文档库 最新最全的文档下载
当前位置:文档库 › sinC积分的解法及其应用

sinC积分的解法及其应用

sinC积分的解法及其应用
sinC积分的解法及其应用

本科毕业论文(设计)题目:Sinc积分的解法及其应用

学院:

学生姓名:

学号:

专业:数学与应用数学

年级:

完成日期:

指导教师:

Sinc积分的解法及其应用

摘要:Sinc积分即

0sin x

dx x

+∞

?,是积分学中一个著名的积分,许多积分的计算最后都转化为此积分。在实际生活中也会遇到此积分。由于被积函数的原函数不能用初等函数表示,因此不能用牛顿—莱布尼茨公式计算此积分的结果。本文中,我们将用不同

种方法来计算此积分,从而得到

0sin

2

x

dx

x

π

+∞

=

?,进而讨论此积分的应用。关键词:参变量;拉普拉斯变换;留数定理;Fourier变换

The Solution and Application of the Sinc integral

目录

前言 (1)

一、用多种方法计算sinc积分 (2)

(一)利用二重积分计算 (2)

(二)利用含参变量反常积分的方法计算 (3)

1、由比较判别法的推论 (3)

2、由狄利克雷判别法 (5)

3.利用阿贝尔判别法 (6)

(三)利用无穷级数的方法计算 (7)

(四)利用复变函数理论中留数定理计算 (8)

(五)利用拉普拉斯变换计算 (10)

1.利用拉普拉斯变换计算方法一 (10)

2.利用拉普拉斯变换方法二 (11)

二、应用 (12)

参考文献 (15)

前言

sinc 积分即为0

sin x

dx x

+∞

?,是积分学中一个著名的积分,它在自然科学中有着广泛的应用。由于sin x x 在0x =点处无定义,但是因为sin lim

1x x

x

→∞=,所以在0x =点处可将()sin x f x x =

作连续开拓,也就是当0x =时,令sin 1x x =,则()s i n x f x x

=在)0,+∞??连续,又因为函数()sin f x x =在)1,+∞??连续,对于1p ?>,有

1

sin 2p

xdx ≤?

,因此

1

sin x dx x +∞

?

收敛,从而0sin x dx x +∞?收敛。但是对于1x ?≥有21cos 2sin sin 2

x

x x -≥=,即

sin 1cos21cos2222x x x x x x x -≥=-,所以111sin cos 222x dx x

dx dx x x x

+∞+∞+∞≥-???,由上述证明

即可知1

cos 22x

dx x +∞

?

收敛,但是12dx x +∞?发散。所以1sin x dx x +∞?发散,因此0sin x dx x

+∞?也

发散,于是可以得知0

sin x

dx x

+∞

?

为条件收敛。 由于此积分被积函数的原函数不能用初等函数表示,因此不能用牛顿—莱布尼茨公式计算此积分的结果,本文即用不同种方法来计算此积分,从而得到0

sin 2

x dx x π

+∞

=?。除此之外,本文还将用此积分来证明傅里叶变换定理。

一、用多种方法计算sinc 积分:

(一) 利用二重积分计算

定理一:设(),f x y 在矩形区域[][],,D a b c d =?上可积,且对每个[],x a b ∈,积分

(),d

c

f x y dy ?

存在,则累次积分(),b d

a

c

dx f x y dy ??也存在,且

()()(),,,b d d b

a

c

c

a

D

f x y d dx f x y dy dy f x y dx σ==??

????

定理二:设(),f x y 在矩形区域[][],,D a b c d =?上可积,且对每个[],y c d ∈,积分

(),b

a

f x y dx ?

存在,则累次积分(),d b

c

a

dy f x y dx ??也存在,且

()(),,d

b

c

a

D

f x y d dy f x y dx σ=???

?

特别地当(),f x y 在矩形区域[][],,D a b c d =?上连续时,则有

()()(),,,b

d d b

a

c

c

a

D

f x y d dx f x y dy dy f x y dx σ==???

???。

由以上定理知,二重积分0

sin xy I e xdxdy ∞

-=?

?

可以用两种方法计算,即先对x 求积分

和先对y 求积分,从而得出两种结果,再联立这两种方法便可以得到此积分的计算结果。 因此,先对y 求积分可以得到: 0

sin sin sin xy xy y e x I xdx e dy x dx dx x x ∞

-∞

+∞-=??

==-=???????

? 再求先对x 积分得到的结果: 0

sin xy I dy e xdx ∞

-=??

00

1sin xy e dy x d y -∞∞??

=- ???

??

(

)

1sin cos xy xy x e e xdxdy dy y ∞

-∞-??

=-?-???

?

?

?

初中数学因式分解常见的6种方法和7种应用

因式分解的六种方法及其应用 因式分解的常用方法有:(1)提公因式法;(2)公式法;(3)提公因式法与公式法的综合运用.在对一个多项式因式分解时,首先应考虑提公因式法,然后考虑公式法.对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等. 方法一提公因式法 题型1 公因式是单项式的因式分解 1.若多项式-12x2y3+16x3y2+4x2y2的一个因式是-4x2y2,则另一个因式是() A.3y+4x-1 B.3y-4x-1 C.3y-4x+1 D.3y-4x 【解析】B 2.分解因式:2mx-6my=__________. 【解析】2m(x-3y) 3.把下列各式分解因式: (1)2x2-xy; (2)-4m4n+16m3n-28m2n. 【解析】(1)原式=x(2x-y).(2)原式=-4m2n(m2-4m+7). 题型2公因式是多项式的因式分解 4.把下列各式分解因式: (1)a(b-c)+c-b; (2)15b(2a-b)2+25(b-2a)2. 【解析】(1)原式=a(b-c)-(b-c)=(b-c)(a-1). (2)原式=15b(2a-b)2+25(2a-b)2=5(2a-b)2(3b+5). 方法二公式法 题型1直接用公式法 5.把下列各式分解因式: (1)-16+x4y4; (2)(x2+y2)2-4x2y2; (3)(x2+6x)2+18(x2+6x)+81. 【解析】(1)原式=x4y4-16=(x2y2+4)(x2y2-4)=(x2y2+4)(xy+2)(xy-2).

(2)原式=(x 2+y 2+2xy )(x 2+y 2-2xy )=(x +y )2(x -y )2. (3)原式=(x 2+6x +9)2=[(x +3)2]2=(x +3)4. 题型2 先提再套法 6.把下列各式分解因式: (1)(x -1)+b 2(1-x );(2)-3x 7+24x 5-48x 3. 【解析】(1)原式=(x -1)-b 2(x -1)=(x -1)(1-b 2)=(x -1)(1+b )(1-b ). (2)原式=-3x 3(x 4-8x 2+16)=-3x 3(x 2-4)2=-3x 3(x +2)2(x -2)2. 题型3 先局部再整体法 7.分解因式:(x +3)(x +4)+(x 2-9). 【解析】原式=(x +3)(x +4)+(x +3)·(x -3)=(x +3)[(x +4)+(x -3)]=(x +3)(2x +1). 题型4 先展开再分解法 8.把下列各式分解因式: (1)x (x +4)+4;(2)4x (y -x )-y 2. 【解析】(1)原式=x 2+4x +4=(x +2)2. (2)原式=4xy -4x 2-y 2=-(4x 2-4xy +y 2)=-(2x -y )2. 方法三 分组分解法 9.把下列各式分解因式: (1)m 2-mn +mx -nx ;(2)4-x 2+2xy -y 2. 【解析】(1)原式=(m 2-mn )+(mx -nx )=m (m -n )+x (m -n )=(m -n )(m +x ). (2)原式=4-(x 2-2xy +y 2)=22-(x -y )2=(2+x -y )(2-x +y ). 方法四 拆、添项法 10.分解因式:x 4+14 . 【解析】原式=x 4+x 2+14-x 2=????x 2+122 -x 2=????x 2+x +12(x 2-x +12 ). 方法五 整体法 题型1 “提”整体 11.分解因式:a (x +y -z )-b (z -x -y )-c (x -z +y ). 【解析】原式=a (x +y -z )+b (x +y -z )-c (x +y -z ) =(x +y -z )(a +b -c ). 题型2 “当”整体

2020—2021年湘教版七年级数学下册《因式分解及其应用》综合测试题及答案解析.docx

新课标2017-2018学年湘教版七年级数学下册 综合练习因式分解及其应用 1.下列式子从左到右变形是因式分解的是( ) A.a2+4a-21=a(a+4)-21 B.a2+4a-21=(a-3)(a+7) C.(a-3)(a+7)=a2+4a-21 D.a2+4a-21=(a+2)2-25 2.下面分解因式正确的是( ) A.x2+2x+1=x(x+2)+1 B.(x2-4)x=x3-4x C.ax+bx=(a+b)x D.m2-2mn+n2=(m+n)2 3.若代数式x2+ax可以因式分解,则常数a不可以取( ) A.-1 B.0 C.1 D.2 4.下列各式不能用平方差公式因式分解的是( ) A.-y2+1 B.x2+(-y)2 C.m2-n2 D.-x2+(-y)2 5.下列多项式中,能用完全平方公式进行因式分解的是( ) A.-a2-4ab+4b2B.a2+6ab-9b2 C.a2+6a+9b2D.4(a-b)2+4(a-b)+1 6.若多项式ax2+bx+c可分解为(1-3x)2,那么a、b、c的值分别为( ) A.-9,6,-1 B.9,-6,1 C.9,6,1 D.9,6,-1 7.利用因式分解简便计算57×99+44×99-99正确的是( ) A.99×(57+44)=9 999 B.99×(57+44-1)=9 900

C.99×(57+44+1)=10 098 D.99×(57+44-99)=198 8.(-1 2)2 015+(- 1 2)2 016的结果是( ) A.-1 2 B. 1 2 C.( 1 2)2 015 D.-(1 2)2 016 9.将3a2(x-y)-6ab(y-x)用提公因式法因式分解,应提出的公因式是__________. 10.计算:32×3.14+3×(-9.42)=__________. 11.因式分解:x2+3x(x-3)-9=__________. 12.设a=192×918,b=8882-302,c=1 0532-7472,则数a,b,c 按从小到大的顺序排列,结果是__________<__________<__________. 13.若x2+(m-3)x+4是完全平方式,则数m的值是__________. 14.如图,边长为a的正方形中有一个边长为b的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是____________________. 15.58-1能被20至30之间的两个整数整除,那么这两个整数是__________. 16.若a※b=a2-ab2,则x2※y所表示的代数式因式分解的结果是__________.

分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 责编:杜少波 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 【高清课堂分式方程的解法及应用知识要点】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程;

(完整版)初二数学分式方程经典应用题(含答案)

分式方程应用题 1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的 火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时). 2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为 售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一, 这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天 5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工 且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( ) A .66602x x =- B .66602x x =- C .66602x x =+ D .66602x x =+ 6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书 所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量. 7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第 二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( ) A .9001500300x x =+ B .9001500300 x x =- C .9001500300x x =+ D .9001500300x x =- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记 者与驻军工程指挥官的一段对话: 通过这段对话,请你求出该地驻军原来每天加固的米数.

因式分解应用

因式分解 因式分解练习: (1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22 (3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++- (5)92234-+-a a a (6)y b x b y a x a 222244+-- (7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a 方法讲解: 一、十字相乘法. (一)二次项系数为1的二次三项式 直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。 特点:(1)二次项系数是1; (2)常数项是两个数的乘积; (3)一次项系数是常数项的两因数的和。 例1、分解因式:652++x x 例2、分解因式:672+-x x 练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x (二)二次项系数不为1的二次三项式——c bx ax ++2 条件:(1)21a a a = 1a 1c (2)21c c c = 2a 2c

(3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2=))((2211c x a c x a ++ 例3、分解因式:101132+-x x 练习3、分解因式:(1)6752-+x x (2)2732+-x x (3)317102+-x x (4)101162++-y y (三)二次项系数为1的齐次多项式 例4、分解因式:221288b ab a -- 练习4、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a -- (四)二次项系数不为1的齐次多项式 例5、22672y xy x +- 例6、2322+-xy y x 练习5、分解因式:(1)224715y xy x -+ (2)8622+-ax x a 二、主元法. 例7、分解因式:2910322-++--y x y xy x 练习7、分解因式(1)56422-++-y x y x (2)6 7222-+--+y x y xy x

2018-2019学年度冀教版七年级数学下册同步练习 第十一章 因式分解及其应用( 无答案)

因式分解及其应用1. 下列从左到右的变形,是因式分解的是() A.9x2 y3 z = 3x2 z ?y3 B.x2 +x -5 =x(x +1) -5 C.a2b +ab2 =ab(a +b) D.x2 +1=x( x+1 x ) 2. 下列各式中,代数式()是x3y+4x2y2+4xy3 的一个因式. A.x2y2 B.x+y C.x+2y D.x-y 3. 因式分解: (1)3a2b + 6ab2 -3ab ;(2)y(x -y) -(y -x) ;(3)16 -8(x -y) + (x -y)2 ;(4)(a2 +1)2 - 4a2 ; (5)3m(2x -y)2 -3mn2 ;(6)(x -1)(x -5) +4;(7)(x -1)(x + 4) -3x ;(8)4(m +n)2 -12m(m +n) +9m2 ;(9)1012 -992 ;(10)2 0182 - 2 018? 4 032 + 2 0162 .4. 要使4a2 +ab +mb2 成为一个完全平方式,则m=. 5. 要使4a2 -ma +1 4 成为一个完全平方式,则m=. 6. 若x2 - 2x +y2 +6y+10 =0,则x=,y=.

7. 观察下列各式: 12 + 32 + 42 = 2 ?(12 + 32 + 3) 22 + 32 + 52 = 2 ?(22 + 32 + 6) 32 + 62 + 92 = 2 ?(32 + 62 +18) …… (1)小明用a,b,c 表示等式左边的由小到大的三个数,你能发现c 与a, b 之间的关系吗? (2)你能发现等式右边括号内的三个数与a,b 之间的关系吗?请用字 母a,b 写出你发现的等式,并加以证明. 8. 观察下面的几个算式: ①14×16=100×1×2+24=224; ②24×26=100×2×3+24=624; ③34×36=100×3×4+24=1 224; …… (1)仿照上面的书写格式,请你迅速写出84×86 和124×126 的结果; (2)请利用多项式的乘法表示你所发现的规律,并进行验证.

分式方程的概念-解法及应用

分式方程的解法及应用 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ● 分式方程的概念以及解法; ● 分式方程产生增根的原因; ● 分式方程的应用题。 重点难点: ● 重点:分式方程转化为整式方程的方法及其中的转化思想,用分式方程解决实际问题,能从实际问题中抽象出数量 关系. ● 难点:检验分式方程解的原因,实际问题中数量关系的分析. 学习策略: ● 经历“实际问题——分式方程——整式方程”的过程,发展分析问题、解决问题的能力,渗透数学的转化思想,培 养数学的应用意识。 二、学习与应用 (一)什么叫方程?什么叫方程的解? 答:含有 的 叫做方程. 使方程两边相等的 的值,叫做方程的解. (二)分式的基本性质: 分式的分子与分母同乘(或除以)同一个 ,分式的值不变,这个性质叫做分式的基本性质.用式子表示是: M B M A B A M B M A B A ÷÷=??=,(其中M 是不等于0的整式). “凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

(三)等式的基本性质:等式的两边都乘(或除以)同一个数或 (除数不能为0),所得的结果仍是等式。 (四)解下列方程:(1)9-3x =5x +5; (2)5 2221+-=--y y y 知识点一:分式方程的定义 里含有未知数的方程叫分式方程。 要点诠释: (1)分式方程的三个重要特征:①是 ;②含有 ;③分母里含 有 。 (2)分式方程与整式方程的区别就在于分母中是否含有 (不是一般 的字母系数),分母中含有未知数的方程是 ,不含有未知数的方程是 方程,如:关于x 的方程 x x =-21和12723+=-x x 都是 方程,而关于x 的方程x x a =-21和d c b x =+1都是 方程。 知识点二:分式方程的解法 (一)解分式方程的基本思想 把分式方程化为 方程,具体做法是“去分母”,即方程两边同乘最简公分 母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 (二)解分式方程的一般方法和步骤 (1) ,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个 方程。 (3) :把整式方程的根代入最简公分母,使最简公分母不等于零的根是 原方程的根,使最简公分母等于零的根是原方程的 。 注:分式方程必须 ;增根一定适合分式方程转化后的整式方程, 知识要点——预习和课堂学习 认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听 课学习。请在虚线部分填写预习内容,在实线部分填写课堂学习内容。课堂笔记或者其它补 充填在右栏。详细内容请参看网校资源ID :#tbjx5#233542

因式分解公式大全

公式及方法大全 待定系数法(因式分解) 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 常用的因式分解公式:

例1 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是 x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3 =(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn,

比较两边对应项的系数,则有 解之得m=3,n=1.所以 原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下.例2 分解因式:x4-2x3-27x2-44x+7. 分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为 (x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, 所以有 由bd=7,先考虑b=1,d=7有 所以 原式=(x2-7x+1)(x2+5x+7).

初三数学因式分解的应用教案

初三数学因式分解的应用教案【】初三数学因式分解的应用教案教案让学生学会运用因式分解进行简单的多项式除法并且学会运用因式分解解简单的方程。 教学目标1、会运用因式分解进行简单的多项式除法。2、会运用因式分解解简单的方程。 二、教学重点与难点教学重点:因式分解在多项式除法和解方程两方面的应用。 教学难点:应用因式分解解方程涉及较多的推理过程。三、教学过程(一)引入新课1、知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a-b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身:①分解因式:(x +4) y - 16x y (二)师生互动,讲授新课1、运用因式分解进行多项式除法例1 计算: (1) (2ab -8a b) (4a-b)(2)(4x -9) (3-2x)解:(1) (2ab -8a b)(4a-b) =-2ab(4a-b) (4a-b) =-2ab (2) (4x -9) (3-2x) =(2x+3)(2x-3) [-(2x-3)] =-(2x+3) =-2x-3 一个小问题:这里的x能等于3/2吗?为什么? 想一想:那么(4x -9) (3-2x) 呢?练习:课本P162课内练习12、合作学习 想一想:如果已知( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之

间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0 试一试:你能运用上面的结论解方程(2x+1)(3x-2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程:(1) 2x +x=0 (2) (2x-1) =(x+2) 解:x(x+1)=0 解:(2x-1) -(x+2) =0则x=0,或2x+1=0 (3x+1)(x-3)=0原方程的根是x1=0,x2= 则3x+1=0,或x-3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2 等练习:课本P162课内练习2 做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么? 教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) -16x =0解:将原方程左边分解因式,得(x +4) -(4x) =0(x +4+4x)(x +4-4x)=0(x +4x+4)(x -4x+4)=0 (x+2) (x-2) =0接着继续解方程,5、练一练①已知a、b、c为三角形的三边,试判断a -2ab+b -c 大于零?小于零?等于

分式方程的解法及应用(提高)

分式方程的解法及应用(提高) 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ●了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. ●会列出分式方程解简单的应用问题. 学习策略: ●解分式方程去分母是关键; ●解分式方程的应用注意找等量关系,最后要验根. 二、学习与应用 1.一艘轮船在静水中的速度是20km/h,水流速度为v km/h,则轮船顺流航行的速度为,逆流航行的速度为 ,顺流航行100km所用的时间为,逆流航行60km所用的时间为 . 2. 解方程 21101 1 36 x x ++ -=时,去分母,去括号后为 . 3.将方程 11111 24396 x x x x +++=去分母后得到方程________. 要点一、分式方程的概念 分母中含有的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含 有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一 般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有 未知数的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 “凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对 要点梳理——预习和课堂学习 认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源 ID:#45981#405285 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

56初中数学八年级上册 分式方程的解法及应用(提高)知识讲解

初中数学八年级上册 分式方程的解法及应用(提高)知识讲解 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程;

因式分解的应用

因式分解的应用 一、知识体系 1. 因式分解是代数变形的重要工具,在后续的学习中,因式分解是学习分式、一元二次方程等知识的基础.现阶段,因式分解在数值计算、代数式的化简求值、不定方程(组)、代数等式的证明等方面都有广泛的应用;同时,通过因式分解的训练和应用,能使我们的观察能力、运算能力、变形能力、逻辑思维能力、探究能力得以提高。其应用主要体现在以下几个方面: ①.整体代换,代数式变形求值问题; ②.简化复杂的数值计算,利用因式分解找可以相消,凑整的部分; ③.证明数论相关问题,通过因式分解进行倍数、约数的分析; ④.解决几何问题,特别是三角形三边关系的恒等变形与证明. 2. 有些多项式因式分解后的结果在解决问题过程中常常用到,我们应该熟悉这些结果,记住一些常用公式,有助于我们快速解题: ①1(1)(1)ab a b a b +++=++,1(1)(1)ab a b a b --+=--; ②4224(22)(22)x x x x x +=-+++,42241(221)(221)x x x x x +=-+++; ③2222 2()()a b c ab bc ca a b c +++++=++; ④3332223()()a b c abc a b c a b c ab bc ca ++-=++++---. 二、例题讲解 例1.计算: (1))219961993()2107)(285)(263)(241()219971994()2118)(296)(274)(222(+?+?+?+?+?+?+?+?+?+? ; (2)32 322017220172015201720172018-?-+- 1.1 设322320162015(20162017)2015(20142013)2014a -?+=?--,3223 20172016(20172018)2016(20152014)2015b -?+=?--,则a ,b 的大小关系为( ) A. a b > B. a b = C. a b < D. 无法确定 1.2 设n 为某一自然数,代入代数式3n n -计算其值时,四个学生算出了下列四个结果.其中正确的结 果是( ) A .5814 B .5841 C .8415 D .845l

分式方程的概念及解法

分式方程的概念,解法 知识要点梳理 要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和 都是分式方程,而关于的方程和都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 2.解分式方程的一般方法和步骤 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。 (3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根。 注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。 3. 增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。 规律方法指导 1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解. 经典例题透析: 类型一:分式方程的定义 1、下列各式中,是分式方程的是() A.B.C.D. 举一反三:

分式方程应用题含答案经典

分式方程 应用题专题 1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计 从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到小时). 解:设通车后火车从福州直达温州所用的时间为x 小时. 依题意,得 29833122 x x =?+. 解这个方程,得14991 x =. 经检验14991 x =是原方程的解. 148 1.6491x =≈. 2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进 价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 解:设每盒粽子的进价为x 元,由题意得 20%x ×50-(x 2400-50)×5=350 化简得x 2-10x -1200=0 解方程得x 1=40,x 2=-30(不合题意舍去) 经检验,x 1=40,x 2=-30都是原方程的解, 但x 2=-30不合题意,舍去. 答: 每盒粽子的进价为40元. 4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成 总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( D ) A.6天 B.4天 C.3天 D.2天 5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空 调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( D ) A .66602x x =- B .66602x x =- C .66602x x =+ D .66602x x =+ 6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强 清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量. 解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本,

分式方程的概念解法及应用

分式方程的概念,解法及应用 目标认知 学习目标: 1.使学生理解分式方程的意义,掌握可化为一元一次方程的分式方程的一般解法. 2.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一 次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧. 3.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未 知问题转化成已知问题,从而渗透数学的转化思想. 4.能够利用分式方程解决实际问题,能从实际问题中抽象出数量关系,体会方程与实际问题的联系; 5.通过实际问题的解决,使分析问题和解决问题的能力得到培养和训练,进一步体验“问题情景——建立模型——求解——解释和应用”的过程; 重点: 分式方程转化为整式方程的方法及其中的转化思想,用分式方程解决实际问题,能从实际问题中抽象出数量关系. 难点: 检验分式方程解的原因,实际问题中数量关系的分析. 知识要点梳理

要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于 的方程和 都是分式方程,而关于

的方程和 都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 2.解分式方程的一般方法和步骤 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。

分式方程的几种解法

分式方程的几种解法 分式方程是初中数学教材重点内容之一,它是一元二次方程的应用和深化,同时又是列分式方程解应用题及解分式方程组的基础,所以分式方程有承上启下的作用,至关重要,它的解法很多,这里略谈一二。 一、 去分母法 方法导析:它是分式方程的基本解法,即:方程两边同乘以各分母的最简公分母,化分式方程为整式方程,解出这个整式方程,最后把所得结果代入最简公分母中检验,便得分式方程的根。 例1:解方程: 4 1 21235222-- -=++-x x x x x 解:方程两边同乘以)2)(2)(1(-++x x x 去分母得: )1(4)2)(1()2)(52(+-++=--x x x x x 整理得:01282=+-x x 解之得:6,221==x x 检验:把2=x 代入)2)(2)(1(-++x x x ,它等于0,所以2=x 不是原方程的根。把6=x 代入)2)(2)(1(-++x x x ,它不等于0,所以6=x 是原方程的根。∴原方程的根为6=x 。 二、 换元法 方法导析:根据方程特点用另一字母代替方程中的未知项式,得到一个关于这一字母的新方程,再进行解方程,其宗旨是换得的方程较原方程简单。

例2:解方程:2 13 33322=-+-x x x x 解,设a x x =-32,则a x x 13332?=-,原方程变形为: 2 133=+ a a 去分母,得:061322=+-a a 解之得:61=a 2 1 2=a 当6=a ,即63 2=-x x ,去分母,整理得0362=--x x 323±=∴x 当21=a ,即2132=-x x ,去分母,整理得0622=--x x 2 3 ,221-==∴x x 检验,把323+=x ,323-=x ,2=x , 2 3-=x 分别代入原方程分母中其计算结果都不为0,所以他们都是原方程的根。 ∴原方程的根是323±=∴x ,2=x , 2 3- =x 三、 通分法 方法导析:根据方程特点,原方程式适当变形后,两边进行通分,再结合分式性质解题。 例3:解方程: 4 1 614121+- +=+-+x x x x 解:方程两边通分得:) 4)(6(6 4)4)(2(24++--+=++--+x x x x x x x x 即: 24 102 8622 2+-=++x x x x ∴24108622+-=++x x x x 解得:1=x 经检验:原方程的根是1=x 。 四、 加减法

因式分解定理的应用

因式分解定理的两个应用 刘学勇 (浙江省象山县荔港学校 315731) 因式分解定理:用一次多项式x a -去除多项式()f x (()f x 表示关于x 的多项式)所得的余式是一个常数,这个常数等于()f a (当x a =时关于x 的多项式的值)。 推论:多项式()f x 能被x a -整除,则()0f a =;反之若()0f a =,则x a -整除多项式()f x 。通俗的说成:如果x a =时,关于x 的多项式的值为零,那么x a -是该多项式的一个因式。反之亦然。 利用此定理可以进行因式分解和解特殊的高次方程。 例1.若()()x a x b k ---中含有因式x b +,则k = 分析:根据因式分解定理把x b =-代入()()x a x b k ---=0得2()0b a b k +-=,则k=2()b a b + 例2.已知多项式32ax bx cx d +++ 除以1x -时,所得的余数是1,除以2x -时,所得的 余数是3,那么多项式32ax bx cx d +++除以(1)(2)x x --时,所得的余式是( ) A 。21x - B 。21x + C 。1x + D 。1x - (第12届初二第二试) 解:设32 ()f x ax bx cx d =+++=(1)(2)a x x px q --++,由因式分解定理(1)1(2)3f f =??=? 解得21 p q =??=-?,所以多项式32ax bx cx d +++除以(1)(2)x x --时,所得的余式是21x -。 例3.已知a ,b ,c 均为实数,且多项式32x ax bx c +++能够被234x x +-整除。(1)求 4a c +的值。(2)求 22a b c --的值;(3)若 a ,b ,c 为整数,且1c a ≥> 试确定 a , b , c 的大小。 (第8届初二第二试) 解:(1)因为234(1)(4)x x x x +-=-+,所以1x -,4x +都能整除32 x ax bx c +++,所以 (1)0(4)0f f =??-=?,即10641640a b c a b c +++=??-+-+=?,整理得116464 a b c a b c ++=-??-+=?解得313b a =-,124c a =-,所以412a c +=, (2)22a b c --=22(313)(124)a a a ----=14。

初中数学因式分解的应用培优练习题(附答案详解)

初中数学因式分解的应用培优练习题(附答案详解) 1.248﹣1能被60到70之间的某两个整数整除,则这两个数是( ) A .61和63 B .63和65 C .65和67 D .64和67 2.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( ) A .1、3 B .3、5 C .6、8 D .7、9 3.已知a ,b ,c 是△ABC 的三边长,且满足a 2+2b 2+c 2-2b(a +c)=0,则此三角形是 ( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .不能确定 4.若a-b=1,则222a b b --的值为____________. 5.“元旦”期间小明去永辉超市购物,恰逢永辉超市“满1400减99元”促销活动,小明准备提前购置一些年货A 和B ,已知A 和B 的单价总和是100到200之间的整数,小明粗略测算了一下发现自己所购年货总价为1305元,不能达到超市的促销活动金额. 于是小明又购买了A 、B 各一件,这样就能参加超市的促销活动,最后刚好付款1305元. 小明经仔细计算发现前面粗略测算时把A 和B 的单价看反了,那么小明实际总共买了______件年货. 6.已知a 1?a 2?a 3?…?a 2007是彼此互不相等的负数,且M=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007),N=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006),那么M 与N 的大小关系是M N . 7.已知a 2+b 2-6ab=0(a >b ),则 a b b a +-= 8.有下列四个结论: ①a÷m+a÷n=a÷(m+n); ② 某商品单价为a 元.甲商店连续降价两次,每次都降10%.乙商店直接降20%.顾客选择甲或乙商店购买同样数量的此商品时,获得的优惠是相同的; ③若222450x y x y ++-+=,则x y 的值为 12; ④关于x 分式方程211 x a x -=-的解为正数,则a >1. 请在正确结论的题号后的空格里填“√” ,在错误结论的题号后空格里填“×”: ①______; ②______; ③______; ④______ 9.如图1,在平面直角坐标系中, ,90,8AO AB BAO BO cm =∠=?= ,动点D 从原点O 出发沿x 轴正方向以/acm s 的速度运动,动点E 也同时从原点O 出发在y 轴上以/bcm s 的速度运动,且,a b 满足关系式22 4250a b a b +--+=,连接,OD OE ,设运动的时间为t 秒.

相关文档
相关文档 最新文档