文档库 最新最全的文档下载
当前位置:文档库 › QX7137(线性恒流芯片)

QX7137(线性恒流芯片)

QX7137(线性恒流芯片)
QX7137(线性恒流芯片)

EG501线性恒流LED驱动芯片

EG501 芯片用户手册(线性恒流LED驱动芯片)

版本变更记录

目录 1. 特点 (4) 2. 描述 (4) 3. 应用领域 (4) 4. 引脚 (5) 4.1 引脚定义 (5) 4.2 引脚描述 (5) 5. 结构框图 (5) 6. 典型应用电路 (6) 7. 电气特性 (6) 7.1 极限参数 (6) 7.2 典型参数 (7) 8. 应用设计 (7) 8.1高电压驱动多个发光二极管 (7) 8.2PWM信号调节发光二极管LED亮度应用 (9) 8.3多个EG501并联恒流驱动应用 (9) 9. 封装尺寸 (10)

EG501芯片用户手册V1.0 1. 特点 ? 单通道5mA ~90mA 线性恒流驱动输出 ? 固定电流设计,不需要外加电阻设定电流 ? 宽电源电压设计,不需另外提供电源电压 ? 电源电压范围 1.6V ~5.5V ? 静态电流小仅50uA ? Vcc 脚可做PWM 调光使用 ? 高电压应用时芯片可串接使用 ? 负载调整率1%/V 2. 描述 EG501是一款线性恒流驱动芯片,内建基准电压源及电流驱动电路。EG501相比于电感升压和电荷泵升压的方案,省去了电感和升压电容等储能器件,避免了开关噪声对系统的影响,同时大大缩小了PCB 板空间和简化了系统设计。 EG501具有极好的负载与电源调整率及极小的输出电流误差,EG501能使LED 的电流非常稳定,甚至在大面积的光源上,电源及负载波动范围大时都能让LED 亮度均匀一致,并增长LED 使用寿命。 除了支援宽广电源电压范围外,EG501的VCC 脚可以充当输出使能功能使用,可配合数位PWM 控制线路,达到更精确的灰度电流调整应用。 3. 应用领域 ? 手机电话 ? MP3、MP4播放器 ? GPS 接收机 ? LED 灯 ? 数码相机 ? PDA 、笔记本电脑 ? 手电筒 ? RGB 装饰灯 产品信息 器件编号: EG501-xx 范例:“EG501-20”是表示中心电流为20mA 的驱动芯片 “EG501-50”是表示中心电流为50mA 的驱动芯片

恒压电源与恒流电源的定义与区别

恒压电源与恒流电源的定义与区别 大家可能偶尔会听到,我的电源是恒压的,我的电源是恒流的,电源适配器不都一样吗,这两个到底是什么区别?为什么会有这样的区分?联运达为大家介绍一下。 一、恒压电源是指在允许负载的情况下,输出电压是恒定的,不会随着负载的变化而变化。比较常见的是为小功率LED光条就是用的恒压电源,也是大家常说的稳压电源。蓄电池、干电池都可以看做是恒压电源,只不过因为转化的原因,稳压性能比较差一些。 举个例子说明一下:如果一个恒压电源的空载输出为12V,电阻为12Ω,将电阻接到电源正负极,根据欧姆定律计算,电流为1A。这个时候我们将电路中的电阻增加一个,电阻变成了24Ω,如果不是电源不是恒压的,那么正常情况电路中的电流应该是0.5A,那么是恒压电源呢,根据电阻的增加,电压一直保持不变,始终是12V,电流会相应增加,这个时候电流变为了2A。 大家平时的家庭用电也是差不多的一个情况,恒压电源相当于家里的市电220V。家用电器的使用情况来说明,比如看着电视、开着灯、用着电暖炉,它们的电流可能不一样,但是外接的电压都是220V。大家每增加一个用电器就相当于增加了电流,电压不变,功率也会相应增高,用电度数自然不会少,所以大家在家用电的时候可以尽量少开一些电器,节约电力资源。 二、恒流电源是指在允许负载的情况下,输出电流是恒定的,不会随着负载变化而变化。相对来说恒流电源应用没有恒压那么广,咱们平时广场或者酒店采用的那种大功率LED泛光灯就是恒流电源驱动的。恒流电源主要用于保护电子产品不会因为电压变化而损坏。 举个例子:一个恒定电流1A,最高输出达到12V的一个恒流电源,电路中的电阻可以从0~12Ω变化,但是它的电流始终会保持不变,为1A。当电阻超过12Ω时,进入限压保护,恒流电源会认为是非工作保护区而拒绝工作。 大家平时可能恒流电源情况比较少不好理解,联运达给大家做个简单的比喻,方便大家理解。台式电脑大家都见过,恒流的情况就是在大家使用台式电脑的时候用USB连接手机、MP3等电子产品的时候,电脑主机的电流和大家电子产品的电流是一样大小的。如果台式电脑的电流是1A,那么此时和台式电脑连接的电子产品的电流也是1A。会出现一些情况,比如大家玩游戏、听音乐同时进行的时候,电流会稍微大一些,平时不要把电子产品和电脑连接充电,而用配套的电源适配器会对电子产品好很多。 平时大家在选购的时候可以通过观察电源适配器的参数知道它是恒压的还是恒流的。电源适配器的输出电压都会写在参数里面,拿LED电源做参考,如果这个标称电压是恒定值,比如12V,那么可以知道它是恒压电源,如果这个标称

数控恒压恒流电源设计

直流稳压电源是任何电子电路试验中不可缺少的基础仪器设备,基本在所有的跟电有关的实验室都可以见到。对于一个电子爱好者来说,直流稳压电源也是必不可少的。要得到一个电源,一般有两种方法:一是购买一台成品电源,这样最为省事:二是自己制作一台电源(因为你是电子爱好者),当然相比于第一种方法会麻烦很多。很显然这篇文章不是教你如何去选购一台直流稳压电源…… 基本的恒压恒流电源结构框图如图1所示。由电压基准源、调整管、误差放大、电压取样以及电流取样组成。电压基准源的作用是为误差放大器提供一个参考电压,要求电压准确且长时间稳定并且受温度影响要小。取样电路、误差放大和调整管三者组成了闭环回路以稳定输出电压。这样的结构中电压基准源是固定的,电压和电流的取样电路也是固定的,所以输出电压和最高的输出电流就是固定的。而一般的可变恒压恒流电源是采用改变取样电路的分压比例来实现输出电压以及最高限制电流的调节。 图1 基本恒压恒流电源框图 图2 基本稳压电源简图

图2中所示的是一个基本输出电压可变的稳压电源简图,可以很明显地看出这个电路就是一个由运算放大器构成的同相放大器,输出端加上了一个由三极管组成的射极跟随器以提高输出能力,因为射极跟随器的放大倍数趋近于1,所以计算放大倍数时不予考虑。输入电压V+通过R1和稳压二极管VD产生基准电压Vref,然后将Vref放大1+R3/R2倍,即在负载RL上的得到的电压为Vref(1+R3/R2),因为R3可调范围是0~R3max,所以输出电压范围为Vref~Vref(1+R3max/R2)。这不就和我们常用的LM317之类的可调稳压芯片一样了,只是像LM317之类的芯片内部还集成了过热保护等功能,功能更加完善,但是也有它的弊端,主要因为它是将电压基准、调整管、误差放大电路都集成在了一个芯片上,因此在负载变化较大时芯片的温度也会有很大的变化,而影响半导体特性的主要因素之一就是温度,所以使用这种集成的稳压芯片不太容易得到稳定的电压输出,这也正是高性能的电压基准都是采用恒温措施的原因,比如LM399、LTZ1000等。 图3 一只正在FLUKE 8808A 五位半数字万用表中“服役”的LM399H 图3是我从FLUKE 8808A五位半数字万用表中拍的恒温电压基准LM399H。扯远了,言归正传(欲了解更多关于电压基准源的知识,请参看以前《无线电》杂志2008年第7期中张利民老师有关电压基准的文章)。这种以改变取样电阻阻值来改变输出电压的稳压电源应用是比较普遍的,图4照片中是我们实验室中大量使用的稳压电源,就是使用调节取样电阻阻值来调节输出电压的,电压电流的显示是使用一片专用的电压测量芯片ICL7107实现的,这种电源价格低廉易于普及,但也有显而易见的缺点,因为进行电压调节的可变电阻经过长时间使用会出现接触不良的情况,这导致的后果是相当严重的,假设你正在将电压从5V慢慢地向6V调整,因为某个点电位器接触不良,相当于电位器开路,从图2可以看出,R3开路的话,输出电压就是能输出的最高电压,那么你心爱的电路板就可能会回到文明以前了。

LM358恒流恒压原理

LM358恒流恒压原理 图是由LM358放大器与精密电压调整器TL431构成的恒压、恒流控制电路。 变压器绕组N2感应电压经VD2整流,C2、L1、C3组成的π滤波电路,在C3上得到直流输出电压。 设置N1绕组的目的是当输出短路时IC1也能正常工作,以保证电路的安全。 恒压电路工作原理:U2、ICIB、R6、R7、VD4、R10、U1组成电压控制环路。U2(TL431)是精密电压调整器,阴极K与控制极R直接短路构成精密的2.5V基准电压。R4是U2的限流电阻。2.5V基准电压由电阻R5送到ICIB反相输入端(6脚);而同相输入端(5脚)则由R6、R7的分压比来设定。若输出电压上升,则UR7电压也上升,该电压与反相端2.5V基准电压比较,7脚输出误差信号,再通过VD4和RIO变成电流信号,流入光耦中的LED,进而通过反馈控制网络控制一次侧PWM输出占空比,使输出电压工作在恒 压状态。 恒流电路工作原理:U2、IC1A、R1、R2、VD3、R10、U1组成电流控制环路。R1是输出电流取样电阻, 输出电流在R1上产生R1/IOUT的电压 降。该电压直接送到ICA的同相输入端(3脚),而2.5V基准电压则由R2、R3组成的分压电路,再 将分压电压送到反相输入端(2脚),输出电 流在R1上的电压降与2.5V基准电压分压电压进行比较,1脚输出误差信号,再通过VD3和RIO变成电流信号,改变光耦LED中的电流,进而通过反馈控制网络控制一次侧PWM输出占空比,使输出特性呈显恒流特图性。R8、C4、R9、C5分别是IC1A、ICIB的相位补偿元件。 采用由放大器组成的恒压、恒流控制电路,可实现很高的恒压与恒流精度。因图电路采用放大器形式,因此R1的电阻值可选为mΩ级,对电路转换效率基本无影响。

恒流恒压电源

恒流恒压电源 一个直流电源有两种工作状态,一种是恒压状态,按照恒压电源的特征在工作,一种是恒流状态,按照恒流电源的特征在工作。这种电源内部有两个控制单元,一个是稳压控制单元,在负载发生变化的情况下,努力使输出电压保持稳定,前提是输出电流必须小于预先设定的恒流值。实际上在恒压状态时,恒流控制单元处于休止状态,它不干扰输出电压和输出电流。当由于负载电阻逐步减小,使得负载电流增加到预先设定的恒流值时,恒流控制单元开始工作,它的任务是在负载电阻继续减小的情况下,努力使输出电流按预定的恒流值保持不变,为此需要使输出电压随着负载电阻的减小而随之降低,在极端情况下,负载电阻阻值降为零(短路状态),输出电压也随之降到零,以保持输出电流的恒定。这些都是恒流部件的功能,在恒流部件工作时,恒压部件亦处于休止状态,它不再干预输出电压的高低。这种既具有恒压控制部件,又具有恒流控制部件的电源就叫做恒压恒流电源。 试举一例说明:某恒流恒压电源,通过调节面板上电压调节和电流调节两旋扭,使电源空载输出电压定在100V ,恒流值调在1A ,电源是如何随着负载电阻的变化而自动改变电源工作状态的呢?通过以上介绍,我们可以知道,当输出电流小于1A 时,电源处于恒压工作状态,努力保持输出电压为100V ,而输出电流是随着负载的大小变化而变化,而当电流值趋向大于1A 时,电源处于恒流工作状态,努力保持输出电流为1A ,而输出电压是随着负载的大小变化而变化。当输出电压为100V 时,负载电阻洽好为100 欧,输出电流洽好为1A 时,是电源两种工作状态的转折点,电源既可以说是恒压状态,亦可以说是恒流状态。为此我们可以对这一具体事例,得出下述结论: 当负载电阻R L =100 欧时, 为恒压恒流状态的转折点( 此时电压=100 伏, 电流=1A), 这一概念非常重要。 当R L >100 欧时,电源处于恒压状态(此时电压=100 伏,电流<1 安) 当R L <100 欧时,电源处于恒流工作状态(此时电压<100 伏,电流=1 安) 恒流恒压电源在恒压状态时,电压稳定,电流随着负载电阻的变化而变化,稳压控制单元工作,稳流控制单元休止。 恒流恒压电源在恒流状态时,电流稳定,电压随着负载电阻的变化而变化,稳流控制单元工作,稳压控制单元休止。

单通道LED线性恒流控制芯片

内部功能框图 +0 $(6单通道LED线性恒流控制芯片

REXT GND 管脚说明 订购信息

极限参数(注1) 若无特殊说明,T A=25°C。 注1:最大输出功率受限于芯片结温,最大极限值是指超出该工作范围,芯片有可能损坏。在极限参数范围内工作,器件功能正常,但并不完全保证满足个别性能指标。 注2:RθJA在T A=25°C自然对流下根据JEDEC JESD51热测量标准在单层导热试验板上测量。 注3:温度升高最大功耗一定会减小,这也是由T JMAX,RθJA和环境温度T A所决定的。最大允许功耗为P D = (T JMAX-T A)/ RθJA或是极限范围给出的数值中比较低的那个值。 电气工作参数(注4、5) 若无特殊说明,T A=25°C。 注4:电气工作参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性能。 注5:规格书的最小、最大参数范围由测试保证,典型值由设计、测试或统计分析保证。 注6:电流负温度补偿起始点为芯片内部设定温度145°C。

OUT 端口输出电流特性 HM7162AES 的OUT 端口输出电流计算公式:(A)) ΩRext(0.6V Rext V I REXT OUT == 。 图1. HM7162AES 输出电流与Rext 电阻关系曲线 图2. HM7162AES 恒流曲线图 图 3. HM7162AES 输出电流温度特性(注7) 注7:芯片焊接到2cm*2cm ,厚度为1mm 的铝基板上。

过温调节功能 当LED 灯具内部温度过高,会引起LED 灯出现严重的光衰,降低LED 使用寿命。HM7162AES 集成了温度补偿功能,当芯片内部达到145oC 过温点时,芯片将会自动减小输出电流,以降低灯具内部温度。 系统方案设计 图4. HM7162AES 应用电路原理图 ◆ 效率设计理论 图4所示的应用电路工作效率计算如下: IN LED LED IN LED LED IN LED V V *n I *V I *V *n P P η=== 其中Vin 是系统输入电源电压,V LED 是单个LED 工作电压降,I LED 是LED 平均电流。可看出系统串联的LED 数量n 越大,系统工作效率越高。 系统设计过程中,需根据应用环境调整HM7162AES 的OUT 端口工作电压,优化η值。 ◆ LED 串联数量设计 系统串接的LED 数量设计需考虑以下两个方面: 1) 图4电路中,OUT 端口电压V OUT = Vin – n*V LED ,为保证芯片正常工作,需保证OUT 端口电压V OUT ≥ V OUT_MIN ; 2) 芯片OUT 端口电压越低,系统工作效率越高。 综合以上两点,系统串接的LED 数量n 计算为: LED V Vout Vin n -=

关于LED驱动电源恒压与恒流区别的解析

关于LED驱动电源恒压与恒流区别的解析 1.恒流电源是电源电压发生变化,而流过负载的电流不变。 恒压电源是流过负载的电流变化时,电源电压不发生变化 不要简单的用欧姆定律来理解,电源不是直接接负载,中间都有个电路。 2.所谓恒流/恒压就是在一定范围内输出电流/电压保持恒定。“恒定”的前提是在一定范围内。对于“恒流”就是输出电压要在一定范围内,对于“恒压”就是输出电流要在一定范围内。超出这个范围“恒定”就无法保持。因此恒压源会设定输出电流档(最大可输出)的参数。其实电子世界里根本没有“恒定”这个东西,所有电源都有负载调整率(load regulation)这个指标。以恒压(电压)源为例:随着你负载的加大,输出电压一定是下降的。 3.恒压源和恒流源在定义上的区别: 1)恒压源在允许的负载情况下,输出的电压是恒定的,不会随负载的变化而变化。通常应用于小功率LED模块,小功率LED灯条用的比较多。恒压源就是我们常说的稳压电源,能保证负载(输出电流)变化的情况下,保持电压不变。2)恒流源在允许的负载情况下,输出的电流是恒定的,不会随着负载的变化而变化,通常应用在大功率LED和高档小功率产品上。 *如果从寿命上考良的话,恒流源LED驱动比较好一点。 恒流源是在负载变化的情况下,能相应的调整自己的输出电压,使输出电流保持不变。 我们见到的开关电源基本上都是恒压源,而所谓的“恒流型开关电源”则是在恒压源的基础之上,在输出上加一个小阻值的采样电阻,通过反馈到前级去控制来进行恒流控制。 4.如何从电源参数上识别是恒压源还是恒流源呢? 可以从电源的label上看:如果他标识的输出电压是一个恒定的值(如Vo=48V),就是恒压源;如果标识的是一个电压范围(如Vo为45~90V),可以确定这是个恒流源了。 5.恒压源与恒流源的优缺点:恒压源能够为负载提供恒定的电压,理想的恒压源内阻为零,不能短路:恒流源可以为负载提供恒定的电流,理想的恒流源内阻为无穷大,不能开路。 6.LED作为恒流工作的电子元器件(工作电压比较固定,其稍加偏移,就会使电流有很大的变化),只有采用恒流方式,才能真正保证亮度的一致和长寿命。恒压式驱动电源在工作时,需要在灯具上加恒流模块或限流电阻,而恒流式驱动电源只是把恒压源的的恒流模块内置了。

什么叫恒流恒压电源

什么叫恒流恒压电源? 一个直流电源有两种工作状态,一种是恒压状态,按照恒压电源的特征在工作,一种是恒流状态,按照恒流电源的特征在工作。这种电源内部有两个控制单元,一个是稳压控制单元,在负载发生变化的情况下,努力使输出电压保持稳定,前提是输出电流必须小于预先设定的恒流值。实际上在恒压状态时,恒流控制单元处于休止状态,它不干扰输出电压和输出电流。当由于负载电阻逐步减小,使得负载电流增加到预先设定的恒流值时,恒流控制单元开始工作,它的任务是在负载电阻继续减小的情况下,努力使输出电流按预定的恒流值保持不变,为此需要使输出电压随着负载电阻的减小而随之降低,在极端情况下,负载电阻阻值降为零(短路状态),输出电压也随之降到零,以保持输出电流的恒定。这些都是恒流部件的功能,在恒流部件工作时,恒压部件亦处于休止状态,它不再干预输出电压的高低。这种既具有恒压控制部件,又具有恒流控制部件的电源就叫做恒压恒流电源。 试举一例说明:某恒流恒压电源,通过调节面板上电压调节和电流调节两旋扭,使电源空载输出电压定在100V,恒流值调在1A,电源是如何随着负载电阻的变化而自动改变电源工作状态的呢?通过以上介绍,我们可以知道,当输出电流小于1A时,电源处于恒压工作状态,努力保持输出电压为100V,而输出电流是随着负载的大小变化而变化,而当电流值趋向大于1A时,电源处于恒流工作状态,努力保持输出电流为1A,而输出电压是随着负载的大小变化而变化。当输出电压为100V时,负载电阻洽好为100欧,输出电流洽好为1A时,是电源两种工作状态的转折点,电源既可以说是恒压状态,亦可以说

是恒流状态。为此我们可以对这一具体事例,得出下述结论: ①当负载电阻RL=100欧时,为恒压恒流状态的转折点(此时电压=100伏,电流=1A),这一概念非常重要。 ②当RL>100欧时,电源处于恒压状态(此时电压=100伏,电流<1安) ③当RL<100欧时,电源处于恒流工作状态(此时电压<100伏,电流=1安) ④在恒压状态时,电压稳定,电流随着负载电阻的变化而变化,稳压控制单元工作,稳流控制单元休止。 ⑤在恒流状态时,电流稳定,电压随着负载电阻的变化而变化,稳流控制单元工作,稳压控制单元休止。

关于可调恒压恒流电源的原理、特性及使用

关于可调恒压恒流电源的原理、特性及使用: 恒压恒流的原理: 根据U=IR,R=U/I: 如果R>(U/I),则电源正常工作。 如果R<(U/I),I是恒定不变的,则电源恒流部分保护,输出电压下降,直到满足条件R=(U/I)。 特性: 所谓的恒压,即电压可以恒定到一个值上,可调恒压,即这个恒定的电压值是可调的。 所谓的恒流,即电流可以恒定到一个值上,可调恒流,即这个恒定的电流值是可调的。 使用: 可调恒压恒流电源在使用前需要先设置恒流保护值,再设置输出电压,然后开始工作。 首先将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流到你需要的值,撤消短路,调整电压到需要值,接上实验设备开始工作。 例如:一个电路的工作电压是12V所需电流约0.3A,操作如下。

将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流0.5A(要比工作电流略大),撤消短路,调整电压到12V,接上电路开始实验。 如果试验过程中电路板放到金属上部分电路短路了,使电流剧增,当电流上升到0.5A时,电源恒流保护部分工作随即使输出电压下降以保护试验设备。 常识了解: 交流电压经过全波整流电容滤波后直流电压约是交流电压的1.414倍。 例如10V的交流电压经过全波整流电容滤波后直流电压约等于14V。 继电器切换点的选择: 交流输入电压减去5V等于切换电压。 例如变压器抽头0-15V-25V-35 那么第一级的切换电压是15V-5V=10V,即在10V 时切换到25V的抽头上。 第二级的切换电压是25V-5V=20V,即在20V时切换到35V的抽头上。 关于继电器切换与否可以测R17两端的电压来判断,R17电压(直流)除以1.414约等于当前的抽头电压(交流)。

恒流恒压电路方案

LED路灯是低电压、大电流的驱动器件,其发光的强度由流过LED的电流决定,电流过强会引起LED的衰减,电流过弱会影响LED的发光强度,因此LED的驱动需要提供恒流电源,以保证大功率LED使用的安全性,同时达到理想的发光强度。用市电驱动大功率LED 需要解决降压、隔离、PFC(功率因素校正)和恒流问题,还需有比较高的转换效率,有较小的体积,能长时间工作,易散热,低成本,抗电磁干扰,和过温、过流、短路、开路保护等。本文设计的PFC开关电源性能良好、可靠、经济实惠且效率高,在LED路灯使用过程中取得满意的效果。 1 基本工作原理 采用隔离变压器、PFC控制实现的开关电源,输出恒压恒流的电压,驱动LED路灯。电路的总体框图如图1所示。 LED抗浪涌的能力是比较差的,特别是抗反向电压能力。加强这方面的保护也很重要。LED路灯装在户外更要加强浪涌防护。由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏。因此LED驱动电源应具有抑制浪涌侵入,保护LED不被损坏的能力。EMI滤波电路主要防止电网上的谐波干扰串入模块,影响控制电路的正常工作。 三相交流电经过全桥整流后变成脉动的直流在滤波电容和电感的作用下,输出直流电压。主开关DC/AC电路将直流电转换为高频脉冲电压在变压器的次级输出。变压器输出的高频脉冲经过高频整流、LC滤波和EMI滤波,输出LED路灯需要的直流电源。 PWM控制电路采用电压电流双环控制,以实现对输出电压的调整和输出电流的限制。反馈网络采用恒流恒压器件TSM101和比较器,反馈信号通过光耦送给PFC器L6561。

由于使用了PFC器件使模块的功率因数达到0.95。 2 DC/DC变换器 DC/DC变换器的类型有多种,为了保证用电安全,本设计方案选为隔离式。隔离式DC/DC变换形式又可进一步细分为正激式、反激式、半桥式、全桥式和推挽式等。其中,半桥式、全桥式和推挽式通常用于大功率输出场合,其激励电路复杂,实现起来较困难;而正激式和反激式电路则简单易行,但由于反激式比正激式更适应输入电压有变化的情况,且本电源系统中PFC输出电压会发生较大的变化,故DC/DC变换采用反激方式,有利于确保输出电压稳定不变。 反激式开关电源主要应用于输出功率为5~150 W的情况。这种电源结构是由 Buck-Boost结构推演并加上隔离变压器而得到,如图2所示。在反激式拓扑中,由变压器作为储能元件。开关管导通时,变压器储存能量,负载电流由输出滤波电容提供;开关管关断时,变压器将储存的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量。 图中T1为高频隔离变压器,VQ1为CMOS功率三极管17N80C3,VD7和VD8是瞬变抑制二极管,VD6为快恢复二极管,VD5为双二极管,C3、C4、C5和C6为电解电容器。Ubout是来自整流桥的脉动直流信号,GD是来自功率因数校正电路的控制信号。变压器的引线l和2组成一个绕组,给PFC器件提供工作电源,引线11和12组成一个绕组,

PS-305D恒压恒流电源

PS-305D直流可调稳压电源 技术参数: 输出电压:0~30V 输出电流:0~5A 源效应:≤0.01%±1mV 负载效应:≤0.01%±5mV 纹波和噪音:≤1mVrms 显示:双3 1/2位LED显示 显示精度:电压(Voltage)±1%±2 电流(current)±1.5%±2 外形尺寸:291×158×136mm 恒压/恒流自动转换型, 它能随负载的变化在恒压与恒流状态之间连续转变, 恒压与恒流方式之间的交点称为转换点。 一个直流电源有两种工作状态,一种是恒压状态,按照恒压电源的特征在工作,一种是恒流状态,按照恒流电源的特征在工作。这种电源内部有两个控制单元,一个是稳压控制单元,在负载发生变化的情况下,努力使输出电压保持稳定,前提是输出电流必须小于预先设定的恒流值。实际上在恒压状态时,恒流控制单元处于休止状态,它不干扰输出电压和输出电流。当由于负载电阻逐步减小,使得负载电流增加到预先设定的恒流值时,恒流控制单元开始工作,它的任务是在负载电阻继续减小的情况下,努力使输出电流按预定的恒流值保持不变,为此需要使输出电压随着负载电阻的减小而随之降低,在极端情况下,负载电阻阻值降为零(短路状态),输出电压也随之降到零,以保持输出电流的恒定。这些都是恒流部件的功能,在恒流部件工作时,恒压部件亦处于休止状态,它不再干预输出电压的高低。这种既具有恒压控制部件,又具有恒流控制部件的电源就叫做恒压恒流电源。 试举一例说明:某恒流恒压电源,通过调节面板上电压调节和电流调节两旋扭,使电源空载输出电压定在30V ,恒流值调在1A ,电源是如何随着负载电阻的变化而自动改变电源工作状态的呢?通过以上介绍,我们可以知道,当输出电流小于1A 时,电源处于恒压工作状态,努力保持输出电压为30V ,而输出电流是随着负载的大小变化而变化,而当电流值趋向大于1A 时,电源处于恒流工作状态,努力保持输出电流为1A ,而输出电压是随着负载的大小变化而变化。当输出电压为30V 时,负载电阻洽好为30 欧,输出电流洽好为1A 时,是电源两种工作状态的转折点,电源既可以说是恒压状态,亦可以说是恒流状态。为此我们可以对这一具体事例,得出下述结论: 当负载电阻R =30 欧时为恒压恒流状态的转折点( 此时电压30V,电流1A) 当R >30 欧时,电源处于恒压状态(此时电压30 伏,电流<1 安) 当R <30 欧时,电源处于恒流工作状态(此时电压<30 伏,电流=1 安) 在恒压状态时,电压稳定,电流随着负载电阻的变化而变化,稳压控制单元工作,稳流控制单元休止。在恒流状态时,电流稳定,电压随着负载电阻的变化而变化,稳流控制单元工作,稳压控制单元休止。

制作一台数控恒压恒流电源

制作一台数控恒压恒流电源(上)(一) 2010-11-12 16:03:17 来源:《无线电》杂志魏坤【作者:肖庆高大中小】浏览:2874次评论:0条 直流稳压电源是任何电子电路试验中不可缺少的基础仪器设备,基本在所有的跟电有关的实验室都可以见到。对于一个电子爱好者来说,直流稳压电源也是必不可少的。要得到一个电源,一般有两种方法:一是购买一台成品电源,这样最为省事:二是自己制作一台电源(因为你是电子爱好者),当然相比于第一种方法会麻烦很多。很显然这篇文章不是教你如何去选购一台直流稳压电源…… 基本的恒压恒流电源结构框图如图1所示。由电压基准源、调整管、误差放大、电压取样以及电流取样组成。电压基准源的作用是为误差放大器提供一个参考电压,要求电压准确且长时间稳定并且受温度影响要小。取样电路、误差放大和调整管三者组成了闭环回路以稳定输出电压。这样的结构中电压基准源是固定的,电压和电流的取样电路也是固定的,所以输出电压和最高的输出电流就是固定的。而一般的可变恒压恒流电源是采用改变取样电路的分压比例来实现输出电压以及最高限制电流的调节。

基本恒压恒流电源框图图 2图1 基本稳压电源简图 图2中所示的是一个基本输出电压可变的稳压电源简图,可以很明显地看出这个电路就是一个由运算放大器构成的同相放大器,输出端加上了一个由三极管组成的射极跟随器以提高输出能力,因为射极跟随器的放大倍数趋近于1,所以计算放大倍数时不予考虑。输入电压V+通过R1和稳压二极管VD产生基准电压Vref,然后将Vref放大1+R3/R2倍,即在负载RL上的得到的电压为Vref(1+R3/R2),因为R3可调范围是0~R3max,所以输出电压范围为Vref~Vref (1+R3max/R2)。这不就和我们常用的LM317之类的可调稳压芯片一样了,只是像LM317之类的芯片内部还集成了过热保护等功能,功能更加完善,但是也有它的弊端,主要因为它是将电压基准、调整管、误差放大电路都集成在了一个芯片上,因此在负载变化较大时芯片的温度也会有很大的变化,而影响半导体特性的主要因素之一就是温度,所以使用这种集成的稳压芯片不太容易得到稳定的电压输出,这也正是高性能的电压基准都是采用恒温措施的原因,比如LM399、LTZ1000等。 一只正在FLUKE 8808A图3 五位半数字万用表中“服役”的LM399H 图3是我从FLUKE 8808A五位半数字万用表中拍的恒温电压基准LM399H。扯远了,言归正传(欲了解更多关于电压基准源的知识,请参看以前《无线电》杂志2008年第7期中张利民老师有关电压基准的文章)。这种以改变取样电阻阻值来改变输出电压的稳压电源应用是比较普遍的,图4照片中是我们实验室中大量使用的稳压电源,就是使用调节取样电阻阻值来调节输出电压的,电压电流的显示是使用一片专用的电压测量芯片ICL7107实现的,这种电源价格低廉

LED高压线性恒流方案优缺点 对比

高压线性恒流方案优缺点对比 随着LED大规模进入商业和家庭照明,客户对产品的性能、价格、可靠性提出了更为严格的要求。一方面要求LED的发光效率不断提高、价格不断降低,另一方面对于LED灯具寿命也提出了更多要求。在一般人的心目里,LED本身的寿命已经是非常高了,但是实际寿命却是非常低,往往是由于电源寿命低而引起,目前大部分灯具解决方案都是光源+电源+外壳方式,而且电源都类同传统开关电源原理,电路复杂,电子元件较多,生产工艺复杂,生产成本较高,故障机率较高。为了降低成本,业内多家方案公司推出高压线性恒流IC方案,此方案无需高频变压器,部分方案无需电解电容,简化了灯具的工艺流程,也达到了直接用市电驱动LED的要目的,成本也得以大大的降低。 共同优缺点如下: 优点1:无高频变压器,无EMC,低谐波; 优点2:制作成本低,方案简单,体积小; 优点3:电流负温度补偿特性,有效的保护LED发光二极管芯片; 优点4:恒流二极管ESD>8000V,所有方案可以吸收1000V雷击浪涌(90度相位)。 缺点1:不能兼顾效率和功率因素双高,只能二选一。 缺点2:电源输出是高压,产品电隔离必须得做好。 缺点3:同一款方案,不能做全电压恒流。 常见线性恒流方案如下: 一、恒流晶体管+外置MOSFET(如图一、图二) 以上方案主要是靠一颗低压的带PWM调节的恒流晶体管,通过外挂MOS来承受高压多串后线路中产生的压差,当市电电压过高时候,MOS很烫也是很正常,并且当市电升高时候电流会在一定程度会增大,电源效率高达85-90%以上,但无功率因素校正。

以上方案主要是第一种方式的升级版,优劣势如下: 1、MOS内置,并且加上温度补偿电路,外部线路更简单。 1、通过内置MOS来承受高压多串后线路中产生的压差,当市电电压突然过高时候,电流会在一定程度会增大,IC温度达到一定程度,电流调节就会启动。 2、因IC制程关系,目前正向工作电压一般是7-200V,所以有些厂家的管子当市电低于灯珠VF总电压时候会有闪烁。大部分IC耐压在90V-120V,所以在工作电压波动大或者长期电压偏高地区有一定风险性。 3、单颗IC一般在50MA以下,需要更大功率用2颗或更多颗并联。但并联的2颗因为内阻不一样,会存在功率偏向现象,某一颗会损坏快一些。 4、电源效率高达85-90%以上,但无功率因素校正。 三、RM093智能控制IC+外置MOSFET(如图五、图六) 以上方案除了电路简单外,与上面两种方案有所不同之处。 1、MOS外挂,可以根据不同功率选择不同MOS,单颗IC功率可以做更大; 2、智能IC控制,有过温自动保护、过温自动调节功能; 3、此IC最大特点是过压调节功能,可以根据自己需要设定起调点,当市电高于这个电压时候马上调节输出电流,这样不需要等待IC温度过高时候就提前调节保护灯珠和器件; 4、恒流精度高,随市电升高或降低功率波动比较小; 5、IC的工作电压-0.3V-25V均正常工作,所以当输入电压低于灯珠VF总电压时候,也不会闪烁; 6、电源效率高达90%以上,但无功率因素校正。

LED恒流、恒压供电的利与弊

LED恒流、恒压供电的利与弊 现在有关这个问题有很多各种不同似是而非的说法,有人说:在LED的伏安特性上,电压定了,电流也就定了。所以采用恒压和恒流效果是一样的。有人说LED并联时就应该采用恒压电源供电,而LED串联时就应该采用恒流电源供电;有 人说,因为LED是恒流器件,所以要用恒流源供电;有人说,采用市电供电时就应该采用恒压电源供电,采用蓄电池供电时,就应该采用恒流电源供电。至于为什么这样要求,似乎谁也说不明白。 那么,到底是应该采用恒压电源,还是恒流电源供电呢? 首先来看一下LED到底是什么样的器件。因为LED的亮度是和它的正向电流成正比,而且一些LED的结构决定了它的散热也就是功耗。所以大多数LED会给出额定电流,例如Φ5为20mA,1W 的为350mA…等,但这并不等于LED只能 工作于这些额定电流,更不意味着LED就是一个恒流器件。例如Cree的1 瓦LED和3瓦LED是同一型号,电流从350mA 加大到700mA,功率就从1W 加大成3W,所以这个LED可以工作在350-700mA之间的任意值。 要深入了解这个问题首先要知道LED的伏安特性。 1. LED 的伏安特性 LED 的中文名字就是发光二极管,所以它本身就是一个二极管。它的伏安特性和一般的二极管伏安特性非常相似。只不过通常曲线很陡。例如一个20mA的草帽LED的伏安特性如图1所示。 图1. 小功率LED的伏安特性 假如用干电池或蓄电池供电,那么因为LED伏安特性的非线性,很小的电压变化就会引起很大的电流变化,上图中电源电压在3.3V时正向电流为20mA的LED,如果用3节干电池供电,新的电池电压超过1.5V,3节就是4.5V,LED 的电流就会超过100mA,很快就会烧坏。对于1W的大功率LED也是如此,图2是某公司1W的LED伏安特性,而一个

恒压恒流源

电子科技大学 第二届“NS”杯电子设计大赛报告

简易数控恒压恒流电源 摘要:本文介绍了数控直流开关电压电流源的原理和设计,整个系统以C8051单片机为控制器,以TL494来作为PWM输出芯片和IR2110作为MOS管的驱动芯片来作为系统的核心部件,我组设计并实现恒定输出10V电压,恒定输出1A,800mA ,500mA电流的要求。整个电路系统简洁高效。能够很好的完成题目所要求指标,并具有过流保护功能。 关键字:开关电源,单片机,数控,恒压恒流 Abstract:A DC numerical control current and voltage source was introduced in this paper. In this article we introduce a theory of a DC current and voltage source and how to design. The system is made up of C8051 which play a role of microcontroller, and TL494 and IR2110 which play central parts of the system. And the whole system can output 10V voltage and 1A,500mA,800mA current。This switch power supply can accomplish the requirements well. And It has the function of current-limiting and auto-resume。 Key words: Switch Power supply, C8051, Numerical –Control, Stable –Voltage and Current

JY2722 LED 线性恒流驱动IC(英文版)

JY2722 Two-Channel Soft-Start Technology Constant-Current LED Driving IC Figure 1 Overview JY2722 is a two-channel constant-current output LED driver IC which is specially designed for spot light, mining light and mini street lamp to meet their features and requirements. With the packaging of ESOP8, JY2722 has the features of small size, simple peripheral circuits and few peripheral elements. JY2722 has two constant-current output channels working with external MOS power tubes which enables the output current to reach a high of more than 150 mA. JY2722 can also fit the general 3V LED light source such as 5730, 7020, 7030, 3535, etc. JY2722 can drive a power of 100W which can absolutely be applied in the design of general spot light, mining light, mini street lamp and other medium power LED lighting products. In addition to the excellent electrical performance of JYxxxx series, JY2722 has also

SM2082ED 高压led线性恒流ic驱动芯片 LED灯芯合一方案

SM2082ED

管脚序号名称管脚说明 1 GND1 芯片1地 2 REXT1 芯片1输出电流值设置端 3 GND2 芯片2地 4 REXT2 芯片2输出电流值设置端 5 OUT2 芯片2电源输入与恒流输出端口 7 OUT1 芯片1电源输入与恒流输出端口 6、8 NC 悬空脚 订购信息 订购型号封装形式 包装方式 卷盘尺寸管装编带 SM2082ED ESOP8 100000只/箱4000只/盘13寸

若无特殊说明,环境温度为25°C。 符号说明范围单位 V OUT OUT端口电压-0.5 ~ +450 V I OUT OUT端口电流1~ 60 mA RθJA PN结到环境的热阻65 ℃/W T J工作结温范围-40 ~ 150 °C T STG存储温度-55 ~ 150 °C V ESD HBM人体放电模式>2 KV 注:表贴产品焊接最高峰值温度不能超过260℃,温度曲线依据J-STD-020 标准、参考工厂实际和锡膏商建议由工厂自行设定。电气工作参数 若无特殊说明,环境温度为25°C。 符号说明条件最小值典型值最大值单位 V OUT_MIN OUT输入电压IOUT = 30mA - - 6.5 V V OUT_BV OUT端口耐压IOUT = 0 450 - - V I OUT输出电流- 5 - 60 mA I DD静态电流VOUT = 10V,REXT悬空- 0.16 0.25 mA V REXT REXT端口电压VOUT = 10V - 0.6 - V D IOUT IOUT片间误差IOUT = 20mA - ±4 - % T SC电流负温度补偿起始点- - 110 - ℃

XL4501自带恒压恒流环路的降压型单片车充专用芯片(官方中文版)

n输出电压从1.25V到32V可调n最小压差0.3V n固定150KHz开关频率 n最大5A开关电流 n内置功率MOS n出色的线性与负载调整率 n内置恒流环路 n内置频率补偿功能 n内置输出短路保护功能 n内置输入过压保护功能 n内置热关断功能 n TO263-5L封装 应用 n车载充电器 n电池充电器 n LCD电视与显示屏 n便携式设备供电 n通讯设备供电 n降压恒流驱动 n显示器LED背光 n通用LED照明 器,可工作在DC8V到36V输入电压范围, 低纹波,内置功率MOS。XL4501内置固定 频率振荡器与频率补偿电路,简化了电路设 计。 PWM控制环路可以调节占空比从0~100%之间线性变化。内置输出过电流保 护功能。内部补偿模块可以减少外围元器件 数量。 图1.XL4501封装

引脚配置 图2. XL4501引脚配置 表1.引脚说明 引脚号引脚名称引脚描述 1 GND 接地引脚。 2 FB 反馈引脚,通过外部电阻分压网络,检测输出电压进行调整,参考电压为1.25V。 3 SW 功率开关输出引脚,SW是输出功率的开关节点。 4 CS 输出电流检测引脚(IOUT=0.11V/RCS)。 5 VIN 输入电压,支持DC8V~36V宽范围电压操作,需要在VIN与GND 之间并联电解电容以消除噪声。

150KHz 36V 5A开关电流自带恒流环路降压型DC-DC转换器XL4501 方框图 图3. XL4501方框图 典型应用 图4. XL4501系统参数测量电路

图5.XL4501系统参数测量电路(LED恒流驱动 订购信息 产品型号打印名称封装方式包装类型 XL4501E1 XL4501E1 TO263-5L 800只每卷 XLSEMI无铅产品,产品型号带有“E1”后缀的符合RoHS标准。 绝对最大额定值(注1) 参数符号值单位 输入电压Vin -0.3到40 V 反馈引脚电压V FB-0.3到40 V 输出开关引脚电压V SW-0.3到VIN V 功耗P D内部限制mW 热阻(TO263-5L) R JA30 oC/W (结到环境,无外部散热片) 最大结温T J-40到150 oC 操作结温T J-40到125 oC 贮存温度范围T STG-65到150 oC 引脚温度(焊接10秒) T LEAD260 oC ESD (人体模型) >2000 V 注1: 超过绝对最大额定值可能导致芯片永久性损坏,在上述或者其他未标明的条件下只做 功能操作,在绝对最大额定值条件下长时间工作可能会影响芯片的寿命。

相关文档
相关文档 最新文档