范围。对壳聚糖进行化学修饰即可得羧甲基壳聚糖,根据羧甲基的取代位置不同可以获得O-羧甲基壳聚糖、N-羧甲基壳聚糖和N,O-羧甲基壳聚糖三种产物。与壳聚糖相比,羧甲基壳聚糖在果,如水溶性、成膜性、吸湿保湿性、抗菌性、安全无毒性等,更适合于现代果蔬保鲜贮运的要求。羧甲基壳聚糖是一种天然的多糖涂膜保鲜剂,来源丰富,无毒无味,抑菌性强,在果实表面形成的膜具有很好的气体选择通透性,能有效地降低果蔬的呼吸强度和蒸腾作用,从而保持果蔬的新鲜度,延长果蔬的贮藏寿命。研究表明羧甲基壳聚糖对金黄色葡萄球菌、大肠杆菌、枯草杆菌这三种常见的食品腐败菌有较强的抑制作用,其中对金黄色葡萄球菌的抑制效果最好,其最小抑制浓度为0·1%,对大肠杆菌、枯草杆菌最小抑制浓度均为0·2%。羧甲基壳聚糖对酵母菌群、黄曲酶素、黑曲霉等也有明显的抑制作用。(羧甲基壳聚糖在果蔬保鲜中的应用研究进展吴伟,林宝凤) 2对铅离子的吸附 壳聚糖是甲壳素脱乙酰基后的产物其自然资源非常丰富是性能优良的金属离子吸附剂在工业废水处理贵重金属离子回收[3]等方面具有广阔的应用前景制备水溶性壳聚糖及其衍生物引入其它功能性基团改善它的溶解性及功能拓宽其应用范围是当前研究开发甲壳素和壳聚糖的重要课题羧甲基壳聚糖是壳聚糖经化学改性得到的水溶性衍生物由于羧基的引入使其结合金属离子能力大大提高可广泛应用于水处理贵重金属离子富集回收等方面进入人体健康者血铅的正常范围为0.483~1.45μmol/L当血铅含量达2.72~3.84μmol/L时即可发生铅中毒铅中毒可直接损伤人和动物的甲状腺功能还可损伤生殖细胞及降低性功能本文将初步研究羧甲基壳聚糖CMCS对铅离子吸附的基本特性以期为含铅废水的处理提供新的途径及理论依据。羧甲基壳聚糖与壳聚糖水溶性低聚壳聚糖相比对铅离子具有更强的吸附能力且吸附能力随着羧甲基取代度的增大而增大羧甲基壳聚糖吸附铅离子的行为遵循单分子层吸附机理符合动力学方程t/Qt=t/Qeq+M/KCM影响吸附过程的因素主要有时间pH值离子强度温度等为羧甲基壳聚糖在处理含铅的工业废水方面提供了一定的理论依据。(羧甲基壳聚糖对铅离子的吸附性能研究林友文陈伟罗红斌) 3降脂作用 壳聚糖及其衍生物的调节血脂作用日益受到人们重视,关于降脂机制目前尚无定论。有人认为壳聚糖结构中含有氨基,作为聚阳离子可与胆酸、胆固醇结合并随粪便排出体外,能阻止消化系统吸收胆固醇和甘油三酷从而发挥降脂作用。(壳聚糖、梭甲基壳聚糖的降脂及抗氧化作用林友文林青郑景峰蒋智清) 4在农业上的应用 羧甲基壳聚糖易溶于水,具有植物生理调节功能。Cuezo研究表明,用其处理番茄可提高叶片中叶绿素的含量;如用羧甲基壳聚糖处理玉米开花期的果穗和种子,可提高玉米籽粒中蛋白质的含量。玉米是低蛋白作物,因为玉米在氮代谢过程中,谷氨酰胺合成酶和谷氨酸脱氢酶往往受到抑制,NH离子补偿能力下降,使得贮藏蛋白含量较低。师素云以羧甲基壳聚糖处理玉米开花期果穗,发现发育籽粒中的谷氨酰胺合成酶、谷氨酸脱氢酶和谷丙转氨酶活性均明显增强,而蛋白水解酶活性下降,其中谷氨酰胺合成酶活性比对照组高20%以上,谷氨酸脱氢酶在处理后10、15、和25天时分别比对照组高30%、40%和50%以上,谷丙转氨酶活性高20%以上,而蛋白水解酶活性下降了30%以上;羧甲基壳聚糖对作物生长和营养代谢具有调节功能。师素云等用羧甲基壳聚糖水溶液处理玉米种子,其种子发芽率、幼苗

改性壳聚糖富集研究综述范文【精编】

改性壳聚糖富集研究综述 摘要:壳聚糖及其衍生物是一种天然高分子,随着对其研究的深入发展,涉及的内容和应用范围越来越广泛。本文综合概述了壳聚糖的结构、性质、富集及其化学改性的方法,简单介绍了它们的应用领域。 关键词:壳聚糖;富集;化学改性;应用。 引言: 壳聚糖具有许多独特的化学物理性质,根据其酸化、酉旨化和氧化、接枝与交联、经基化、经烷基化等反应还可制备成多种用途的产品,而且从氨基多糖的特点出发具有比纤维素更为广泛的用途。对壳聚糖的应用开发研究,自本世纪六十年代以来就十分活跃,近年来国际更是十分重视对它的深入开发和应用。通过对甲壳质和壳聚糖进行化学修饰与改性来制备性能独特的衍生物已经成为当今世界应用开发的一个重要方面。 1、壳聚糖及其改性吸附剂 壳聚糖(chitosan)是一种天然化合物,属于碳水化合物中的多糖,是甲壳素N-脱乙酰基的产物,其学名是β(1→4)-2-氨基-2-脱氧-D-葡萄糖。 壳聚糖本身的基本结构是葡萄糖胺聚合物,与纤维素类似。但因多了一个胺基,带有正电荷,所以使其化学性质较为活泼。且因其聚合分子结合键角度自然扭转之故,对于小分子或元素会发生凝集螫合作用。根据甲壳素脱乙酰化时的条件不同,壳聚糖的脱乙酰度和分子量不同,壳聚糖的分子量通常在几十万左右。但一般来说N-乙酰基脱去55%以上的就可称之为壳聚糖。 壳聚糖本身性质十分稳定,不会氧化或吸湿。鉴于壳聚糖及其衍生物具有优良的生理活性,在食品、生物制药、水处理方面显示出非常诱人的应用价值。近年来,国内外对壳聚糖的开发研究十分活跃。 2、壳聚糖富集工艺的研究现状 由于壳聚糖吸附剂有以上的优点,学者们对其富集的工艺已经有了较为深入的研究。 李斌,崔慧[1]研究了以壳聚糖作富集柱,稀H2SO4为洗脱剂,稀NaOH 为再生剂,火焰原子吸收光谱法简便、快速分离富集测定水中痕量Cu(Ⅱ)的方法,于波长325nm 处测定,检出限为20ng·ml-1,线性范围为10~20μg·ml-1。此法的优点在于简便、快速、选择性好、经济实用、效果良好。但由于壳聚糖易降解,在实际操作中存在着流速控制难,富集效果不均一,空白大的问题。

巯基化壳聚糖衍生物自组装纳米球的制备与表征

文章编号:1001-9731(2014)06-06140-04 巯基化壳聚糖衍生物自组装纳米球的制备与表征? 刘英杰1,段瑞平1,刘玲蓉1,杜一博1,王静洁1,熊青青1,张其清1,2 (1.中国医学科学院北京协和医学院生物医学工程研究所,天津市生物医学材料重点实验室,天津300192; 2.福州大学生物和医药技术研究院,福州350002) 摘一要:一以N-羟基琥珀酰亚胺(N H S)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(E D C四H C l)为催化剂,将制备的双羧基聚乙二醇(C O O H-P E G-C O O H)和部分巯基化聚乙烯亚胺(P E I-S H x)先后接枝于壳聚糖分子,得到巯基化壳聚糖衍生物(C S-P E G-P E I)三利用傅立叶红外光谱仪(F T-I R)和核磁共振仪(1H NM R)对其结构进行表征;通过透析法制备自聚集纳米粒,透射电子显微镜(T E M)和动态激光粒度分析仪(D L L S)分析测试自聚集纳米粒显示,自聚集纳米粒为球状纳米胶束,该纳米球有望成为纳米药物及基因的载体三 关键词:一壳聚糖;聚乙二醇;巯基化聚乙烯亚胺;自组装 中图分类号:一O629文献标识码:A D O I:10.3969/j.i s s n.1001-9731.2014.06.030 1一引一言 巯基化合物是一类重要的医药中间体而受到人们的广泛研究,主要集中应用于纳米药物载体[1]二生物凝胶材料制备[2]二基因载体[3]以及与纳米金结合[4]等方面三巯基化壳聚糖因其良好的生物特性得到广大研究者的青睐三壳聚糖(C h i t o s a n,C S)又叫脱乙酰甲壳素,是自然界存在的唯一碱性多糖,具有良好的生物相容性二低毒性二可降解性及粘附性,被广泛应用于化工二食品二化妆品二生物医药等方面三但是壳聚糖在水中的溶解性小,限制了其在生物医药材料方面的应用,通过与壳聚糖分子中的活性基团反应引入改性基团如胆甾醇[5]二聚乙二醇[6]二巯基等可以改变其物理化学性能,有利于其在生物医学材料领域的应用三聚乙二醇(P E G)是一种应用广泛的水溶性聚醚,它可用于医药二卫生二食品二化工等行业三本课题组已报道了聚乙二醇单甲醚接枝壳聚糖自组装纳米球用于甲氨蝶呤缓释释放的研究[6],该研究表明壳聚糖经聚乙二醇改性后,壳聚糖水溶性增加并能够自组装成胶束三 低分子量聚乙烯亚胺(P E I)具有较低的生物毒性,其大分子链上拥有大量可与多种活性基团反应的氨 基三因此,本文将低分子量聚乙烯亚胺与巯基乙酸甲酯反应得到部分巯基化的聚乙烯亚胺,并用羧基化聚乙二醇和部分巯基化聚乙烯亚胺接枝到壳聚糖上,得到巯基化壳聚糖衍生物,利用其在水溶液中自组装的性质制备成纳米球三由于巯基化壳聚糖衍生物中含有丰富的羧基和氨基,可进一步与其他活性基团或药物反应,可作为一种新型的药物载体在药物制剂研究中得到应用三 2一实一验 2.1一主要原料与仪器 壳聚糖(C S,M w=200k D a,脱乙酰度为90.1%,浙江澳兴生物技术有限公司),采用先酸化溶解,再碱化沉淀的方法纯化;聚乙烯亚胺(P E I,M w=800D a, M n=600D a,S i g m a);5,5 二硫代双(2-硝基苯甲酸) (D T N B,S i g m a);4-二甲氨基吡啶(D MA P,F l u k a);N-羟基琥珀酰亚胺(N H S,F l u k a);1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(E D C四H C l,上海延长生化科技发展有限公司);巯基乙酸甲酯(F l u k a);聚乙二醇(P E G,M n=2000D a,上海生工生物工程有限公司);丁二酸酐(天津市福晨化学试剂厂),其它试剂均为市售分析纯,实验用水均为纯水三 探头超声仪(UH-500A,A u t o m a t i cS c i e n c eI n-s t r u m e n tC O.,L T D);透射电子显微镜(T E M,J E M-100C XⅡ,J a p a n);紫外-可见分光光度计(U V-V i s, L a m b d a35,P e r k i n e l m e r);冷冻干燥机(G O L D-S I M, S I M);透析袋(MW C O8000-14000,U S A);核磁共振仪(NM R,V a r i a n I n o v a500,U S A);傅立叶变换红外光谱仪(F T-I R,N i c o l e tN e x u s470-E S P,U S A);动态激光粒度分析仪(D L L S,M a l v e r nN a n o-Z S,U K)三2.2一聚乙二醇基壳聚糖(C S-P E G)的合成 按文献[7-8]方法制备双羧基聚乙二醇,再以双羧基聚乙二醇与壳聚糖为原料通过NH S/E D C催化反应[9-10]合成聚乙二醇基壳聚糖三称取0.2g(0.91m m o l N H2)纯化壳聚糖溶于磷酸盐缓冲液(0.1m o l/L, P B S,p H值=6.0)中,搅拌溶解过夜,充分溶解后向溶 0416 02014年第6期(45)卷 ?基金项目:国家自然科学基金资助项目(31271023,91323104);中央级公益性科研院所基本科研业务费专项资金资助项目(院所1304) 收到初稿日期:2013-09-18收到修改稿日期:2013-11-10通讯作者:张其清,E-m a i l:z h a n g q i q@126.c o m 作者简介:刘英杰一(1989-),女,河南禹州人,在读硕士,师承张其清教授,主要从事纳米药物缓控释制剂方面研究三

壳聚糖衍生物的抗菌性质

壳聚糖和壳聚糖衍生物的抑菌作用 摘要:壳聚糖是一类有着广谱抑菌活性的天然多糖,其生物相容性好、易降解、无毒,因而作为一种可再生资源在抑菌领域受到了越来越多的关注。本文通过对壳聚糖来源、性质、壳聚糖衍生物的化学改性的方法和抑菌作用的分析,并对今后壳聚糖衍生物抑菌情况进行了初步的展望。为研制和开发新型的高抑菌活性的壳聚糖衍生物的开发提供理论参考。 关键词:壳聚糖;衍生物;抑菌;机理 引言 壳聚糖是无毒、无污染,具有可再生、无毒副作用,生物相容性和降解性良好的天然氨基多糖。目前已被广泛应用于医药[1-2]、农业[3]、食品[4-5]等领域,并成为最近生物新材料研究的热点[6-7]。壳聚糖具有抗菌活性,对多种植物病原细菌和真菌均抑制作用[8]。但由于其不溶于水和大多数有机溶剂,只溶于稀酸,在很大程度上限制了其应用范围。壳聚糖通过化学改性,可以得到具有一定官能团的壳聚糖衍生物。与壳聚糖相比,这些衍生物的性能往往有较明显的改善。对于壳聚糖的化学修饰研究较多的有壳聚糖的酰基化、烷基化、羟基化、醛亚胺基化、硫酸酯化、羧甲基化、季铵化等,其中季铵化、羧甲基化和硫酸酯化的产物由于具有良好的水溶性而备受重视[9]。有关壳聚糖的结构修饰和构效关系的研究已成为研究热点[10],因此,研究开发具有更高抗菌活性的壳聚糖衍生物,对于改善人们的生活质量具有重要意义。 1壳聚糖的来源和性质 1.1壳聚糖的来源 壳聚糖是自然界唯一的碱性天然多糖,壳聚糖的历史得追随到19世纪,当时Rouget 在甲壳素的天然聚合物中发现了其脱乙酰化的形式[11]。壳聚糖是白色或淡黄色无定型、半透明、略有珍珠光泽的固体。由于其原料和制备方法的不同,其分子量也有所不同,可以从数十万到数百万不等。甲壳素在浓碱中加热处理后,就可以脱去部分乙酰基,得到壳聚糖,反应路线如下。

壳聚糖

壳聚糖 壳聚糖(chitosan)是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖,自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。 分子式:C56H103N9O39 分子量:1526.4539 简介 壳聚糖是甲壳质经脱乙酰反应后的产品,脱乙酰基程度(D.D)决定了大分子链上胺基(NH2)含量的多少,而且D.D增加,由于胺基质子化而使壳聚糖在稀酸溶液中带电基团增多,聚电解质电荷密度增加,其结果必将导致其结构,性质和性能上的变化,至今壳聚糖稀溶液性质方面的研究都忽略了D.D值对方程的影响。 壳聚糖是以甲壳质为原料,再经提炼而成,不溶于水,能溶于稀酸,能被人体吸收。壳聚糖是甲壳质的一级衍生物。其化学结构为带阳离子的高分子碱性多糖聚合物,并具有独特的理化性能和生物活化功能。 近年来国内外的报导主要集中在吸附和絮凝方面。也有报道表明,壳聚糖是一种很好的污泥调理剂,将其用于活性污泥法废水处理,有助于形成良好的活性污泥菌胶团,并能提高处理效率。但研究其对活性污泥中微生物活性的影响以及其强化生物作用的机理,国内外均未见有报导。

在甲壳素分子中,因其内外氢键的相互作用,形成了有序的大分子结构.溶解性能很差,这限制了它在许多方面的应用, 而甲壳素经脱乙酰化处理的产物一壳聚糖,却由于其分子结构中大量游离氨的存在,溶解性能大大改观,具有一些独特的物化性质及生理功能,在农业、医药、食品、化妆品、环保诸方面具有广阔的应用前景。 物性数据 1. 性状:白色无定形透明物质,无味无臭。 2. 密度(g/mL,25℃):未确定 3. 相对蒸汽密度(g/mL,空气=1):未确定 4. 熔点(oC):未确定 5. 沸点(oC,常压):未确定 6. 沸点(oC,5.2kPa):未确定 7. 折射率:未确定 8. 闪点(oC):未确定 9. 比旋光度(o):未确定 10. 自燃点或引燃温度(oC):未确定 11. 蒸气压(kPa,20oC):未确定 12. 饱和蒸气压(kPa,60oC):未确定 13. 燃烧热(KJ/mol):未确定

壳聚糖

壳聚糖的制备改性及其应用进展 摘要:扼要地介绍了甲壳素及壳聚糖的主要性质、结构、及制法。重点论述了壳聚糖的一 些主要的改性方法,包括醚化、氧化、酰化、交联、烷基化、接枝共聚、季铵化及和其他材料复合等方法;并综述了壳聚糖及其衍生物在食品工业、日用化学、医药行业、环保、轻工业及其他领域的应用现状。 关键词:壳聚糖;衍生物;化学改性;应用 1 前言 壳聚糖(chitosan) , 学名为(1,4)-2-氨基-2-脱氧-β-D-葡聚糖,是甲壳素(chitin) 脱乙酰的产物, 而甲壳素是仅次于纤维素的第2 大天然有机高分子物质, 每年地球上甲壳素自然生成量高达百亿吨, 其产量与纤维素相当, 储量巨大[1] 。由于它具有良好的絮凝能力、成膜性和生物相容性等较为独特的功能, 近年来在纺织、医药、日化、农业、环保、生物工程等领域有了广泛的应用。目前壳聚糖在全世界范围内供不应求。我国有丰富的甲壳素资源和巨大的壳聚糖产品的潜在市场, 应充分利用资源优势, 加快研究和开发壳聚糖系列产品的步伐, 满足不同用途的需要。 2 壳聚糖的制备方法 壳聚糖可由甲壳素通过脱乙酰基反应制的,其反应式如下: 反应的实质是酰胺的水解反应,一般在40%的NaOH溶液中于100~180℃加热非均相进行,得到可溶于稀酸、脱乙酞度一般为80%左右的壳聚糖。与一般的胺类物质不同,壳聚糖中的氨基在碱液中十分稳定,即使在50%的NaOH中加热到160℃也不分解[2]。提高反应温度、碱液浓度及延长反应时间可提高脱乙酞度,但在碱液中壳聚糖的主链降解也变得严重,其表现为随着脱乙酞度的提高,通常伴随粘度及分子量的下降[3](表1-1)。

《医用壳聚糖原料检验方法及指标要求》

《医用壳聚糖原料检验方法及指标要求》 团体标准征求意见稿编制说明 一、任务来源 本项目来源于广东省质量检验协会团体标准制修订计划,项目计划编号:GDAQI2019009号,项目名称为“医用壳聚糖原料检验方法及指标要求”。本项目计划完成时间为2019年12月。 二、编制背景、目的和意义 壳聚糖具有广谱抗菌性、生物相容性、生物可降解性、无毒性、无免疫原性等性能,在医用材料、口腔医学及中药制剂领域均具有良好的应用前景。目前国内高品质壳聚糖(灰分和蛋白质含量均应控制在小于1%)蛋白质含量检测技术并不成熟,有必要建立一种医用壳聚糖原料检验方法及要求标准,规定相关检验方法及指标。 三、编制思路和原则 (一)编制思路 本标准主要依据中华人民共和国药典(2015年版)等国内相关国家、行业标准内容进行编制,并对国内外同类产品的关键性能指标值进行了对比分析研究,结合行业实际情况,最终制定出该标准的内容和相关指标值。 主要依据: 中华人民共和国药典(2015年版)

GB/T 191 包装储运图示标志 GB/T 16886.5 医疗器械生物学评价第5部分:体外细胞毒性试验 GB/T 16886.10 医疗器械生物学评价第10部分:刺激与迟发型超敏反应试验 GB/T 16886.12 医疗器械生物学评价第12部分:样品制备与参照样品 YY/T 0771.1 动物源医疗器械第1部分:风险管理应用 YY/T 0771.1 动物源医疗器械第2部分:来源、收集与处置控制 YBB 00132002 药用复合膜、袋通则 (二)编制原则 本标准制定遵循以下原则: 1、基础性原则 本标准的主要内容来源于相关技术规范,基础性强,覆盖面广,具有较强的操作性。 2、协调性原则 本标准符合国家的政策,贯彻国家的法律法规,与检验检测的相关标准协调一致、衔接配套。 3、合理性原则 本标准从全局出发,综合考虑行业的实际情况,合理可行,便于实施。 4、规范性原则 本标准按照GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》规定的格式进行编写。

壳聚糖在医药材料的研究进展

壳聚糖在医药材料上的研究进展 吴苏亚 南京中医药大学 08药学一班 042008118 摘要:甲壳素是一种丰富的自然资源,壳聚糖是甲壳素脱乙酰化的产物。随着壳聚糖及其衍生物研究的迅速发展,其研究内容和应用范围越来越广泛。这篇文章对壳聚糖的物理化学以及生物学特性作了阐述,对壳聚糖基生物医药材料的研究及应用现状作了介绍,并指出壳聚糖的定向接枝和修饰正在成为生物材料新的研究热点和方向。 关键词:壳聚糖,医药材料 Application Process of Chitosan-based Medical Materials Wu Suya Abstrac:Chitinwas an abundantnatural resource, and chitosanwas the productof the deacelation reaction of chi-tin.Chitosan and their derivatives have been studied for long time by more and more group. Their ap-plication field becomes wider and wide. The physicochemical and biological properties of chitosan and its derivatives as biomedical materials were described. Furthermore,current applica-tions of chitosan biomaterials and their development trends were introduced.It is also proposed that the selec-tive graft and modification of chitosan is a new research focus and direction in the fields of biomedical materi-als. Key words: chitosan; medical material 壳聚糖是甲壳质的主要衍生物,又称为甲壳胺、壳多糖、几丁(聚)糖、可溶性甲壳素、脱乙酰甲壳素、粘性甲壳素、聚氨基葡萄糖等,化学名为聚-2-氨基-2-脱氧-β-D-葡萄糖。壳聚糖是一种天然聚阳离子多糖衍生物,具有优良的生物亲和性,其分子链上丰富的羟基和氨基使其易于进行化学修饰而赋于多种功能。由于壳聚糖及其衍生物安全性良好,且具有可降解性和组织相容性,因此在医药材料中也得到广泛应用。 壳聚糖制成的医药材料,除了具有普通高分子材料的物理化学、机械性能稳定以及可接受消毒等相应处理的特性外,还能够在生物体内酶解成易被吸收、无毒副作用的小分子物质,并且不会残留在活体内,具有很好的应用前景。本文讨论

羧甲基壳聚糖衍生物的制备

羧甲基壳聚糖衍生物的制备 1、实验原理 壳聚糖是由氨基-D-葡萄糖单体通过β-1,4-糖苷键连接起来的直链糖,是天然多糖中惟一的碱性多糖,具有许多特殊的物理化学性质和生理功能。但壳聚糖只能溶于一些稀酸中,不能直接溶于水中,这在很大程度上限制了它的应用。因此,对壳聚糖进行化学改性,提高其溶解性能,尤其是水溶性,对拓展壳聚糖的应用领域具有重要意义。 壳聚糖的化学改性是壳聚糖研究的一个重要领域,旨在通过在壳聚糖的-NH 2和-OH 上引入新的官能团而改善其溶解性及其他物理化学及生物学性能。壳聚糖的改性研究较多的有:酰基化、烷基化、羧基化、羟基化、接枝共聚、季铵盐化等。在迄今所报道的600余种壳聚糖衍生物中,羧甲基壳聚糖(Carboxymethyl chitosan ,CMC )是研究较多的一种,是壳聚糖最重要的的衍生物之一。CMC 在日化、食品、造纸、医药、化妆品等方面都有着重要的用途,此类衍生物具有良好的水溶性、表面活性、成膜性、吸湿保湿性、安全无毒性、抗菌、抗氧化等生物性能,在化妆品、食品、生物医药等方面呈现出广阔的应用前景。羧甲基壳聚糖反应方程式如下: O CH 2OH OH NH 2H O n 2COOH O CH 2OH OH NHCH 2COONa H O n Et 3N 壳聚糖分子中的氨基和氯乙酸发生取代反应,得到N-羧甲基壳聚糖,三乙胺的作用为吸收反应释放的盐酸,促进反应的发生。 2、实验药品和玻璃仪器 壳聚糖,氯乙酸、氢氧化钠、异丙醇、乙醇、醋酸等;三口瓶、回流冷凝管、恒温加热搅拌器等。 3、实验内容 3.1 N-羧甲基化反应 在烧杯中把8g 氯乙酸[1]溶解在30ml 水中,氢氧化钠溶解在20ml 水中,在半个小时内磁力搅拌下,用胶头滴管把氢氧化钠溶液滴加到氯乙酸的水溶液中,使溶液的pH 调到8[2],滴加完后,把混合溶液和2g 壳聚糖放人三口烧瓶中,然后加入2ml 缚酸剂三乙胺,升温到90度,水浴回流,磁力搅拌反应3h-4h 。 反应结束后,向烧瓶中加入50ml 水[3],转入烧杯中,磁力搅拌下用碱液调节溶液的pH 到7-8[4],然后离心分离除去不溶物,离心后的清液倒入烧杯中,慢慢加入二倍量的乙醇,沉淀[5],并磁力搅拌洗涤5分钟,产品抽滤,滤渣用乙醇水混合溶剂洗涤10分钟[6],抽滤,最后用无水乙醇洗涤10分钟[7],105度烘干。 四、实验注释 [1] 氯乙酸为强烈的腐蚀性产品,称量时应小心。 [2] 氢氧化钠的量应计算好。 [3] 加水的目的充分溶解水溶性的羧甲基壳聚糖。 [4] 可以采用10%氢氧化钠调节,注意混合溶液的pH 应慢慢调。 [5] 加入乙醇的目的为破坏羧甲基壳聚糖在水中的溶解度,有利于羧甲基壳聚糖的析出。 [6] 乙醇和水的比例为8:2,可以把混合溶剂倒入烧杯中,放入羧甲基壳聚糖产品,磁力搅拌10分钟,目的为除去沉淀产品中夹杂的无机盐等杂质。

壳聚糖及其结构特点

第一章 绪 论 1.1 壳聚糖及其结构特点 壳聚糖(Chitosan)是甲壳素(Chitin)脱乙酰基后的产物,是甲壳素最基本、最重要的衍生物。甲壳素又名甲壳质、几丁质,化学名为(1,4)—2—乙酰胺—2—脱氧—β—D—葡聚糖,主要存在于虾、蟹、蛹及昆虫等动物外壳以及菌类、藻类植物的细胞壁中。节肢类动物的干外壳约含20~50%甲壳素。自然界中甲壳素有三种结构:α、β、γ,其中最为常见、普通的是α型。地球上每年甲壳素的生物合成量为数十亿吨,是产量仅次于纤维素的天然高分子化合物。下图1-1是甲壳素和壳聚糖的结构: 图1-1 甲壳素、壳聚糖分子的结构示意图 Fig.1-1 The configuration schematic of chitin and chitosan 纯净的甲壳素和壳聚糖均为白色片状或粉状固体,比重0.3,常温下能稳定存在。甲壳素分子之间存在强烈的氢键作用,使得甲壳素形成高度的结晶结构,因而甲壳素分子高度难溶。甲壳素不溶于水及绝大多数有机溶剂,也不溶于稀酸、稀浓碱,只溶于浓酸和某些溶剂。壳聚糖分子的活性基团为氨基而不是乙酰基,因而化学性质和溶解性较甲壳素有所改善,可溶于稀酸、甲酸、乙酸,但也不溶于水和绝大多数有机溶剂。由于氨基和羟基比较活泼,壳聚糖的化学性质较甲壳素活泼,可以发生多种化学反应,比如烷基化、酰基化反应等等。 1.2 壳聚糖及其衍生物产品的应用 壳聚糖及其衍生物由于其可再生性、生物相容性以及结构中的多种活性基团,具有多种优良的性质,已经广泛应用于化妆品、食品、医药、农业、环保等多个行业中。 1.2.1 在环保中的应用 壳聚糖及其衍生物能够通过分子中的氨基和羟基与多种金属离子形成稳定的整合物且可帮助微粒凝聚,故广泛用作化工、轻工纺织等废水处理中的吸附剂和絮凝剂。壳聚糖作为吸附剂和絮凝剂,能够有效地捕集溶液中的重金属离子和 有机物,并可以抑制细菌生长,使污水变清,特别是对于汞、铬、铜、铅、钴、3n n 甲壳素壳聚糖

相关文档