文档库 最新最全的文档下载
当前位置:文档库 › 振荡波电缆局放检测和定位技术基本原理研究

振荡波电缆局放检测和定位技术基本原理研究

振荡波电缆局放检测和定位技术基本原理研究
振荡波电缆局放检测和定位技术基本原理研究

振荡波电缆局部放电检测和定位技术基本原理研究

随着城市电网电缆化率的程度不断提高,社会发展和进步对供电可靠性的要求也不断提高,如何

准确掌握配电电缆的健康状态,制定正确的检修对策,避免因电缆本身质量问题导致的突发性事故

的发生,变得尤为重要。研究发现,电缆的局部放电量与其绝缘状况密切相关,局部放电量的变化

预示着电缆绝缘可能存在危害电缆安全运行的缺陷。目前,国际上应用比较广泛的振荡波电缆局部

放电检测和定位技术,能够有效检测和定位配电电缆局部放电的位置且检测本身不对电缆造成伤害。本文主要从该系统的电源技术、抗干扰技术、定位技术、典型案例等方面进行介绍,为该技术的进

一步推广应用、改进创新提供技术参考。

近十年来,挤塑型电力电缆特别是XLPE电力电缆由于其绝缘性能好、易于制造、安装方便、供

电安全可靠、有利于城市和厂矿布局等优点,在城市电网中得到广泛使用。但是这种电缆的绝缘结

构中往往会由于加工技术上的难度或原材料不纯而存在气隙和有害性杂质,或者由于工艺原因在绝

缘介质与半导电屏蔽层之间存在间隙或半导电体向绝缘层突出,在这些气隙和杂质尖端处极易产生

局部放电,同时在电力电缆的安装和运行过程当中也可能会产生各种绝缘缺陷导致局部放电。由于XLPE等挤塑型绝缘材料耐放电性较差,在局部放电的长期作用下,绝缘材料不断老化最终导致绝缘

击穿,造成重大事故。

根据北京市电力公司相关统计资料表明,电缆老化、附件质量和工艺不良在 10kV 电缆故障中

占有较大比重。随着电缆运行时间的不断增长,潜伏的局部缺陷对城市电网可靠性的危害将会越来

越突出,对供电质量和公司形象造成的危害也会越来越大。因此,引进先进技术及时检测出电缆潜

伏性缺陷的要求也越来越迫切。

根据 2007 年北京市电力公司对新能源电网公司开展国际对标的重要成果并参考国内外相关文

献资料,采用振荡波电缆局部放电检测和定位技术对配电电缆进行测试,能够及时发现和定位潜伏

性局部放电缺陷且不会对电缆造成伤害,可以大大提高供电可靠性。

振荡波电源技术

电力电缆由于其电容量大,很难在现场进行工频电压下的局部放电检测。过去充油电缆采用直

流试验,可以大大降低电源的要求。但对XLPE电力电缆,由于其绝缘电阻较高,且交流和直流下电

压分布差别较大,直流耐压试验后,在XLPE电缆中,特别是电缆缺陷处会残留大量空间电荷,电缆

投运后,这些空间电荷常造成电缆的绝缘击穿事故[1、2]。采用超低频(0.1Hz)电源进行试验,要求

试验时间长,电缆绝缘损伤较大,可引发电缆中的新的缺陷[3]。

振荡波电压是近年来国内外研究较多的一种用于 XLPE 电力电缆局部放电检测和定位的电源。

该电源与交流电源等效性好,作用时间短、操作方便、易于携带,可有效检测XLPE电力电缆中的各

种缺陷,且试验不会对电缆造成伤害[4]。

OWTS振荡波电缆局部放电检测和定位装置如图1所示。检测时可以灵活施加0—28kV的直流

电压,合上半导体开关后,被试电缆与电感产生阻尼振荡。该装置可以检测的电力电缆电容范围为0.05 μF—2μF。

图1 OWTS振荡波电缆局部放电检测和定位装置2抗干扰技术

由于电缆的电容量大(近μF

级),局部放电要求严(几

pC

),而电力电缆局部放电测量中不

可避免的存在着环境噪声和外部干扰,局部放电信号往往湮没于这些噪声和干扰中,使测量变得非

常困难,抗干扰手段的提高显得尤为重要。这些干扰按其时域和频域特征的不同,可分为窄带干扰、脉冲型干扰和背景噪声三类。由于干扰强弱、频域特性的不同,抗干扰技术要有一定的针对性[5、6]。

(1)对于窄带干扰,由于其频域特征与局部放电信号的频域特征有较大差异,而且频带十

分窄,故大多采用频域滤波的方法进行抑制。

(2)对于脉冲型干扰,由于它和局部放电信号非常相似,从单个波形上很难将它们区分开来。目前主要采取时延鉴别法进行鉴别。时延鉴别法是利用外来干扰脉冲及发射波到达测量点的时

间差与内部放电及反射波到达测量点的时间差的不同进行鉴别。

(4)对于背景噪声,由于其在时域中表现为无规律的随机脉动,在频域中则表现为在整个频

带上均匀分布,因而单从频域或时域都不能有效地抑制。在小波去噪算法提出之前,往往采用时域

平均的方法来抑制这种随机性的背景噪声,但效果并不理想。小波去噪算法的出现可以比较有效地

解决这个问题[7、8]。

OWTS振荡波电缆局部放电检测和定位装置具有带通滤波、小波分析、时延分析等抗干扰功能,

可根据信号特点,方便的进行放电脉冲的取舍,如图2所示。该装置还可以生成清晰的局部放电图

形(如电压波形与局部放电信号关系图、三维谱图等),以便确定局部放电的类型,如图3所示。

(a )带通滤波功能(b )小波分析功能图2 OWTS 软件抗干扰功能

(a )电压波形与放电关系(b )三维谱图分析图3 OWTS 软件图形显示功能

3定位技术

对于电力电缆局部放电的定位,早期就有对电缆实行扫描式检测查找局部放电点的技术,现在实际中采用的是70年代发展起来利用局部放电脉冲在电缆上的传播特性,用10MHz 以上的高频扫描示波器进行定位测量的方法,该法也叫行波法或TDR 法,其原理如图4所示。

图4 行波法定位原理

a )接线图

b )检测阻抗上的脉冲信号示意图

c )脉冲波在电缆上的传播

CDO--示波器 PDS —局部放电测试仪

b )

c ) t1

t2

0 t

其中,Ck 为高压电容,Zk 为检测阻抗,同时也做匹配阻抗,消除脉冲在高压端的反射。设在t 0 时,在电缆x 处发生放电,送出的两个脉冲按相反方向沿电缆传播,t

1时刻第一个脉冲到达测试仪, 第二个脉冲在电缆远端反射后在t 2 时刻到达测试仪(如图4)。由于电缆中电脉冲的传播速度相对于确定的电缆绝缘型式是已知的常数,所以根据式(1)就可以算出放电点离电缆近端(高压端)的距离x 。 x = ?L τV

2(1)

其中L 为电缆长度,V 为脉冲波在电缆中的速度,τ为两个脉冲的时延,即τ= ?t 2t 1。

OWTS 振荡波电缆局部放电检测和定位装置采用该原理对电力电缆局部放电进行定位,如图5所示。

(a )单个脉冲分析及定位情况(b )放电量及放电位置图5 脉冲分析及定位情况

4典型案例分析

利用该装置对某10/8.7kV XLPE 三芯电缆进行局部放电检测和定位,该电缆全长383米,距离测试端100米处有一个热缩中间接头。

检测发现该电缆在1.7U 0时放电量达到10000pC 左右,0.5U 0时放电量达到1000pC 左右,定位发

现放电缺陷就在接头处。测试情况如图6所示。

(a )方波标定(b )加压至9kV 时电缆局部放电与施加电压的关系

(c )单个脉冲分析及定位情况(d )放电量及放电位置图6 某10kV 电缆现场测试情况

经过解体分析,该电缆内、外半导电管端口不整齐有突起,且端部未缠绕半导电带形成坡口,外屏蔽层剥离不整齐,有突起是造成严重局部放电的原因,如图7所示。

(a )(b )

(c)(d)图7 电缆解体图片

(a)外屏蔽剥削不整齐,有突起,未打磨;(b)黑色热缩管是半导电材料,红色热缩管是绝缘材料。黑色热缩管端

部不整齐,且未用半导电带做过渡形成坡口,热缩管表面有凹陷,不平滑。(c)里层黑色热缩管与电缆导体接触,

表面有凹陷,不平滑。(d)内、外半导电热缩管的端部均没有用半导电带缠绕形成坡口。

5 小结

实践证明,OWTS振荡波电缆局部放电检测和定位装置通过采用振荡波电源技术、时延鉴别等抗干扰

技术、行波法定位技术可以在现场有效检测出10kV配电电缆的局部放电水平并对其进行准确定位,

从而避免因为安装工艺或电缆劣化导致的突发性事故的发生,值得进一步推广应用。

参考资料:

[1]饶强,交联聚乙烯新的试验方法[J],广西电业,2004(8):107-109

[2]罗俊华等,35kV 及以下XLPE 电力电缆试验方法的研究[J],电网技术,2000.24

[3]张平康,韩伯锋,XLPE 电缆的试验方法[J],高电压技术,2004.30(增)

[4]杨连殿等,振荡波电压在XLPE 电力电缆检测中的应用[J],高电压技术,2006.03

[5]邱昌容等. 《绝缘测试技术进展》. 第二届全国电气绝缘测试技术会议论文集,pp1~15,October 1991,桂林.

[6]胡龙龙. 数字信号处理方法在局部放电信号提取中的应用,硕士学位论文,西安:西安

交通大学,2002.

[7]Xu Y.S.,Weaver J.B.,Healy D.M.,Jr.,and Lu J. Wavelet Transform Domain Filters:A

Spatially

Selective Noise Filtration Technique. IEEE Transaction on Image Processing,V ol.3,No.6,November 1994

[8]Donoho D.L. and Johostone I.M. Ideal Spatial Adaptation via Wavelet Shrinkage. Biometrika,

V ol.81,1994

高压电缆局放试验过程步骤及注意事项

试验过程 1、闭上总电源开关、闭上控制电源开关。 2、确认屏蔽室大门已关闭,系统处于通电状态。 3、根据电缆长度和截面,选择好适当的电抗器,高压抽头。当电抗器内电动切换抽头开关已处于完毕定(流)状态时,蜂鸣器应停止声响,表明高压抽头已就绪。 4、选择合适的电压测量量程。 5、检查“调谐速度”,将它调整到最大值的约30%。 6、接通高压电源主回路。 7、升压,以升高“励磁变压器的输出电压”直到所需试验电压值的1%处,例如:试验电压为10KV,那么励磁变压器的输出电压即为0.1KV。 8、在该励磁电压下,调节高压电抗器间隙位置,使试验回路达到谐振。应注意高压输出电压,输出值达到最高时,说明回路已达到谐振状态。 9、当试验回路处于谐振状态时,再按下“升压”按钮以升高输出电压至试验电压值。 10、当试验时间到,按下“降压”按钮,降低输出电压至最小值,再按下“高压分”按钮,试验系统便切断回路高压电源。注意:切勿在试验电压很高情况下直接按下“高压分”按钮,以防造成试品击穿。 11、试验结束后,断开调压器上的“空开”,必要时应断开整个设备电流的进线开关,以保证操作人员的安全。 试验前准备工作: 剥电缆头:1)半导体屏蔽剥(10kV)100~150mm长,(35kV)剥500~700mm长;要求:剥切口要光滑,不允许有尖端点。2)屏蔽铜带剥切长度要比半导体屏蔽长约100mm。3)铠装钢带要剪平并清理干净。 变压器油(氟里昂)准备:过滤、干燥,击穿场强应在40KV 以上。 注意事项:1、做试验时不能随意开操作室的门和窗,此时,如有放电,将会出现滤电的现象,导致出现误导数据。2、试验电缆两端都应浸入到油杯中,高压引到电缆上的叫近油杯,油杯内有弹性铜针。另一短为远油杯,无弹性铜针。3、油要浸过半导体屏蔽约5~10mm,以免放电,远油杯端电缆端部要离油杯底部约10mm。

振荡波电缆局放检测和定位技术基本原理研究

振荡波电缆局部放电检测和定位技术基本原理研究 随着城市电网电缆化率的程度不断提高,社会发展和进步对供电可靠性的要求也不断提高,如何 准确掌握配电电缆的健康状态,制定正确的检修对策,避免因电缆本身质量问题导致的突发性事故 的发生,变得尤为重要。研究发现,电缆的局部放电量与其绝缘状况密切相关,局部放电量的变化 预示着电缆绝缘可能存在危害电缆安全运行的缺陷。目前,国际上应用比较广泛的振荡波电缆局部 放电检测和定位技术,能够有效检测和定位配电电缆局部放电的位置且检测本身不对电缆造成伤害。本文主要从该系统的电源技术、抗干扰技术、定位技术、典型案例等方面进行介绍,为该技术的进 一步推广应用、改进创新提供技术参考。 近十年来,挤塑型电力电缆特别是XLPE电力电缆由于其绝缘性能好、易于制造、安装方便、供 电安全可靠、有利于城市和厂矿布局等优点,在城市电网中得到广泛使用。但是这种电缆的绝缘结 构中往往会由于加工技术上的难度或原材料不纯而存在气隙和有害性杂质,或者由于工艺原因在绝 缘介质与半导电屏蔽层之间存在间隙或半导电体向绝缘层突出,在这些气隙和杂质尖端处极易产生 局部放电,同时在电力电缆的安装和运行过程当中也可能会产生各种绝缘缺陷导致局部放电。由于XLPE等挤塑型绝缘材料耐放电性较差,在局部放电的长期作用下,绝缘材料不断老化最终导致绝缘 击穿,造成重大事故。 根据北京市电力公司相关统计资料表明,电缆老化、附件质量和工艺不良在 10kV 电缆故障中 占有较大比重。随着电缆运行时间的不断增长,潜伏的局部缺陷对城市电网可靠性的危害将会越来 越突出,对供电质量和公司形象造成的危害也会越来越大。因此,引进先进技术及时检测出电缆潜 伏性缺陷的要求也越来越迫切。 根据 2007 年北京市电力公司对新能源电网公司开展国际对标的重要成果并参考国内外相关文 献资料,采用振荡波电缆局部放电检测和定位技术对配电电缆进行测试,能够及时发现和定位潜伏 性局部放电缺陷且不会对电缆造成伤害,可以大大提高供电可靠性。 振荡波电源技术 电力电缆由于其电容量大,很难在现场进行工频电压下的局部放电检测。过去充油电缆采用直 流试验,可以大大降低电源的要求。但对XLPE电力电缆,由于其绝缘电阻较高,且交流和直流下电 压分布差别较大,直流耐压试验后,在XLPE电缆中,特别是电缆缺陷处会残留大量空间电荷,电缆 投运后,这些空间电荷常造成电缆的绝缘击穿事故[1、2]。采用超低频(0.1Hz)电源进行试验,要求 试验时间长,电缆绝缘损伤较大,可引发电缆中的新的缺陷[3]。 振荡波电压是近年来国内外研究较多的一种用于 XLPE 电力电缆局部放电检测和定位的电源。 该电源与交流电源等效性好,作用时间短、操作方便、易于携带,可有效检测XLPE电力电缆中的各 种缺陷,且试验不会对电缆造成伤害[4]。 OWTS振荡波电缆局部放电检测和定位装置如图1所示。检测时可以灵活施加0—28kV的直流 电压,合上半导体开关后,被试电缆与电感产生阻尼振荡。该装置可以检测的电力电缆电容范围为0.05 μF—2μF。

高压电缆局放在线监测系统(亿森)

高压电缆局放在线监测系统 设计方案 福州亿森电力设备设备有限公司 2016年9月

摘要:在XLPE电缆投入运行后,由于绝缘的老化变质、过热、机械损伤等,使得电缆在运行中绝缘裂化,为了防止由于绝缘劣化造成电缆运行事故,需要对电缆的运行状态进行即时监测,监测系统控制着电缆及其附件的质量。局部放电是目前比较有效的在线监测方法,局部放电检测目前相应有电磁耦合法、超高频法和超声波法、光学测量法等,本文将着重论述这些方法各自的优势与不足,同时对目前发展起来的PD混沌监测方法进行讨论。 关键词:XLPE电缆;在线监测;局部放电;混沌法 0引言 随着电力系统的飞速发展以及旧城改造工程的进行,电力电缆在电力网络中的应用愈发广泛。电力电缆的基本结构包括线芯、绝缘层、屏蔽层和保护层四个部分。其中线芯即导体,是电力电缆中传输电能的部分,是电缆的主要结构。绝缘层将线芯与外界电气上隔离。屏蔽层包括导体屏蔽层和绝缘屏蔽层,一般存在于15kV及以上电缆中。保护层是用来防止外界的杂质和水分的渗入和外力的破坏[1]。 电力电缆按照电压等级分类有低压电缆(35kV及以下输配电线路)、中低压电缆(35kV及以下)、高压电缆(110kV及以上)、超高压电缆(275~800kV)、特高压电缆(1000kV及以上)。 按照绝缘材料电力电缆可以分为塑料绝缘电缆和橡皮绝缘电缆。其中油纸绝缘电缆应用历史最长。它安全可靠,使用寿命长,价格低廉。主要缺点是敷设受落差限制。塑料绝缘电缆主要用于低压电缆,常用的绝缘材料有聚氯乙烯、聚乙烯、交联聚乙烯。橡皮绝缘电缆弹性好,适合用于移动频繁弯曲半径小的敷设地点。 我国早期使用的多是油纸绝缘电缆,但自1970 年以来,交联聚乙烯(XLPE)电力电缆得以广泛应用,并逐渐取代了油纸绝缘电缆的地位。XLPE电缆电气性能优越,具有击穿电场强度高、介质损耗小、载流量大等优点因而得到了广泛的应用。 在线检测电缆故障的方法有很多,如直流分量法、损耗电流谐波分量法、局部放电法等,其中,局部放电法是目前用于现场比较有效的在线检测方法。XLPE电缆发生局部放电时一般会产生电流脉冲、电磁辐射、超声波等现象,根据检测物理量的不同,局部放电检测相应有电磁耦合法、超高频法和超声波法等,其中,电磁耦合法由于传感器灵敏度高、安装方便,且与电缆无电气连接,是目前应用最为广泛的一种方法。 本文主要论述了XLPE电缆局部放电在线监测的一些基本方法的优势与缺陷,并对电缆局部放电的混沌监测方法进行了讨论[2]。 1 PD在线监测的意义以及技术 难点 局部放电,是绝缘介质中的一种电气放电,这种放电仅限制在被测介质中一部分且只使导体间的绝缘局部桥接,这种放电可能发生或可能不发生于导体的邻近。电力设备绝缘中的某些薄弱部位在强电场的作用下发生局部放电是高压绝缘中普遍存在的问题。虽然局部放电

10kV 电缆振荡波局放测试系统测试要求

10kV电力电缆 阻尼振荡波局部放电检测试验方案 (试行)

10kV 电力电缆振荡波局部放电检测试验方案 一、试验标准和目的 根据要求,通过现场试验,在不损害电缆本体绝缘的情况下检查10kV 电缆的绝缘状况及其内部局部放电情况,以对其绝缘进行评估。 二、试验仪器 ONSITE MV 10 型电缆振荡波局放检测系统 三、试验内容 10kV 电缆振荡波局部放电检测基本原理如图1所示: 图1 电缆振荡波局放测试原理 用交流电源将被测试电缆在几秒中内充电至工作电压(额定电压)。实时快速状态开关S 闭合,将被测电缆和空心电感构成串联谐振回路,回路开始以的频率进行振荡。空心电感值根据谐振频率的要求进行选择,频率范围5O ~1000Hz ,相近于工频频率。图1中的中压电路一般具有相对低的介质损耗角的特点,与具有低损耗的空心电感相配,可得到具有高品质因数的谐振回路。回路品质Q 一般为30~100,振荡波以谐振频率在0.3~1s 内衰减完毕,这一过程只有几十分之一周波,并对被测试电缆充电,与50Hz(60Hz)时局部放电非常相似。 振荡波所产生的局放脉冲符合lEC60270推荐值,局放脉冲定位可由行波方法完成,进而生产电缆故障图,电缆电容C 和δtan 值可通过振荡波的时间和频率特性来计算。 LC f π2/1=

1、被测电缆要求及测试前准备 1)局放测试前,将电缆断电、接地放电,两端悬空,布置好安全围栏; 2)尽量将电缆接头处PT、避雷器等其它设备拆除; 3)电缆头擦拭干净,电缆头与周边接地部位绝缘距离足够; 4)收集电缆长度、型号、类型、投运日期等电缆参数; 5)电缆长度L:电缆一侧测量方式:50m≦L≦6km; 电缆两端测量方式:L>6km。 6)测试用电缆用发电机、10KV放电棒、接地线、220V电源插盘。 2、振荡波局部放电试验 2.1 电缆局放校准。 采用ONSITE MV 10型电缆振荡波局部放电测试和定位仪,图2所示为校准界面: 图2 局放校准界面 测试要求: 1)将局放校准仪连线的接线端分别夹在被测电缆的线芯和屏蔽上; 2)注意在高压测试开始时将校准器连线拆除; 3)局放校准仪的输出频率设定在100Hz; 4)校准区间从100pC~100nC均要校准。

高压电力电缆局放测试的方法

https://www.wendangku.net/doc/1f3981452.html, 高压电力电缆局放测试的方法 高压电力电缆局放测试的方法首先是交流耐压试验电源处理,交流耐压试验电源处理用到的装置是串联谐振 1、交流耐压试验电源处理 高压电缆交流耐压采用的是变频谐振装置产生试验电源,变频柜是装置的核心部件,变频柜通过晶闸管的整流和逆变获取试验所需的频率,在电源变换过程中引入了大量的高频脉冲电流成份。

https://www.wendangku.net/doc/1f3981452.html, . 变频谐振系统输出的电源不能直接作为电缆局放试验的电源直接施加于被试对象进行局部放电测试,必须采取有效措施对试验电源进行预处理,通过设置串联电抗、防晕导线、均压环进行对试验电源质量进行改善,其电气原理所下图所示。 . 2、电缆终端局放测试回路 电缆终端的局放测试回路如下图,当被试电缆内部发生了局部放电时,耦合电容瞬时对电缆终端充电,形成高频的脉冲充电电流波形,脉冲电流的幅值、发生的频度反映了电缆

https://www.wendangku.net/doc/1f3981452.html, 内部局部放电的严重程度,通道1、通道2两个传感器将局放信号传送至局放诊断系统进行分析处理。 . 在电缆的中间接头,测试原理如图所示,一侧电缆的铠装与电缆导体之间存在电容Ca,另一侧电缆的导体与铠装之间存在电容Cb,如果在电缆的中间接头发生局部放电,那么形成两个电容C1和C2,此时Ca和Cb就会通过导体向C1和C2充放电,从而形成局放电流回路,在两侧电缆屏蔽层桥接一个高频低阻的电容臂C0和高频电流传感器,就可以检测到局放的脉冲电流信号。 .

https://www.wendangku.net/doc/1f3981452.html, . 3、高压电缆局放测试的技术难点 a) 测试系统灵敏度要求高 高压电缆发生局放时产生的脉冲信号微弱,要求传感器及测试系统有相当高的检出灵敏度。 b) 现场干扰因素复杂 在现场实施电缆局放试验时干扰信号会严重影响电缆局放的检测和诊断,主要有临近试验现场的运行设备产生的电晕或者局部放电信号、交流耐压试验装置自身的局部放电信号、交流耐压试验回路的引线产生的电晕信号三个方面的因素。 因此甄别并排除干扰信号、提取有效的信息并根据其特征诊断电缆的绝缘状态是一项具有挑战性的技术难题。 c) 对测试人员的要求高 高压电缆局放的信号主要集中在0-30MHz范围内,信号频带较宽,加上现场存在一定的干扰信号,测试人员通过信号抑制、识别、分类、提取、判断等技术手段,准确的解析复杂的电子信号成份实现电缆的状态诊断。这项技术要求测试人员熟练使用示波器、频谱仪、滤波器等电子设备,并具备高频电子信号分析判断能力。u d) 国家标准及行业标准没有明确的指引 高压电缆局放测试是目前国内比较新的技术应用课题,国内仅有北京供电局进行过类似尝试,佛山局在这一技术领域走在了国内前列。 4、局放诊断判据

长电力电缆振荡波局部放电检验测试验方案计划

国家电网合肥供电公司 10kV长电力电缆阻尼振荡波 测试方案 安徽立翔电力技术服务有限公司 二零一七年七月

目录 一、试验标准和目的............................................................................................................... - 2 - 二、试验仪器........................................................................................................................... - 2 - 三、试验内容........................................................................................................................... - 3 - 1、术语及定义.................................................................................................................. - 3 - 2、试验原理介绍.............................................................................................................. - 3 - 3、被测电缆要求及测试前准备...................................................................................... - 5 - 4、绝缘电阻测试.............................................................................................................. - 5 - 5、测试电缆中间接头位置及电缆长度.......................................................................... - 5 - 6、振荡波局部放电试验.................................................................................................. - 6 - 6.1 电缆局放校准...................................................................................................... - 6 - 6.2 振荡波局放测试.................................................................................................. - 6 - 1)试验接线步骤:................................................................................................... - 6 -2)加压测试程序....................................................................................................... - 7 -3)测试要求及注意事项:....................................................................................... - 7 - 7、振荡波局放诊断评价.................................................................................................. - 8 - 1)绝缘电阻:........................................................................................................... - 8 -2)电缆局部放电量:............................................................................................... - 8 - 8、电缆振荡波局放异常处理决策.................................................................................. - 8 - 1)绝缘电阻异常情况处理措施............................................................................... - 8 -2)电缆振荡波局放量超标异常情况处理措施....................................................... - 8 - 9、试验时间:1.5~2.5 小时/段..................................................................................... - 9 - 四、人员安排:....................................................................................................................... - 9 - 五、安全措施:....................................................................................................................... - 9 -

交流高压电缆局部放电的在线监测概述

交流高压电缆局部放电的在线监测 陈敬德,1140319060;指导老师:李旭光 (上海交通大学电气工程系,上海,200240) 摘要:在XLPE电缆投入运行后,由于绝缘的老化变质、过热、机械损伤等,使得电缆在运行中绝缘裂化,为了防止由于绝缘劣化造成电缆运行事故,需要对电缆的运行状态进行即时监测,监测系统控制着电缆及其附件的质量。局部放电是目前比较有效的在线监测方法,局部放电检测目前相应有电磁耦合法、超高频法和超声波法、光学测量法等,本文将着重论述这些方法各自的优势与不足,同时对目前发展起来的PD混沌监测方法进行讨论。 关键词:XLPE电缆;在线监测;局部放电;混沌法 0引言 随着电力系统的飞速发展以及旧城改造工程的进行,电力电缆在电力网络中的应用愈发广泛。电力电缆的基本结构包括线芯、绝缘层、屏蔽层和保护层四个部分。其中线芯即导体,是电力电缆中传输电能的部分,是电缆的主要结构。绝缘层将线芯与外界电气上隔离。屏蔽层包括导体屏蔽层和绝缘屏蔽层,一般存在于15kV及以上电缆中。保护层是用来防止外界的杂质和水分的渗入和外力的破坏 [1]。 电力电缆按照电压等级分类有低压电缆(35kV 及以下输配电线路)、中低压电缆(35kV及以下)、高压电缆(110kV及以上)、超高压电缆(275~800kV)、特高压电缆(1000kV及以上)。按照绝缘材料电力电缆可以分为塑料绝缘电缆和橡皮绝缘电缆。其中油纸绝缘电缆应用历史最长。它安全可靠,使用寿命长,价格低廉。主要缺点是敷设受落差限制。塑料绝缘电缆主要用于低压电缆,常用的绝缘材料有聚氯乙烯、聚乙烯、交联聚乙烯。橡皮绝缘电缆弹性好,适合用于移动频繁弯曲半径小的敷设地点。 我国早期使用的多是油纸绝缘电缆,但自1970 年以来,交联聚乙烯(XLPE)电力电缆得以广泛应用,并逐渐取代了油纸绝缘电缆的地位。XLPE电缆电气性能优越,具有击穿电场强度高、介质损耗小、载流量大等优点因而得到了广泛的应用。 在线检测电缆故障的方法有很多,如直流分量法、损耗电流谐波分量法、局部放电法等,其中,局部放电法是目前用于现场比较有效的在线检测方法。XLPE电缆发生局部放电时一般会产生电流脉冲、电磁辐射、超声波等现象,根据检测物理量的不同,局部放电检测相应有电磁耦合法、超高频法和超声波法等,其中,电磁耦合法由于传感器灵敏度高、安装方便,且与电缆无电气连接,是目前应用最为广泛的一种方法。 本文主要论述了XLPE电缆局部放电在线监测的一些基本方法的优势与缺陷,并对电缆局部放电的混沌监测方法进行了讨论[2]。 1 PD在线监测的意义以及技术 难点 局部放电,是绝缘介质中的一种电气放电,这种放电仅限制在被测介质中一部分且只使导体间的绝缘局部桥接,这种放电可能发生或可能不发生于导体的邻近。电力设备绝缘中的某些薄弱部位在强电场的作用下发生局部放电是高压绝缘中普遍存在的问题。虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导

10kV电力电缆局放测试

浅谈10kV电力电缆局部放电测试及缺陷处理 ——OWTS振荡波局放测试及定位系统 摘要:本文简单介绍了电缆局部放电的原因和危害,以及振荡波测试系统的工作原理,以某路电缆为例,重点介绍了振荡波测试系统在电缆局部放电测试定位中的现场应用,总结了OWTS测试、分析中的经验和技巧,并对存在局放缺陷电缆的消缺进行新方法的尝试,为日后处理电缆的局放现象提供参考意见。 关键词:电缆,局部放电,振荡波,消缺方法 1前言 随着现代社会经济的飞速发展,人们对中心城区的环境、安全及形象的关注,越来越多的电力电缆已经逐步代替了配电架空线路运行。电力电缆将成为未来中心城区配电网运行的主流设备,因电缆故障引起的线路跳闸也日渐增多,电缆本体和附件的电气绝缘损坏是造成配网设备故障率高的主要原因,如何预防及控制电缆本体和附件的电气绝缘损坏已成为当前电缆配电网运行维护的关键。 2 绝缘的老化 2.1 概述 电气设备的绝缘在运行中会受到各种因素如电场、热、机械应力、环境因素等的作用,其内部将发生复杂的化学与物理变化,导致性能逐渐劣化,这种现象称为老化。在设备正常运行的条件下,老化是渐进的、长期的过程。 绝缘材料的老化以有机绝缘材料的老化问题最为突出。液体有机绝缘材料老化时表观上发生混浊、变色等;高分子有机绝缘材料老化时表观上发生变色、粉化、起泡、发粘、脆化、出现裂纹或裂缝、变形等。多数情况下、绝缘材料的老化是由于其化学结构发生了变化,即由于降解、氧化、交联等化学反应,改变了其组成和化学结构;但是有的老化仅仅是由于其物理结构发生了变化所致,例如绝缘材料中的增塑剂不断挥发或其中球晶不断长大,这些都会使材料变硬、变脆而失去使用价值。通常绝缘材料性能的劣化是不可逆的,其最终将会引起击穿,直接影响电力设备和电力系统的运行可靠性。 绝缘劣化过程的发展需要一定能量,亦即依赖于外界因素的作用,如电场、热、机械应力、环境因素等。运行情况下常常是多种因素同时作用,互相影响,过程复杂。

文高线42-45#- 振荡波测试报告 (局放)

电缆振荡波局部放电试验报告 测试地点: 垫江XX小学 被测线路: 35KV文高线 测试单位: 重庆XX有限公司 使用设备:德国OHV M60 测试人员:张工 日期:2018年9月10 日

10KV 电缆阻尼振荡波局部放电试验报告 测试日期: 2018/09/10 测试单位:重庆硕远科技有限公司投运时间: 位置: 垫江县宝鼎中学电容:159.5 nF - 159.8 nF (? 159.6 nF)近末端:35KV文高线42号频率: :338.0 Hz - 338.3 Hz (? 338.2 Hz)远末端:35KV文高线45号温度: 23℃ U0: 26kV 电缆规格:3*300 测试依据: 6-35KV电缆振荡波局部放电测试方法DL/T 1576-2016 通过TDR分析电缆三相约4组接头,分别为205米,312米,395米及575米

TDR校验结果 通过TDR校验得到电缆的长度为750米,远端波形反射明显,波速为172m/us 背景信号:(0U0) 187PC

加压窗 1U0下波形 1.5U0下波形 AB相在升压到1U0时能看到明显的放电信号,分布在一三象限,局放特征较为相似

局放测试结果:PRPDA/局放检测 升压次数: 分析区域1 从0.05 ms到 1.54 ms同时相位角从 3.0°到93.0° 分析区域2 从3.03 ms到 4.52 ms同时相位角从183.0°到273.0°一三象限放电信号很集中,放电信号随电压的升高而增大

局放测试结果:局放位置映像 结论: 典型的柱状集中现象,根据《DL/T1576-2016 6kv~35kv 电缆振荡波局部放电测试方法》标准,两处放电量都超过了临界值,通过校验波形来看,此处均为中间接头的位置电缆振荡波数据分析中发现有明显局放信号,A相电缆,在313米发现了明显的局放点,局放量达到13050pC;B相电缆,在385米发现了明显的局放点,局放量达到1000pC 左右;(详情见测试报告附表位置映像图),并且具有典型的局放柱状特征。根据校准波形分析,此两处正好为中间接头位置,建议对接头立即处理。 由于接头工艺制作问题或者老化导致的放电的产生,应加强对电缆施工工艺的把控,严谨对于中间接头和终端头的制作。

高压电缆局部放电检测及实例分析

高压电缆局部放电检测及实例分析 发表时间:2018-10-01T13:06:14.327Z 来源:《基层建设》2018年第26期作者:余昌洪 [导读] 摘要:在高压电缆运行过程中,电缆故障前会出现局部放电现象,且危害性较大,需要掌握有效的检测方法。 广东省输变电工程有限公司广东广州 510160 摘要:在高压电缆运行过程中,电缆故障前会出现局部放电现象,且危害性较大,需要掌握有效的检测方法。本文首先对高压电缆局部放电特征及危害、高压电缆局部放电检测原理进行分析,在此基础上,结合某220kV工程实例,探讨具体的高压电缆局部放电检测试验,为今后电力运行和实践提供参考。 关键词:高压电缆;局部放电检测;实例分析 前言 高压电缆由于长时间与空气、水分、土壤等发生接触,电缆绝缘层容易受到腐蚀,出现绝缘老化现象。此时电缆的电容和电阻都已发生改变,在物理和化学效应下,出现局部放电现象。在高压电缆运行维护过程中,对局部放电故障点进行排查和检测是一项重要工作,而且具有较高难度,如果选择方法不当,会消耗大量时间,容易导致故障升级。因此,有必要对其具体检测方法进行研究,提高高压电缆局部放电检测效率和检测结果的准确性。 一、高压电缆局部放电及检测原理 (一)高压电缆局部放电特征及危害 高压电缆局部放电通常是指高压设备绝缘介质处于高电场强度下,受电场作用发生在电极间的未贯穿放电现象。这种放电现象只出现在绝缘部位,不会马上形成贯穿性的通道,所以被称为局部放电。目前采用的交联聚乙烯(XLPE)电缆,其绝缘层材料属于固态塑料结构,但制造过程中容易混入金属等杂质,或因内外半导体层的不规则凸起、出现气孔等,导致高压场强不均匀,或是在绝缘中存在电树。这些原因都可能导致高压电缆出现局部放电现象。从实际情况来看,在电缆制造工艺的快速发展下,其自身质量问题已经得到了有效控制,因此目前局部放电现象一般出现在交联聚乙烯电缆的中间接头或终端头部位。一般情况下,局部放电产生的能量较小,不会影响电缆正常运行,但如果局部放电现象长期存在,会对绝缘层造成累积损害,最终导致绝缘层被击穿。而且交联聚乙烯电缆的自身材料化学性质决定其耐局部放电性较差,会加速绝缘劣化,最终导致绝缘失效,引发故障事故[1]。 (二)高压电缆局部放电检测原理 当高压电缆出现局部放电现象时,耦合电容Ck会对被试电缆Cx进行瞬间充电,从而形成高频脉冲电流波形。产生的高频脉冲电流波形为纳秒级别,频谱在百兆以上,其电流幅值大小和频度能够反映出电缆局部放电严重程度。可以利用局部放电监测系统,对高压电缆局部放电信号进行严密监视,捕捉其电压和时间变化趋势,从而掌握电缆的缺陷程度。高压电缆局部放电量能够反映出其局部放电严重程度,在测试前,首先应校准测试系统。在检测过程中,可以向被试电缆Cx注入一个标准局部放电信号Qo,模拟发生局部放电的过程。注入标准局部放电信号后,对阻抗的输出信号进行检测,获取局部放电幅值、相位分布、频谱特征等关键信息。在局部放电测试过程中,可参照标准信息对局部放电量进行计算,从而判断局部放电类型和严重程度[2]。 二、局部放电检测常用方法 在高压电缆敷设工程中,局部放电测试一般与耐压测试同时进行。利用变频谐振装置产生试验电源,将变频柜作为装置核心部件,并通过晶闸管整流、逆变获取试验所需频率。电源变换过程中引入大量高频脉冲电流成分,但该系统输出的电源不能作为电缆局部放电试验电源直接施加在被试对象上,而应对试验电源进行预处理,通过设置防晕导线、串联电抗、均压环等,改善试验电源质量。以湛江220kV工程为例,在进行试验前,首先应对试验参数进行估算。其中,被试设备的电缆电容值每公里为0.25μF,测量分压器电容为0.03μF,总电容量为2.17μF。实验电压频率计算值为33.43Hz,高压试验电流估算值为81.27A,380V电源电流估算值为600A。由于电缆耐压试验电源为异频电源,试验电源相位图的工频信号不具有相关性,只有局部放电信号在相位图谱中具有相关性,可利用这一性质排除干扰信号。在实验过程中,装置自身局放信号主要产生自晶闸管开闭过程,并集中在特定部位,可采用开相位窗法对其进行排除。对于相同电缆缺陷,电压越高时局放信号也越大,检出灵敏度则更高。 三、高压电缆局部放电检测实例 (一)工程概况 湛江220kV送电线路工程起始于湛江电厂,终止于观桥站220kV进线电缆筒,线路全长12.97公里,其中高压电缆线路长度10.1公里,电缆型号为FY-YJLW03-Z-127/220kV-2000mm2,采用架空电缆混合线路设计方式。线路中包含84个中间接头和12套终端头,高压电缆和附属设备安装均已完成。现进行220kV电缆耐压试验,从电缆终端塔电缆套管处加压,并对新建电缆进行交流耐压和局部放电检测试验,确定线路绝缘状况是否能够满足交接试验标准试验规程的要求。 (二)试验目的及方法 本次试验是对上述工程新建两回电缆进行的交流耐压试压,检测对象为新敷设电缆及所有中间接头和终端接头,判断其绝缘状况。试验检测以《电气装置安装工程电气设备交接试验标准》(GB 50150-2016)为主要依据,检测结果要同时满足厂家技术要求和业主要求。试验项目包括220kV电缆芯线对护套及地绝缘电阻试验和交流耐压试验。其中,电缆耐压试验电压为178kV,试验时间为60min。主要试验设备包括300kV A变频电源、300kV A励磁变、高压电抗器、分压电容器等。试验电压频率的计算值为33.43Hz,高压试验电流的计算值为 81.27A,电源电流的估算值为600A。试验采用调频式串联谐振电抗器,可调节频率范围为20~300Hz。 (三)关键试验步骤 在进行交流耐压和绝缘电阻试验前,线路及设备已安装完毕,并通过了耐压局部放电试验,气体泄漏和微水测试合格,电缆出现管套与架空导线和避雷器保持有足够的安全距离,外护套和保护层试验合格。由于上述工程观桥站内无加压点,需要在终端塔进行加压,三相试验电源为380V、600A。在试验过程中,首先在试验场地周围设置围栏和监护人员,防止无关人员进入。做好场地部署后,将试验引线连接到电缆终端套管A相,将所有开关和刀闸倒至试验要求位置,检查所有回路接线和测量仪表,确认无误后开始试验。首先合上试验电源,将试验回路调到谐振,逐渐将输出电压提升至178kV,耐压时保持局部放电测试,电压保持60min后快速降至0,然后断开试验电源,将高压端挂接地线。如果在试验中出现闪络或击穿等异常情况,要立即停止试验,检查是否需要对电缆进行处理,如果试验设备受损,要立即进行检修。如果重新进行试验后,又出现闪络或击穿现象,则应重新检查电缆是否满足耐压试验要求,仔细排除问题后再进行试验。测试完A相耐压绝缘电阻后,依次对B相和C相进行耐压试验。 (四)实验检测结果 局放试验结果如表1所示。首先从相序检查结果来看,A相、B相和C相均能够通过主绝缘和交流耐压试验检测,相序正确。在局部放电试验中,终端塔的三相峰值依次为98.4、98.3、98.6dBmv,为发现明显放电现象,经过检查发现接地箱接地不良情况,处理后未发现明显放电现象。观桥站终端的三相峰值依次为20.6、20.7、19.9dBmv,未发现明显放电现象。其余#1井至#13井的局部放电试验也未出现明显的局部放电现象。 通过试验可确定,该工程能够满足相关标准及设计要求。 表 1 局放试验结果

中压电缆局放耐压试验步骤

中压电缆局放耐压试验步骤 试验过程 1、闭上总电源开关、闭上控制电源开关。 2、确认屏蔽室大门已关闭,系统处于通电状态。 3、根据电缆长度和截面,选择好适当的电抗器,高压抽头。当电抗器内电动切换抽头开关已处于完毕定(流)状态时,蜂鸣器应停止声响,表明高压抽头已就绪。 4、选择合适的电压测量量程。 5、检查“调谐速度”,将它调整到最大值的约30%。 6、接通高压电源主回路。 7、升压,以升高“励磁变压器的输出电压”直到所需试验电压值的1%处,例如:试验电压为10KV,那么励磁变压器的输出电压即为0.1KV。 8、在该励磁电压下,调节高压电抗器间隙位置,使试验回路达到谐振。应注意高压输出电压,输出值达到最高时,说明回路已达到谐振状态。 9、当试验回路处于谐振状态时,再按下“升压”按钮以升高输出电压至试验电压值。 10、当试验时间到,按下“降压”按钮,降低输出电压至最小值,再按下“高压分”按钮,试验系统便切断回路高压电源。注意:切勿在试验电压很高情况下直接按下“高压分”按钮,以防造成试品击穿。 11、试验结束后,断开调压器上的“空开”,必要时应断开整个设备电流的进线开关,以保证操作人员的安全。试验前准备工作:剥电缆头:1)半导体屏蔽剥(10kV)100~150mm 长,(35kV)剥500~700mm长;要求:剥切口要光滑,不允许有尖端点。2)屏蔽铜带剥切长度要比半导体屏蔽长约100mm。3)铠装钢带要剪平并清理干净。变压器油(氟里昂)准备:过滤、干燥,击穿场强应在40KV 以上。注意事项:1、做试验时不能随意开操作室的门和窗,此时,如有放电,将会出现滤电的现象,导致出现误导数据。2、试验电缆两端都应浸入到油杯中,高压引到电缆上的叫近油杯,油杯内有弹性铜针。另一短为远油杯,无弹性铜针。3、油要浸过半导体屏蔽约5~10mm,以免放电,远油杯端电缆端部要离油杯底部约10mm。

高压电缆局部放电监测研究

文章编号:1004-289X(2013)02-0063-04 高压电缆局部放电监测研究 赵生传1,时翔1,文艳2,崔潇1,张立刚3,曲健3 (1.青岛供电公司,山东青岛266002;2.威海供电公司,山东威海263200;3.青岛华电高压电气有限公司,山东青岛266102) 摘要:由于绝缘老化变质、过热、机械损伤等,会使得电缆在运行中绝缘劣化,对电缆进行局部放电检测是防止电缆运行事故的有效方法。对常见的电缆局部放电监测方法高频电流法、电容耦合传感器、声发射法、超高频UHF法,甚高频VHF法进行了介绍,分析了不同方法的优缺点,指出了未来的研究方向。 关键词:高压电缆;故障;监测;振荡波 中图分类号:TM85文献标识码:B Research on Partial Discharge Detection of High Voltage Cables ZHAO Sheng-chuan1,SHI Xiang1,WEN Yan2,CUI Xiao1,ZHANG Li-gang3,QU Jian3(1.Qingdao Power Supply Company,Qingdao266002,China;2.Weihai Power Supply Company,Weihai263200,China;3.Qingdao Huadiang High Voltage Electrical Apparatus Co.,Ltd,Qingdao 266102,China) Abstract:Because of insulation aging,overheat,mecranical damage and so on,make cables insulation degradation in operation.It is an effective method for partical discharge detection to cable to avoid the cable operating accident.The pa-per presents common partical cable discharge detection methods,such as high frequency method,capacitive coupled sen-sor,acoustic method,ultra-high frequency method and very high frequency method,then analyze the strong and weak points of the different methods.Finally,point out the coming research direction. Key words:high voltage cable;fault;monitoring,wave of oscillation 1引言 随着电力系统的飞速发展以及旧城改造工程的进行,电力电缆在电力网络中的应用愈发广泛。电力电缆的基本结构包括线芯、绝缘层、屏蔽层和保护层四个部分。其中线芯即导体,是电力电缆中传输电能的部分,是电缆的主要结构。绝缘层将线芯与外界电气上隔离。屏蔽层包括导体屏蔽层和绝缘屏蔽层,一般存在于15kV及以上电缆中。保护层是用来防止外界的杂质和水分的渗入和外力的破坏。 电力电缆按照电压等级分类有低压电缆(35kV及以下输配电线路)、中低压电缆(35kV及以下)、高压电缆(110kV及以上)、超高压电缆(275 800kV)、特高压电缆(1000kV及以上)。 按照绝缘材料电力电缆可以分为油纸绝缘电缆、塑料绝缘电缆和橡皮绝缘电缆。其中油纸绝缘电缆应用历史最长。它安全可靠,使用寿命长,价格低廉。主要缺点是敷设受落差限制。塑料绝缘电缆主要用于低压电缆,常用的绝缘材料有聚氯乙烯、聚乙烯、交联聚乙烯。橡皮绝缘电缆弹性好,适合用于移动频繁弯曲半径小的敷设地点。 我国早期使用的多是油纸绝缘电缆,但自1970年以来,交联聚乙烯(XLPE)电力电缆得以广泛应用,并逐渐取代了油纸绝缘电缆的地位。XLPE电缆电气性能优越,具有击穿电场强度高、介质损耗小、载流量大等优点因而得到了广泛的应用。 然而,在电缆投入运行后,由于绝缘老化变质、过热、机械损伤等,会使得电缆在运行中绝缘劣化。为了防止由于绝缘劣化造成电缆运行事故,需要对电缆的运行状态进行即时监测。监测系统控制着电缆及其附

电缆局放试验的特点和要求

电缆局放试验的特点和要求 一、电缆局放试验的特点(与其它高压输变电设备产品相比) (1)试品电容量大。整盘电缆的出厂试验电容量更可观。 例如:变压器,套管,绝缘子等大都是nF级电容,高压电容器有uF级的电容,但属集中参数。 电缆:35kV,630mm25km 1.4μF/5km 110kV,1600mm210km 2.85μF/10km 220kV,2000mm210km 2.25μF/10km 500kV,2500mm210km 2.04μF/10km 试品电容大,导致:1.高压试验容量巨大,普通试验变压必须改为采用串联谐振电抗;2.局放检测灵敏度降低。(图1) (2)电缆试品占空间大 以110kV电缆为例,电缆螺旋状卷绕在外缘直径5米的大铁盘上。试验时带2个水终端长达约3米。500kV电缆水终端长达6米多。电缆卷绕后如螺旋卷天线,试品展开空间又大,都是易受空间电磁场感应影响的因素。这样对屏蔽室要求高。 (3)电缆的等效电路是电容分布参数电路 分布参数试品在进行脉冲电流的检测中有高频脉冲的传播,反射,叠加等传输特性反映到显示器上,影响检测结果。 应用电缆上局放脉冲的传播特性来进行局放故障定位。(图2)

(4)交联聚乙烯是优质绝缘材料。 用于500kV级的交联乙烯电缆最大工作场强可达3.1kV/mm(35kV电缆): 5.3kV/mm,(110kV电缆):10.1kV/mm,(220kV电缆):13.5kV/mm,(500kV 电缆但它又易受局部放电作用的发生劣化。 这样电缆局放试验标准的允许放电量要求比其它设备或其它品种绝缘低好多,所以要求试验灵敏度高,即背景噪声水平小。 这样将全面要求:屏蔽室,接地,电源,设备性能都精确优良。 目前,国外正在开发800kV/1000kV级XLPE电缆的应用,这就需要更高参数,极低背景噪声水平的局放屏蔽试验系统。 总之:在技术上,高压交联电缆的局放检测,公认是各种试品局放试验中要求最高的。 二、电缆局放试验设备的要求 (1)串联谐振电抗器(图3) 电缆局放试验用可调高压串联谐振电抗器代替普通变压器,试验时供电抗(L)调到与试品电缆电容(C)谐振。从而电抗与电缆的无功功率相互补偿(抵消),电源网络只需承担电抗器,电缆和回路有功损耗部分(R=R LR+R CR+R1)该损耗功率为电抗器输出功率的1/Q倍 对交联电缆,Q=40-80 因而,达到了节能,节约投资,缩小设备体积。当然,该串联谐振设备应在额定工作电压下无局放(例为<2PC) (2)电源采用独立变压器(图4、5)

长电力电缆振荡波局部放电检测试验方案

国家电网合肥供电公司 10kV 长电力电缆阻尼振荡波 测试方案

精品 安徽立翔电力技术服务有限公司 零一七年七月 目录 、试验标准和目的-...2.. .-.. 、试验仪器.-..3... -... 三、试验内容.-..3... -... 1、术语及定义-...3... -.. 2、试验原理介绍.-..4. ..-. 3、被测电缆要求及测试前准备-...6. ..- 4、绝缘电阻测试.-..7. ..-. 5、测试电缆中间接头位置及电缆长度-...7. . - 6、振荡波局部放电试验 6.1 电缆局放校准.-.. 7. ..-. 6.2 振荡波局放测试-...8. ..-. 1)试验接线步骤:-...8. ..-. 2 )加压测试程序-...8.. .-. 3)测试要求及注意事项:-...9. ..- 感谢下载载

安徽立翔电力技术服务有限公司 -10 - -2 - 7、振荡波局放诊断评价 -..9.- 1)绝缘电阻: -..9.-. 2)电缆局部放电量: 8、电缆振荡波局放异常处理决策 -10 - 1)绝缘电阻异常情况处理措施 -10 - 2)电缆振荡波局放量超标异常情况处理措施 -10 - 9、试验时间:1.5?2.5小时/段 -11 - 四、人员安排: -11 - 五、安全措施: -11 - 、试验标准和目的 根据《合肥供电公司》要求,通过现场试验,在不损害电缆本体绝缘的情况下检查 10kV (含10km 以上)电缆的绝缘状况及其内部局部放电情况, 以对其绝缘进行评估。 本试验方法参照标准: IEEE Std 400 ? -2001 IEEE Guide for Field Testing and Evaluation of the In sulati on of Shielded Po wer Cable Systems CIGRE WG 21.05- 1998 Diagnostic Methods for HV Paper Cables and Accessories

相关文档
相关文档 最新文档