文档库 最新最全的文档下载
当前位置:文档库 › 数字通信实验报告

数字通信实验报告

数字通信实验报告
数字通信实验报告

Digital Communication Project

姓名:王志卓

学号:514104001502

在PSK调制时,载波的相位随调制信号状态不同而改变。如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,此时它们就处于―同相‖状态;如果一个达到正最大值时,另一个达到负最大值,则称为―反相‖。把信号振荡一次(一周)作为360度。如果一个波比另一个波相差半个周期,两个波的相位差180度,也就是反相。当传输数字信号时,―1‖码控制发0度相位,―0‖码控制发180度相位。

PSK相移键控调制技术在数据传输中,尤其是在中速和中高速的数传机(2400bit/s~4800bit/s)中得到了广泛的应用。相移键控有很好的抗干扰性,?

在有衰落的信道中也能获得很好的效果。主要讨论二相和四相调相,在实际应用中还有八相及十六相调相。

PSK也可分为二进制PSK(2PSK或BIT/SK)和多进制PSK(MPSK)。在这种调制技术中,载波相位只有0和π两种取值,分别对应于调制信号的―0‖和―1‖。传―1―信号时,发起始相位为π的载波;当传―0‖信号时,发起始相位为0的载波。由―0‖和―1‖表示的二进制调制信号通过电平转换后,变成由―–1‖和―1‖表示的双极性NRZ(不归零)信号,然后与载波相乘,即可形成2PSK信号,在MPSK中,最常用的是四相相移键控,即QPSK (QuadraturePhaseShiftKeying),在卫星信道中传送数字电视信号时采用的就是QPSK调制方式。可以看成是由两个2PSK调制器构成的。输入的串行二进制信息序列经串—并变换后分成两路速率减半的序列,由电平转换器分别产生双极性二电平信号I(t)和Q(t),然后对载波Acos2πfct和Asin2πfct进行调制,相加后即可得到QPSK信号。

PSK信号也可以用矢量图表示,矢量图中通常以零度载波相位作为参考相位。四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。QPSK是在M=4时的调相技术,它规定了四种载波相位,分别为45°,135°,225°,315°。调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码元。每一个双比特码元是由两位二进制信息比特组成的,它们分别代表四进制四个符号中的一个符号。QPSK中每次调制可传输2

个信息比特,这些信息比特是通过载波的四种相位来传递的。解调器根据星座图及接收到的载波信号的相位来判断发送端发送的信息比特。

与模拟通信系统相比,数字调制和解调同样是通过某种方式,将基带信号的频谱由一个频率位置搬移到另一个频率位置上去。不同的是,数字调制的基带信号不是模拟信号而是数字信号。

在大多数情况下,数字调制是利用数字信号的离散值去键控载波。对载波的幅度、频率或相位进行键控,便可获得ASK、FSK、PSK等。这三种数字调制方式在抗干扰噪声能力和信号频谱利用率等方面,以相干PSK的性能最好,已在中、高速传输数据时得到广泛应用。

在同步解调的PSK系统中,由于收端载波恢复存在相位含糊的问题,即恢复的载波可能与未调载波同相,也可能反相,以至使解调后的信码出现―0‖、―1‖倒置,发送为―1‖码,解调后得到―0‖码;发送为―0‖码,解调后得到―1‖码。这是不希望的,为了克服这种现象,人们提出了相对移相方式。

相对移相的调制规律是:每一个码元的载波相位不是以固定的未调载波相位作基准的,而是以相邻的前一个码元的载波相位来确定其相位的取值。例如,当某一码元取―1‖时,它的载波相位与前一码元的载波同相;码元取―0‖时,它的载波相位与前一码元的载波反相。

相对移相可通过对信码进行变换和绝对移相来实现。将信码经过差分编码变换成新的码组——相对码,再利用相对码对载波进行绝对移相,使输出的已调载波相位满足相对移相的相位关系。

在相移键控中,在波相位受数字基带信号的控制,如在二进制基带信号中为0时,载波相位为0,为1时载波相位为π,载波相位和基带信号有一一对应的关系。

2PSK信号用载波相位的变化来表征被传输信息的状态,通常规定0相位载波和π相位载波分别表示传“1”和传“0”。

设二进制单极性码为a

n ,其对应的双极性二进制码为b

n

,则2PSK信号的一般时域

信号可以表示为:

(3.1.1)

式中=-1(当=0时,概率为P)

=1(当=1时,概率为1-P)

则时域信号可以变为

(3.1.2)

(3.1.3)

由此可知2PSK信号是一种双边带信号,功率谱为:

==+G+G

(3.1.4

)

2PSK信号的带宽为=

(3.1.5)

式中为码元速率。

值得注意的是,2PSK码元序列的波形与载频和码元持续时间之间的关系有关。当一个码元中包含有整数个载波周期时,在相邻码元的边界处波形是不连续的,或者说相位是不连续的。当一个码元中包含的载波周期数比整数个周期多半个周期时,则相位连续。当载波的初始相位差90度时,即余弦波改为正弦波时,结果类似。以上说明,相邻码元的相位是否连续与相邻码元的初始相位是否相同不可混为一谈。只有当一个码元中包含有整数个载波周期时,相邻码元边界处的相位跳变才是由调制引起的相位变化。

2PSK信号的产生方法主要有两种。第一种叫相乘法,是用二进制基带不归零矩形脉冲信号与载波相乘,得到相位反相的两种码元。第二种方法叫选择法,是用此基带信号控制一个开关电路,以选择输入信号,开关电路的输入信号是相位相差 的同频载波。这两种方法的复杂程度差不多,并且都可以用数字信号处理器实现。如图3-1

四进制绝对相移键控(4PSK )直接利用载波的四种不同相位来表示数字信息。4PSK 信号相位φn 矢量图如图3-6

图3-6 4PSK 信号相位φn 矢量图

由于每一种相位代表两个比特信息,因此每个四进制码元可以用两个二进制码元的组合来表示。两个二进制码元中的前一比特用a 来表示,后一比特用b 表示,则双比特ab 与载波相位的关系如下表3-1 双比特ab 与载波相位的关系

表3-1双比特ab 与载波相位的关系

01 270o

2PSK 的调制框图

四进制信号可等效为两个正交载波进行双边带调制所得信号之和。这样,就把

数字调相和线性调制联系起来,为四相波形的产生提供依据。

3.2.2 4PSK信号调制和解调

(1)4PSK调制原理:

4PSK的调制方法有正交调制方式(双路二相调制合成法或直接调相法)、

相位选择法、插入脉冲法等。这里我们采用正交调制方式。

4PSK的正交调制原理如图3-7

图3-7 4PSK正交调制原理框图

它可以看成是由两个载波正交的2PSK调制器构成的。图中串/并变换器将输入的二进制序列分为速度减半的两个并行双极性序列a和b(a,b码元在事件上是对齐的),再分别进行极性变换,把极性码变为双极性码(0→-1,1→+1)然后分别

调制到和t两个载波上,两路相乘器输出的信号是相互正交的抑制载

波的双边带调制(DSB )信号,其相位与各路码元的极性有关,分别由a 和b 码元决定。经相加电路后输出两路的合成波形,即是4PSK 信号。图中两个乘法器,其中一个用于产生00与180o 两种相位状态,另一个用于产生90o 与270o 两种相位状态,相加后就可以得到45o ,135o ,225o ,和315o 四种相位状 (2)4PSK 解调原理

4PSK 信号是两个载波正交的2PSK 信号的合成。所以,可以仿照2PSK 相干检测法,用两个正交的相干载波分别检测两个分量 a 和b ,然后还原成二进制双比特串行数字信号。此法称作极性比较法(相干解调加码反变换器方式或相干正交解调发)。图3-8

图3-8 4PSK 解调原理

在不考虑噪声及传输畸变时,接收机输入的4PSK 信号码元可表示为

=A

(3.2.1)

式中

为45o

,135o

,225o

,315o

四个相位值。

带通滤波器输出的两路信号

yA =yB

=yi

(3.2.2)

两路相乘器输出分别为

=A

+

(3.2.3)

= A

=-+

(3.2.4)

低通滤波器输出为(3.2.5)

抽样判决器的判决准则如下表3-2:

表3-2抽样判决器的判决准则

判决器是按极性来判决的。即正抽样值判为1,负抽样值判为0.两路抽样判决器输出a、b,经并/串变换器就可将并行数据恢复成串行数据。

程序代码:

2PSK:

clc

clear all

len = 80000;

for SNR = -5:20

%%%%%%%%%%%%%基带调制信号形成%%%%%%%%%%%%

ds0=randint(1,len);

ds = 2*ds0-1; %映射

ss = awgn(ds,SNR,'measured');

%%%%%%%%%%%%%%%%%相干解调%%%%%%%%%%%%%

ss_low1 = ss;

% ss_low1 = ss1;

% figure(2)

% plot(ss_low1);

z = zeros(1,length(ds0));

for i = 1:length(z)

if ss_low1(i) > 0

z(i) = 1;

else

z(i) = 0;

end

end

% figure(2)

% plot(z);

pe1(SNR+6) = pecal(z,ds0)

pe0(SNR+6) = 1/2*erfc(sqrt(10^(SNR/10)))

end

figure(1)

SNR = -5:20

plot(SNR,pe1),hold on;

text(SNR(8),pe1(8),'\leftarrow pe1','FontSize',10);

plot(SNR,pe0);

text(SNR(8),pe0(8),'\leftarrow pe0','FontSize',10);

4PSK:

clc

clear all

len = 10000;

for SNR = -8:17

%%%%%%%%%%%%%基带调制信号形成%%%%%%%%%%%%

ds0=randint(1,len);

ds = 2*ds0-1; %映射

%%%%%%%%%%%%%%%%%并串转换,延时%%%%%%%%%%%%%%%%%%%%%%%

data_len1 = length(ds);%包含了2倍内插

for i = 2:2:data_len1

ds_Q(i/2) = ds(i);

end

for i = 1:2:data_len1

ds_I((i+1)/2) = ds(i);

end

I_out = awgn(ds_I,SNR,'measured');

Q_out = awgn(ds_Q,SNR,'measured'); %%%%%%%%%%%%%%%%%相干解调%%%%%%%%%%%%% ss_lowI = I_out;

ss_lowQ = Q_out;

for i = 1:length(ss_lowI)

if ss_lowI(i) > 0

ss_lowI(i) = 1;

else

ss_lowI(i) = 0;

end

end

for i = 1:length(ss_lowQ)

if ss_lowQ(i) > 0

ss_lowQ(i) = 1;

else

ss_lowQ(i) = 0;

end

end

% figure(2)

% plot(ss_lowI);

k = 1;

for i = 1:length(ss_lowI)

ss_low1(k) = ss_lowI(i);

ss_low1(k+1) = ss_lowQ(i);

k = k+2;

end

z = ss_low1;

pe1(SNR+9) = pecal(z,ds0)

pe0(SNR+9) = erfc(sqrt(10^(SNR/10)))

end

figure(1)

SNR = -5:20

plot(SNR,pe1),hold on;

text(SNR(8),pe1(8),'\leftarrow pe1','FontSize',10);

plot(SNR,pe0);

text(SNR(8),pe0(8),'\leftarrow pe0','FontSize',10);

2PSK和4PSK调制误码率

通信中信道的信噪比设置越大信噪传输越理想,与理论上是相符合的。

通信电子线路实验报告4

大连理工大学 本科实验报告 课程名称:通信电子线路实验 学院:电子信息与电气工程学部专业:电子信息工程 班级:电子0904 学号: 200901201 学生姓名:朱娅 2011年11月20日

实验四、调幅系统实验及模拟通话系统 一、实验目的 1.掌握调幅发射机、接收机的整机结构和组成原理,建立振幅调制与 解调的系统概念。 2.掌握系统联调的方法,培养解决实际问题的能力。 3.使用调幅实验系统进行模拟语音通话实验。 二、实验内容 1.实验内容及步骤,说明每一步骤线路的连接和波形 (一)调幅发射机组成与调试 (1)通过拨码开关S2 使高频振荡器成为晶体振荡器,产生稳定的等幅高频振荡,作为载波信号。拨码开关S3 全部开路,将拨码开关S4 中“3”置于“ON”。用示波器观察高频振荡器后一级的射随器缓冲输出,调整电位器VR5,使输出幅度为0.3V左右。将其加到由MC1496 构成的调幅器的载波输入端。 波形:此时示波器上,波形为一正弦波,f=10.000MHz,Vpp=0.3V。 (2)改变跳线,将低频调制信号(板上的正弦波低频信号发生器)接至模拟乘法器调幅电路的调制信号输入端,用示波器观察J19 波形,调VR9,使低频振荡器输出正弦信号的峰-峰值Vp-p 为0.1~0.2V. 波形:此时示波器上,波形为一正弦波,f=1.6kHz,Vpp=0.2V。 (3)观察调幅器输出,应为普通调幅波。可调整VR8、VR9 和VR11,

使输出的波形为普通的调幅波(含有载波,m 约为30%)。 (4)将普通的调幅波连接到前置放大器(末前级之前的高频信号缓冲器)输入端,观察到放大后的调幅波。 波形:前置放大后的一调幅波,包络形状与调制信号相似,频率特性为载波信号频率。f?=1.6kHz,Vpp=0.8V,m≈30%。 (5)调整前置放大器的增益,使其输出幅度1Vp-p 左右的不失真调幅波,并送入下一级高频功率放大电路中。 (6)高频功率放大器部分由两级组成,第一级是甲类功放作为激励级,第二级是丙类功放。给末级丙类功放加上+12V 电源,调节VR4 使J8(JF.OUT)输出6Vp-p左右不失真的放大信号,在丙类功放的输出端,可观察到经放大后的调幅波,改变电位器VR6 可改变丙类放大器的增益,调节CT2 可以看到LC 负载回路调谐时对输出波形的影响。 波形:此时示波器上为放大后的调幅波,f?=1.6kHz,Vpp=8V,m≈30%。 (二)调幅接收机的组成与调试 从GP-4 实验箱的系统电路图可以看出调幅接收机部分采用了二次变频电路,其中频频率分别为:第一中频6.455MHz,第二中频455kHz。由于该二次变频接收机的两个本机振荡器均采用了石英晶体振荡器,其中第一本振频率16.455MHz,第二本振频率6.000MHz,也就是说本振频率不可调。这样实验箱的调幅接收机可以接收的频率就因为第一本振频率不可调而被固定下来,即该机可以接收的已调波的中心频率应该为10.000MHz(第1本振频率-第1中频频率 = 16.455MHz - 6.455MHz =

中南大学通信电子线路实验报告

中南大学 《通信电子线路》实验报告 学院信息科学与工程学院 题目调制与解调实验 学号 专业班级 姓名 指导教师

实验一振幅调制器 一、实验目的: 1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。 2.研究已调波与调制信号及载波信号的关系。 3.掌握调幅系数测量与计算的方法。 4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。 二、实验内容: 1.调测模拟乘法器MC1496正常工作时的静态值。 2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。 3.实现抑止载波的双边带调幅波。 三、基本原理 幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。变化的周期与调制信号周期相同。即振幅变化与调制信号的振幅成正比。通常称高频信号为载波信号。本实验中载波是由晶体振荡产生的10MHZ高频信号。1KHZ的低频信号为调制信号。振幅调制器即为产生调幅信号的装置。 在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5与V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。

图2-1 MC1496内部电路图 用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。 四、实验结果 1. ZD.OUT波形: 2. TZXH波形:

数字通信技术实验指导讲解

数字通信技术 实验指导书 电子与信息工程学院 2015年6月

实验一分组交织编码的MATLAB实现 1 实验目的 1、掌握分组交织编码的原理; 2、进一步学习Matlab软件的使用和编程; 3、提高独立设计实验的能力。 2 实验要求 1、课前预习实验,实验原理必须论述清楚; 2、实验报告中列出所有的Matlab源程序并解释代码; 3、实验结果(波形图)必须粘贴在实验报告中; 4、实验报告上写上自己的学号和姓名。 3 实验代码与结果 1、长度≤N的长突发错误通过解交织被离散为随机错误,错误码元之间的最小间隔为M。 s1=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24] x1=reshape(s1,4,6) %交织器的输入按列写入 x1(2,4)=0;x1(2,5)=0; x1(2,6)=0;x1(3,1)=0;x1(3,2)=0 %产生长度为5的长突发错误 s2=reshape(x1',1,24) %交织器的输出按行读出 x2=reshape(s2,6,4)' %解交织器的输入按行写入 s3=reshape(x2,1,24) %解交织器的输出按列读出 s3(1,3)=3;s3(1,7)=7; s3(1,14)=14;s3(1,18)=18;s3(1,22)=22 %通过分组码纠正随机错误 a=[s1,s2,s3] %对比三个输出 plot(s1,s2)

2、对于周期性的单个错误(间隔为N),通过解交织后会转化为长度为M的单个长突发错误。 s1=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24] x1=reshape(s1,4,6) x1(1,3)=0;x1(2,3)=0; x1(3,3)=0;x1(4,3)=0 s2=reshape(x1',1,24) x2=reshape(s2,6,4)' s3=reshape(x2,1,24) a=[s1,s2,s3] plot(s1,s2)

通信原理实验报告

实验一、PCM编译码实验 实验步骤 1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。 2. PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。 (2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。 3. PCM编码器 (1)方法一: (A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。分析为什么采用一般的示波器不能进行有效的观察。 (2)方法二: (A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。此时由该模块产生一个1KHz的测试信号,送入PCM编码器。(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。 4. PCM译码器 (1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。此时将PCM输出编码数据直接送入本地译码器,构成自环。用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (2) PCM译码器输出模拟信号观测:用示波器同时观测解码器输出信号端(TP506)和编码器输入信号端口(TP501),观测信号时以TP501做同步。定性的观测解码信号与输入信号的关系:质量、电平、延时。 5. PCM频率响应测量:将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码恢复出的模拟信号电平。观测输出信号信电平相对变化随输入信号频率变化的相对关系。

通信原理实验报告

中南大学 数字通信原理 实验报告 课程名称:数字通信原理实验 班级: 学号: 姓名: 指导教师:

实验一数字基带信号 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握AMI、HDB3码的编码规则。 3、掌握从HDB3码信号中提取位同步信号的方法。 4、掌握集中插入帧同步码时分复用信号的帧结构特点。 5、了解HDB3(AMI)编译码集成电路CD22103。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。 2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。 3、用示波器观察HDB3、AMI译码输出波形。 三、实验步骤 本实验使用数字信源单元和HDB3编译码单元。 1、熟悉数字信源单元和HDB3编译码单元的工作原理。接好电源线,打开电源开关。 2、用示波器观察数字信源单元上的各种信号波形。 用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察: (1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄); (2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ 码特点。 3、用示波器观察HDB3编译单元的各种波形。 仍用信源单元的FS信号作为示波器的外同步信号。 (1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI 端)波形和HDB3码(开关K4置于右方HDB3端)波形。再将K1、K2、K3置为全0,观察全0码对应的AMI码和HDB3码。观察时应注意AMI、HDB3码的码元都是占空比为0.5的双极性归零矩形脉冲。编码输出AMI-HDB3比信源输入NRZ-OUT延迟了4个码元。

通信电子线路Multisim仿真实验报告

通信电子线路实验报告Multisim调制电路仿真

目录 一、综述 .......................... 错误!未定义书签。 二、实验内容 ...................... 错误!未定义书签。 1.常规调幅AM ................... 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 (3)结论: ...................... 错误!未定义书签。 2.双边带调制DSB ................ 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 3.单边带调制SSB ................ 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 4.调频电路FM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 5.调相电路PM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图............ 错误!未定义书签。 三、实验感想 ...................... 错误!未定义书签。

数字通信系统设计实验报告

实验1:用 Verilog HDL 程序实现乘法器 1实验要求: (1) 编写乘法器的 Veirlog HDL 程序. (2) 编写配套的测试基准. (3) 通过 QuartusII 编译下载到目标 FPGA器件中进行验证 (4) 注意乘法逻辑电路的设计. 2 试验程序: Module multiplier(input rst,input clk,input [3:0]multiplicand, input [3:0]multiplier,input start_sig,output done_sig,output [7:0]result); reg [3:0]i; reg [7:0]r_result; reg r_done_sig; reg [7:0]intermediate; always @ ( posedge clk or negedge rst ) if( !rst ) begin i<=4'b0; r_result<=8'b0; end else if(start_sig) begin case(i) 0: begin intermediate<={4'b0,multiplicand}; r_result<=8'b0; i<=i+1; end 1,2,3,4: begin if(multiplier[i-1]) begin r_result<=r_result+intermediate; end intermediate<={intermediate[6:0],1'b0}; i<=i+1; end 5: begin r_done_sig<=1'b1;

i<=i+1; end 6: begin r_done_sig<=1'b0; i<=1'b0; end endcase end assign result=r_done_sig?r_result:8'bz; assign done_sig=r_done_sig; endmodule3 测试基准: `timescale 1 ps/ 1 ps module multiplier_simulation(); reg clk; reg rst; reg [3:0]multiplicand; reg [3:0]multiplier; reg start_sig; wire done_sig; wire [7:0]result; /***********************************/ initial begin rst = 0; #10; rst = 1; clk = 1; forever #10 clk = ~clk; end /***********************************/ multiplier U1 ( .clk(clk), .rst(rst), .multiplicand(multiplicand), .multiplier(multiplier), .result(result), .done_sig(done_sig), .start_sig(start_sig) ); reg [3:0]i; always @ ( posedge clk or negedge rst ) if( !rst )

数字通信原理实验报告四

中南大学 数字通信原理实验报告指导老师***** 学生姓名*** 学号*********** 专业班级*****************

目录 实验四 ----------------------------------------2 实验目的 ----------------------------------------2 实验内容 ----------------------------------------2基本原理 ----------------------------------------2实验步骤 ----------------------------------------9 实验结果 ----------------------------------------11

实验四数字解调与眼图 一、实验目的 1. 掌握2DPSK相干解调原理。 2. 掌握2FSK过零检测解调原理。 二、实验内容 1. 用示波器观察2DPSK相干解调器各点波形。 2. 用示波器观察2FSK过零检测解调器各点波形。 3.用示波器观察眼图。 三、基本原理 可用相干解调或差分相干解调法(相位比较法)解调2DPSK信号。在相位比较法中,要求载波频率为码速率的整数倍,当此关系不能满足时只能用相干解调法。本实验系统中,2DPSK载波频率等码速率的13倍,两种解调方法都可用。实际工程中相干解调法用得最多。2FSK信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。 图4-1 数字解调方框图 (a)2DPSK相干解调(b)2FSK过零检测解调 本实验采用相干解调法解调2DPSK信号、采用过零检测法解调2FSK信号。2DPSK模块内部使用+5V、+12V和-12V电压,2FSK模块内部仅使用+5V电压。图4-1为两个解调器的原理方框图,其电原理图如图4-2所示(见附录)。

通信电子线路实物实验报告

东南大学电工电子实验中心 实验报告 课程名称:电子电路与综合实验 第一次实物实验 院(系):信息科学与工程学院专业:信息工程姓名:陈金炜学号:04013130 实验室:高频实验室实验组别: 同组人员:陈秦郭子衡邹俊昊实验时间:2015年11月21日评定成绩:审阅教师:

实验一常用仪器使用 一、实验目的 1. 通过实验掌握常用示波器、信号源和频谱仪等仪器的使用,并理解常用仪器的基本工作 原理; 2.通过实验掌握振幅调制、频率调制的基本概念。 二、实验仪器 示波器(带宽大于 100MHz) 1台 万用表 1台 双路直流稳压电源 1台 信号发生器 1台 频谱仪 1台 多功能实验箱 1 套 多功能智能测试仪1 台 三、实验内容 1、说明频谱仪的主要工作原理,示波器测量精度与示波器带宽、与被测信号频率之间关系。 答: (1)频谱仪结构框图为: 频谱仪的主要工作原理: ①对信号进行时域的采集,对其进行傅里叶变换,将其转换成频域信号。这种方法对于AD 要求很高,但还是难以分析高频信号。

②通过直接接收,称为超外差接收直接扫描调谐分析仪。即:信号通过混频器与本振混频后得到中频,采用固定中频的办法,并使本振在信号可能的频谱范围内变化。得到中频后进行滤波和检波,就可以获取信号中某一频率分量的大小。 (2)示波器的测量精度与示波器带宽、被测信号频率之间的关系: 示波器的带宽越宽,在通带内的衰减就越缓慢; 示波器带宽越宽,被测信号频率离示波器通带截止频率点就越远,则测得的数据精度约高。 2、画出示波器测量电源上电时间示意图,说明示波器可以捕获电源上电上升时间的工作原理。 答: 上电时间示意图: 工作原理: 捕获这个过程需要示波器采样周期小于过渡时间。示波器探头与电源相连,使示波器工作于“正常”触发方式,接通电源后,便有电信号进入示波器,由于示波器为“正常”触发方式,所以在屏幕上会显示出电势波形;并且当上电完成后,由于没有触发信号,示波器将不再显示此信号。这样,就可以利用游标读出电源上电的上升时间。 3、简要说明在FM 调制过程中,调制信号的幅度与频率信息是如何加到FM 波中的? 答: 载波的瞬时角频率为()()c f t k u t ωωΩ=+,(其中f k 为与电路有关的调频比例常数) 已调的瞬时相角为00 t ()()t t c f t dt t k u t dt θωωθΩ =++? ?()= 所以FM 已调波的表达式为:000 ()cos[()]t om c f u t U t k u t dt ωθΩ =++? 当()cos m u t U t ΩΩ=Ω时,00()cos[sin ]om c f u t U t M t ωθ=+Ω+ 其中f M 为调制指数其值与调制信号的幅度m U Ω成正比,与调制信号的角频率Ω反比,即 m f f U M k Ω=Ω 。这样,调制信号的幅度与频率信息是已加到 FM 波中。

数字通信原理实验报告

《数字通信原理与技术》实验报告 学院:江苏城市职业学院 专业:计算机科学与技术 班级: 姓名:___________ 学号: ________

实验一熟悉MATLAB环境 一、实验目的 (1)熟悉MATLAB的主要操作命令。 (2)掌握简单的绘图命令。 (3)用MATLAB编程并学会创建函数。 (4)观察离散系统的频率响应。 二、实验内容 (1)数组的加、减、乘、除和乘方运算。输入A=【1 2 3 4】,B=【3 4 5 6】,求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 (2)用MATLAB实现下列序列: a)x(n)=0.8n 0≦n≦15 b)x(n)=e(0.2+0.3j) 0≦n≦15 c)x(n)=3cos(0.125πn+0.2π)+0.2sin(0.25πn+0.1π) 0≦n≦15 d) 将c)中的x(n)扩展成以16为周期的函数x16(n)=x(n+16),绘出四个周期。 e) 将c)中的x(n)扩展成以10为周期的函数x10(n)=x(n+10),绘出四个周期。 (3) 绘出下列时间函数图形,对x轴、y轴以及图形上方均须加上适当的标注: a)x (t )=sin(2πt) 0≦n≦10s b) x (t)=cos(100πt)sin(πt) 0≦n≦14s 三、程序和实验结果 (1)实验结果: 1、A=[1,2,3,4] B=[3,4,5,6] C=A+B D=A-B E=A.*B F=A./B G=A.^B A =1 2 3 4 B =3 4 5 6 C =4 6 8 10 D =-2 -2 -2 -2 E =3 8 15 24 F =0.3333 0.5000 0.6000 0.6667 G =1 16 243 4096 >> stem(A) >> stem(B) >> stem(C) >> stem(D) >> stem(E) >> stem(F)

通信原理 数字基带传输实验报告

基带传输系统实验报告 一、 实验目的 1、 提高独立学习的能力; 2、 培养发现问题、解决问题和分析问题的能力; 3、 学习matlab 的使用; 4、 掌握基带数字传输系统的仿真方法; 5、 熟悉基带传输系统的基本结构; 6、 掌握带限信道的仿真以及性能分析; 7、 通过观察眼图和星座图判断信号的传输质量。 二、 实验原理 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 基带传输系统方框图如下: 基带脉冲输入 噪声 基带传输系统模型如下: 信道信号 形成器 信道 接收 滤波器 抽样 判决器 同步 提取 基带脉冲

各方框的功能如下: (1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉 冲,其频谱很宽,不利于传输。发送滤波器用于压缩输入信号频带,把传输 码变换成适宜于信道传输的基带信号波形。 (2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。另 外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。 (3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。 (4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 (5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。 三、实验内容 1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序) 设滤波器长度为N=31,时域抽样频率错误!未找到引用源。o为4 /Ts,滚降系数分别取为0.1、0.5、1, (1)如果采用非匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (2)如果采用匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (1)非匹配滤波器 窗函数法: 子函数程序: function[Hf,hn,Hw,w]=umfw(N,Ts,a)

通信电子线路实验报告三点式振荡

通信电了线路课程设计 课程名称通信电子线路课程设计_________________ 专业___________________ 通信工程 ______________________ 班级___________________________________________ 学号___________________________________________ 姓名___________________________________________

指导教师________________________________________ 、八 刖 现代通信的主要任务就是迅速而准确的传输信息。随着通信技术的日益发展,组成通信系统的电子线路不断更新,其应用十分广泛。实现通信的方式和手段很多,通信电子线路主要利用电磁波传递信息的无线通信系统。 在本课程设计中,着眼于无线电通信的基础电路一一LC正弦振荡器的分析和研究。常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。其中LC振荡器和晶体振荡器用于产生高频正弦波。正反馈放大器既可以由晶体管、场效应管等分立器件组成,也可由集成电路组成。LC振荡器中除了有互感耦合反馈型振荡器之外,其最基本的就是三端式(又称三点式)的振荡器。而三点式的振荡器中又有电容三点式振荡器和电感三点式振荡器这两种基本类型。 反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。本文介绍了高频电感三点式振荡器电路的原理及设计,电感三点式易起振,调整频率方便,可以通过改变电容调整频率而不影响反馈系数。正弦波振荡器在各种电子设备中有着广泛的应用。根据所产生的波形不同,可将振荡器分成正弦波振荡器和非正弦波振荡器两大类。前者能产生正弦波,后者能产生矩形波、三角波、锯齿波等。 在此次的通信电子线路课程设计中,我选做的是电感三点式振荡设计,通过为时一周的上机实验,我学到了很多书本之外的知识,在老师的指导下达到实验设计的要求指

通信技术实训报告

南昌工程学院 《通信技术》实训报告 系院信息工程学院 专业通信工程 班级 学生姓名 学号 实习地点 指导教师 实习起止时间:2014 年 6 月9 日至2014 年6 月20 日

目录 一、实训时间 (3) 二、实训地点 (3) 三、实训目的 (3) 四、实训情况简介 (3) 五、实训内容 (4) 六、实训小结或体会 (10)

一、实训时间:从2014 年6 月9 日至2014年6 月20 日 二、实训地点: 三、实训目的 通过本实训了解2M业务在点对点组网方式时候的配置。通过本实训了解2M业务在链型组网方式时候的配置。通过本实训了解2M业务在环形组网方式时候的配置。通过本次实训了解MGW及MSCS数据配置。 SDH技术的诞生有其必然性,随着通信的发展,要求传送的信息不仅是话音,还有文字、数据、图像SDH技术和视频等。加之数字通信和计算机技术的发展,在70至80年代,陆续出现了T1(DS1)/E1载波系统(1.544/2.048Mbps)、X.25帧中继、ISDN(综合业务数字网) 和FDDI(光纤分布式数据接口)等多种网络技术。随着信息社会的到来,人们希望现代信息传输网络能快速、经济、有效地提供各种电路和业务,而上述网络技术由于其业务的单调性,扩展的复杂性,带宽的局限性,仅在原有框架内修改或完善已无济于事。SDH就是在这种背景下发展起来的。在各种宽带光纤接入网技术中,采用了SDH技术的接入网系统是应用最普遍的。SDH的诞生解决了由于入户媒质的带宽限制而跟不上骨干网和用户业务需求的发展,而产生了用户与核心网之间的接入"瓶颈"的问题,同时提高了传输网上大量带宽的利用率。SDH技术自从90年代引入以来,至今已经是一种成熟、标准的技术,在骨干网中被广泛采用,且价格越来越低,在接入网中应用可以将SDH技术在核心网中的巨大带宽优势和技术优势带入接入网领域,充分利用SDH 同步复用、标准化的光接口、强大的网管能力、灵活网络拓扑能力和高可靠性带来好处,在接入网的建设发展中长期受益。我们了解SDH的光传输及MGW及MSCS数据配置对我们加深理论知识理解有帮助。 四、实训情况简介 经学校安排, 于2014年6月9号至2014年6月20号期间在电子信息楼B404进行了实训,实训工作内容为SDH点对点组网配置实验,SDH链型组网配置实验,SDH环形组网配置实验以及MGW和MSCS数据配置实验。现总结如下: 实验进行了两周,第一周是移动数据配置,第二周是光传输实验,每次老师先给我们讲解原理,还有注意事项等,我了解了原理之后按照指导书在配置环境下按指导书配置。配置

数字通信原理BPSK传输系统设计与仿真实验报告

北京联合大学《通信原理》实验报告 科目:通信原理实验 教师:许学梅 班级: 200908030201 姓名: 王国显 学号: 2009080302104 时间: 2012.11.20

实验四、2PSK传输系统设计与仿真 一、实验目的 1..在前面2PSK调制系统设计与仿真实验的基础上,通过本实验建立起 BPSK 传输系统的概念。 2.深入理解、掌握二进制相移键控技术(2PSK)的调制/解调原理及在数字 通信传输系统中的应用。 3.掌握(2PSK)调制/解调传输系统模型的构建技术。 4.掌握(2PSK)调制/解调的设计与实现方法。 5.深入理解、分析、掌握二进制相移键控(2PSK)调制/解调传输系统各模 块间参数的设置及相互间的关联与影响。 6.能够按不同用户的技术指标需求,进行(2PSK)调制/解调传输系统的设 计。 7.掌握(2PSK)调制/解调传输系统的测试方法。 8.掌握对(2PSK)调制/解调传输系统的相关参数、信号波形及频谱进行分 析的方法。 9.对比原始发送数据信号经调制/与解调系统传输后,还原的数据信号是否 与原始发送数据信号一致。 二、实验仪器(软/硬件环境及所需元器件模块) 1.PC机一台 2. 安捷伦科技EESof软件ADS:Advanced Design System –2005A 3.计算机操作系统:Win 2000, Win XP, HP Unix11.0, Sun Unix 5.8 等 4.元器件模块: (1)Sinusoid正弦波信号发生器(Sinusoid signal generator); (2)Data数字序列信号发生器(Data generator); (3)信号类型转换器(Signal Converters): TimedToFloat信号类型转换器、FloatToTimed信号类型转换器; (4)TimedSink信号接收器(Timed Data Collector); (5) SpectrumAnalyzer频谱分析仪(Spectrum analyzer); (6) DF数据流控制器(Data Flow Controller); (7) Mpy2乘法器(2-Input Multiplier); (8) VAR变量和方程式模块(器件)(Variables and Equations Component)。 (9)时钟源Clock, (10)抽样保持器SampleAndHold, (11)带通滤波器BPF_RaisedCosineTimed, (12)低通滤波器为LPF_RaisedCosineTimed,

通信电子线路实验报告解析

LC与晶体振荡器 实验报告 班别:信息xxx班 组员: 指导老师:xxx

一、实验目的 1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。 2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。 3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。 4)、比较LC 与晶体振荡器的频率稳定度。 二、实验预习要求 实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。 三、实验原理说明 三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。 1、起振条件 1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质 的电抗,且它们之间满足下列关系: 2)、幅度起振条件: 图1-1 三点式振荡器 式中:q m ——晶体管的跨导, F U ——反馈系数, A U ——放大器的增益, LC X X X X Xc o C L ce be 1 |||| )(= -=+-=ω,即)(Au 1 * 'ie L oe m q q q Fu q ++ >

q ie——晶体管的输入电导, q oe——晶体管的输出电导, q'L——晶体管的等效负载电导, F U一般在0.1~0.5之间取值。 2、电容三点式振荡器 1)、电容反馈三点式电路——考毕兹振荡器 图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。 L1L1 (a)考毕兹振荡器(b)交流等效电路 图1-2 考毕兹振荡器 2)、串联改进型电容反馈三点式电路——克拉泼振荡器 电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。

数字通信实验报告

Digital Communication Project 姓名:王志卓 学号:514104001502

在PSK调制时,载波的相位随调制信号状态不同而改变。如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,此时它们就处于―同相‖状态;如果一个达到正最大值时,另一个达到负最大值,则称为―反相‖。把信号振荡一次(一周)作为360度。如果一个波比另一个波相差半个周期,两个波的相位差180度,也就是反相。当传输数字信号时,―1‖码控制发0度相位,―0‖码控制发180度相位。 PSK相移键控调制技术在数据传输中,尤其是在中速和中高速的数传机(2400bit/s~4800bit/s)中得到了广泛的应用。相移键控有很好的抗干扰性,? 在有衰落的信道中也能获得很好的效果。主要讨论二相和四相调相,在实际应用中还有八相及十六相调相。 PSK也可分为二进制PSK(2PSK或BIT/SK)和多进制PSK(MPSK)。在这种调制技术中,载波相位只有0和π两种取值,分别对应于调制信号的―0‖和―1‖。传―1―信号时,发起始相位为π的载波;当传―0‖信号时,发起始相位为0的载波。由―0‖和―1‖表示的二进制调制信号通过电平转换后,变成由―–1‖和―1‖表示的双极性NRZ(不归零)信号,然后与载波相乘,即可形成2PSK信号,在MPSK中,最常用的是四相相移键控,即QPSK (QuadraturePhaseShiftKeying),在卫星信道中传送数字电视信号时采用的就是QPSK调制方式。可以看成是由两个2PSK调制器构成的。输入的串行二进制信息序列经串—并变换后分成两路速率减半的序列,由电平转换器分别产生双极性二电平信号I(t)和Q(t),然后对载波Acos2πfct和Asin2πfct进行调制,相加后即可得到QPSK信号。 PSK信号也可以用矢量图表示,矢量图中通常以零度载波相位作为参考相位。四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。QPSK是在M=4时的调相技术,它规定了四种载波相位,分别为45°,135°,225°,315°。调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码元。每一个双比特码元是由两位二进制信息比特组成的,它们分别代表四进制四个符号中的一个符号。QPSK中每次调制可传输2

通信电子线路实验报告刘紫豪

实验报告 课程名称通信电子线路 专业通信工程 班级1301 学号21 姓名刘紫豪 指导教师张鏖烽 2015年11 月10 日 实验一 OrCAD系统基本实验1、实验目的 掌握OrCAD电子设计自动化(EDA)软件的应用。 掌握基本的电子电路仿真实验方法。

2、实验环境 P4微机; OrCAD 10.5工具包。 3、实验内容 (1)实验相关的基本知识掌握 认真阅读本实验指导书的第一部分; 掌握OrCAD 10.5电子设 计自动化(EDA)软件系统 中的电子电路原理图设计包 ——Capture CIS的使用方法 和基本操作,为今后的实验 和研究作技术上的准备。 (2)给定实验内容 A. 按本实验指导书的 第一部分中介绍的方法,使 用OrCAD 10.5完成二极管限 幅电路的计算机仿真实验。 B. 利用Capture CIS为 本实验建立一个新的 PSpice项目,项目名可以自 行选取。 C. 绘制出如右图所示的给定仿真电子电路原理图,包括放置电子元器件、放置导线、放置断页连接器、修改各元器件的参数等操作。仿真电路中各元器件的参数如下表: 元件代号值仿真库备注 D1 D1N3940 DIODE.OLB D2 D1N3940 DIODE.OLB R1 1K ANALOG.OLB R2 3.3K ANALOG.OLB R3 3.3K ANALOG.OLB R4 5.6K ANALOG.OLB C1 0.47u ANALOG.OLB 0 SOURCE.OLB 零接地 V1 5V SOURCE.OLB Vin 0V SOURCE.OLB V2 SINE SOURCSTM.OLB 后面实验需要 V3 VAC SOURCE.OLB 后面实验需要 D. 完成本电路的偏置点分析参数设置(参见本指导书的6.2.1节),运行该偏置点分析,将其仿真结果(图)拷贝作为实验结果;

数字信号光纤通信技术实验报告

数字信号光纤通信技术实验的报告 预习要求 通过预习应理解以下几个问题: 1.数字信号光纤传输系统的基本结构及工作过程; 2.衡量数字通信系统有那两个指标?; 3.数字通信系统中误码是怎样产生的?; 4.为什么高速传输系统总是与宽带信道对应?; 5.引起光纤中码元加宽有那些因素?; 6.本实验系统数字信号光-电/电-光转换电路的工作原理; 7.为什么在数字信号通信系统中要对被传的数据进行编码和解码?; 8.时钟提取电路的工作原理。 目的要求 1.了解数字信号光纤通信技术的基本原理 2.掌握数字信号光纤通信技术实验系统的检测及调试技术 实验原理 一、数字信号光纤通信的基本原理 数字信号光纤通信的基本原理如图8-2-1示(图中仅画出一个方向的信道)。工作的基本过程如下:语音信号经模/数转换成8位二进制数码送至信号发送电路,加上起始位(低电平)和终止位(高电平)后,在发时钟TxC的作用下以串行方式从数据发送电路输出。此时输出的数码称为数据码,其码元结构是随机的。为了克服这些随机数据码出现长0或长1码元时,使接收端数字信号的时钟信息下降给时钟提取带来的困难,在对数据码进行电/光转换之前还需按一定规则进行编码,使传送至接收端的数字信号中的长1或长0码元个数在规定数目内。由编码电路输出的信号称为线路码信号。线路码数字信号在接收端经过光/电转换后形成的数字电信号一方面送到解码电路进行解码,与此同时也被送至一个高Q值的RLC谐振选频电路进行时钟提取. RLC谐振选频电路的谐振频率设计在线路码的时钟频率处。由时钟提取电路输出的时钟信号作为收时钟RxC,其作用有两个:1.为解码电路对接收端的线路码进行解码时提供时钟信号;2.为数字信号接收电路对由解码电路输出的再生数据码进行码值判别时提供时钟信号。接收端收到的最终数字信号,经过数/模转换恢复成原来的语音信号。 图8-2-1 数字信号光纤通信系统的结构框图 在单极性不归零码的数字信号表示中,用高电平表示1码元,低电平表示0码元。码元持续时间(亦称码元宽度)与发时钟TxC的周期相同。为了增大通信系统的传输容量,就要求提高收、发时钟的频率。发时钟频率愈高码元宽度愈窄。 由于光纤信道的带宽有限,数字信号经过光纤信道传输到接收端后,其码元宽度要加宽。加宽程度由光纤信道的频率特性和传输距离决定。单模光纤频带宽,多模光纤频带窄。因为按光波导理论[1]分析:光纤是一种圆柱形介质波导,光在其中传播时实际上是一群满足麦克斯韦方程和纤芯—包层界面处边界条件的电磁波,每个这样的电磁波称为一个模式。光纤中允许存在的模式的数量与纤芯半径和数字孔径有关。纤芯半径和数字孔径愈大,光纤中参与光信号传输的模式也愈多,这种光纤称为多模光纤(芯径50或62.5μm)。多模光纤中每个模式沿光纤轴线方向的传播速度都不相同。因此,在光纤信道的输入端同时激励起多个模式时,每个模式携带的光功率到达光纤信道终点的时间也不一样,从而引起了数字信号码元的加宽。码元加

相关文档