文档库 最新最全的文档下载
当前位置:文档库 › 压裂设计规范

压裂设计规范

压裂设计规范
压裂设计规范

中国石油天然气集团公司企业标准

油水井压裂设计规范

Specification for fracturing program

or oil&water well

l范围

本标准规定了压裂井选井选层的依据、地质设计的编写、工艺设计的选择与编写、施工准备、压裂施工、压裂后排液、求产、资料录取、施工总结、压裂施工质量控制和安全与环保的技术要求。

本标准适用于油水井压裂设计。探井、气井压裂设计亦可参照使用。

2引用标准

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示标准均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

SY/T 5107-1995水基压裂液性能评价方法

SY/T 5108-1997压裂支撑剂性能测试推荐方法

SY/T 5289-2000油井压裂效果评价方法

SY/T 5836-93 中深井压裂设计施工方法

SY/T 6088-94深井压裂工艺作法

SY/T 6362-1998石油天然气井下作业健康、安全与环境管理体系指南

3选井、选层

3.1选井、选层应具备的资料

3.1.1地质情况:区块构造,井所处构造的位置,井与周围油、水井的连通情况,井控面积,距断层的距离。

3.1.2钻井资料:钻井液性能、浸泡油层的时间、钻井过程中事故处理、固井情况。

3.1.3井身结构:套管组合,各类套管规格、钢级、壁厚。

3.1.4储层参数和物性:储层岩性、物性、岩石力学参数、地应力剖面参数、地层破裂压力、含油水饱和度、地层天然裂缝的发育情况、储层敏感性分析、气测资料,组合测井资料。3.1.5射孔资料:射孔方式、射孔井段、射孔弹类型、射孔方位角、孔数、孔密。

3.1.6试油资料:试油方式、油层厚度、地下流体物性、地层压力、地层测试计算的各种参数,油、气、水产量、油气比、含水比。

3.1.7本井历次作业概况:修井的内容和方法及对地层及套管造成的伤害。

3.1.8本井生产动态资料,低产原因分析。

3.1.9邻井概况:试油、压裂、压裂裂缝走向方位、裂缝几何形态、生产等资料。

3.2选井、选层

3.2.1油套管柱强度满足压裂施工最高泵压的要求。

3.2.2油井固井质量合格。

3.2.3油层上下有水层显示,经缝高模拟计算压裂裂缝不会延伸至水层。

3.2.4地层压力高、生产压差大、采油指数小的层。

3.2.5生产过程中的微动层和未动层。

3.2.6通过测试明显有堵塞的层。

3.2.7高含水井中的中、低含水的低产层。

3.2.8调整层位时动用的新层。

3.2.9低含水开采阶段,前次压裂规模小,未达到预期产量的层。

3.2.10前次压裂失效的井层。

3.2.11油水井达不到配产、配注要求的层位。

3.2.12油水井新补开的层。

4地质设计编制

4.1地质设计编制的格式按SY/T 6088-94附录A(补充件)中的A1和A2中的一、二、三执行,中深井按SY/T 5836-93附录A(补充件)中的A1.1、A1.2和A1.3中的一、二、三执行。

4.2地质设计编制的依据:

4.2.1地质设计中选井选层依据包括3.1和3.2的内容。

4.2.2地质设计应有施工目的、压裂层段、施工要求。

5压裂方式的选择原则

5.1压裂方式的选择应以地质设计为依据。

5.2满足地质设计的要求的情况下,应选择简便、安全、不损坏套管、减少地层污染的工艺技术。

5.3对于射孔井段长、多油层开采、多层段注水、渗透率差别大的压裂井,应选用封隔器分层压裂,也可以选用投密封球或暂堵剂进行选择性压裂。

5.4对于注采对应区块,应选择整体压裂改造的方式。

5.5新井根据地层条件,可采用限流法压裂。

6压裂工艺及施工设计的编写

6.1编写原则及依据

6.1.1以地质设计为依据。

6.1.2以第5章中的内容为依据编写压裂工艺设计。

6.1.3采用的工艺技术应具有先进性、科学性。

6.1.4地面管汇、井口等应满足压裂工艺设计的最高限压。

6.1.5以压裂设计参数为依据,选择管柱组合。

6.2设计前准备工作

6.2.1收集相关参数,内容见表l、表2。

6.2.2按SY/T 5107规定的水基压裂液性能评价方法选用压裂液,或根据储层参数选择其它压裂液。

6.2.3按SY/T 5108规定的水力压裂用支撑剂性能评价方法选用支撑剂。

6.2.4计算出炮眼密封球的数量:吸液孔眼数×(1.5—1.8倍)或射孔孔眼数×(0.65—0.8倍)。

6.2.5测试压裂(小型压裂)按SY/T 6088相关要求执行或单独做出施工设计。

6.3工艺设计参数输出

6.3.1通过计算优选出工艺参数,见表3。

6.3.2通过计算优选出支撑剖面,见表4。

6.3.3设计出泵注程序表,见表5。

表1 地层参数

表2井及施工参数

表3工艺参数运算结果表

表4支撑剖面

表5泵注程序

表6压裂用料及工具的费用

6.3.4设计出压裂施工用料及工具的费用,见表6。

6.3.5作出压裂效果预测。

6.3.6作出压裂成本预算。

6.4压裂前井筒作业

6.4.1压井,起出井内管柱。

6.4.2探砂面,高度不符合要求,冲砂或填砂。

6.4.3通井、刮削。

6.4.4按设计完成深度,并画出管柱示意图。

6.4.5安装压裂井口。

6.5压裂施工准备

6.5.1按压裂设计配液。

6.5.2压裂设备的平面摆放应以方便施工和安全为原则。

6.5.3砂车的摆放应有利于连续加砂。

6.5.4按要求连接好低压管汇。方式为:储液罐(车)-低压管汇一混砂车-低压管汇一压裂泵车。

6.5.5按注入方式连接好高压管汇。联接方式为:井口一放压阀一投球器一单流阀一高压管汇一单流阀一压裂车。

6.5.6高压管汇或井口连接超压泄流阀和管线。

6.5.7井口连接反洗管线,出口与储液罐连接。

6.6压裂施工

6.6.1打开储液罐阀门,混砂车启泵并供液。

6.6.2压裂车逐台启泵循环,每台车由低速挡至高速挡,每挡循环时间不低于1min。

6.6.3高压管汇至井口循环排气。

6.6.4按设计试压。

6.6.5打开井口阀门,压裂车逐台起泵,并调整排量达到要求。

6.6.6按注入程序表要求进行注入。

6.6.7注入完停泵后,按要求测压力降落曲线。

6.6.8规定关井时间。

6.7压裂后作业

6.7.1按压裂工艺设计要求用一定规格的油嘴控制开井放压,放喷。

6.7.2若自喷,先投产,并确定工作制度。

6.7.3若不喷,起出井内压裂管柱。.

6.7.4下光油管带冲砂头,探砂面并冲砂,使砂面至合格深度。

6.7.5确定排液方式,完成排液管柱。按设计规定的量及时排液。

7资料录取

7.1作业单位从接井后,详细记录每道工序的作业内容、作业的起止时间。

7.2工艺设计单位应收集作业全过程中的资料及投产后的资料。

8施工总结

8.1施工后,根据实际发生的费用作出决算。

8.2作业单位在投产后5d内完成编写施工全过程的工程总结。

8.3作业单位跟踪作业井的增产效果的统计,计算有效成功率、工艺成功率。

8.4工艺设计单位应根据实际测试资料计算裂缝几何尺寸与设计的误差,并进行工艺技术总结。

8.5工艺设计单位、地质设计单位和甲方应跟踪施工井压后生产动态,直到失效,统计并计算压裂经济效益。计算方法按SY 5289相关规定执行。

9压裂施工质量控制

9.1对压裂液配置质量进行现场监测。

9.2仪表车监控:施工压力监测、压裂液交联比控制、加砂浓度变化控制、顶替液量控制。

9.3压后返排时机控制。

10安全与环保

按SY/T 6362的相关规定执行。

最新压裂技术现状及发展趋势资料

压裂技术现状及发展趋势 (长城钻探工程技术公司) 在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。 1、压裂技术发展历程 自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。 (2)1970年-1990年:中型压裂。通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。 (3)1990年-1999年:整体压裂。压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。 (4)1999年-2005年:开发压裂。考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。 (5)2005年-今:广义的体积压裂。从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。 2、压裂技术发展现状 经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。 2.1 压裂工艺和技术

转向压裂

第一章概述 (2) 第二章技术原理 (4) 一、暂堵转向重复压裂技术原理: (4) 二、破裂机理研究 (5) 三、重复压裂裂缝延伸方式 (8) 第三章重复转向压裂时机研究 (11) 1、影响重复压裂效果因素 (11) 2、选井选层原则 (11) 3、压裂时机确定 (12) 第四章暂堵剂(转向剂) (12) 1、堵剂性能要求: (12) 2、堵剂体系 (12) 3、水溶性高分子材料堵剂 (13) 4、配套的压裂液 (15) 第五章转向压裂配套工艺技术 (16) 1、缝内转向压裂工艺技术 (16) 2. 缝口转向压裂工艺技术 (18) 3、控制缝高压裂技术 (19) 4、端部脱砂压裂技术 (20) 第六章工艺评价 (21) 1.裂缝监测 (21) 2.施工压力 (21) 3.产能变化 (21)

第一章概述 我国发现的油气藏中60%以上为低渗透油气藏,往往具有非连续、非均质、各向异性的特点。 低渗油藏必须进行压裂改造,才能获得较好的效果。随着开采程度的深入,老裂缝控制的原油已近全部采出,传统的平面水力裂缝设计方法和压裂技术已不能满足这类油藏开采的需求。可以实施暂堵转向重复压裂,在纵向和平面上开启新层,开采出老裂缝控制区以外的原油,有效的稳油控水、提高原油产量和油田采收率,实现油田的可持续发展。 目前,国内外的重复压裂实践主要有以下三种方式:①层内压

出新裂缝;②继续延伸原有裂缝;③转向重复压裂。 对于重复压裂中出现的裂缝转向,目前认为主要有三种不同方式:①地应力反转;②定向射孔诱导;③桥堵转向压裂工艺。 对于低渗储层,由于出现地应力场反转的难度较大,而采用定向射孔压裂造成裂缝转向,对储层伤害较大。近些年,利用桥堵作用堵塞裂缝,形成转向的新裂缝的压裂工艺(缝内转向与缝口转向),经过现场实践,增产显著,逐步成为低渗储层重复改造的首选工艺。 在大规模试验研究的基础上,经过工艺优化配套,建立了以缝内转向压裂工艺为主导的低渗透重复压裂新模式。它有效地在疏通原有人工主裂缝基础上形成了新的支裂缝,沟通了“死油区”,扩大油井泄油面积。 低渗透油田缝内转向压裂工艺的关键技术是缝内转向剂技术。依靠该技术产品,实现了裂缝延伸的暂时停止,达到了在缝内某一位置实现裂缝转向的目标。为证实缝内转向压裂沟通微裂缝和形成新裂缝,利用微地震法在施工时裂缝延伸进行动态监测。综合分析水力压裂裂缝延伸监测结果、重复压裂效果、施工压力特征,能证明缝内转向重复压裂在疏通原有裂缝的基础上,是否产生了沟通微裂缝或者形成新裂缝。 缝内转向压裂工艺在低渗透油田应用概况: 在老井上的应用概况: 2002-2007年,缝内转向压裂工艺在老井上推广应用487口井,增产效果明显。安塞油田应用332口井,日增油1.40t,陇东油田

(工艺技术)油田压裂新技术工艺

2012年4月8日星期日 1、黑油模型:指油质较重性质的油藏类型。黑油模型是最完善、最成熟,也是应用最为广 泛的模型。是油藏数值模拟的基础,其它模型大都是黑油模型的扩展。 (1) 黑油模型的基本假设:(1)油藏中的渗流是等温渗流。 (2)油藏中最多只有油、 气、水三相,每一相均遵守达西定律。 (3)油藏烃类只含有油、气两个组分。在油 藏状态下,油气两组分可能形成油气两相,油组分完全存在于油相内,气组分则可 以以自由气的方式存在于气相中,也可以以溶解气的方式存在于油相中,所以地层 内油相为油组分和气组分的某种组合。在常规油田中,一般不考虑油组分向气组分 挥发的现象。(4)油藏中气体的溶解和逸出是瞬间完成的,即认为油藏中油气两相 瞬时达到相平衡状态。(5)油水之间不互溶;天然气也假定不溶于水。 煤层气:赋存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于 煤孔隙中或溶解于煤层水中的烃类气体。 全国煤层气试验区分布图 J3-K1 哈尔滨 28 3、页岩气 页岩气形成的条件 (1) 岩性:形成页岩气的岩石除页岩外,还包括泥岩、粉砂岩、甚至很细的砂岩 (2) 物性:页岩最突出的特点是孔隙度和渗透率极低,典型的气页岩的基质渗透率处于微 达西~纳达西范围,因此气体在储层中的流动主要取决于页岩中天然裂缝的发育情况 (3 )矿物组成:粘土矿物和碳酸盐含量低、粉砂质或硅质(石英)含量较高比较有利。 (4)裂缝: 裂缝发育适中。 2012-4-9 4、压裂工艺成果 压裂工艺推陈出新,分段压裂、裂缝性气藏压裂、火山岩压裂、降滤压裂、重复压裂、转向 压裂、控缝高压裂等压裂技术得到了成功应用, 特别是水平井分段压裂技术的推广应用, 保障油气田增储上产方面发挥了巨大作用。 较好指标: 2、 乌鲁木齐 J1-2 J3-K1 J3-K1 J3-K1 J3-K1 J2 J1-2 J1-P2 J1-2 J1-2 西宁 兰州 J1-2 1-2 西安 P2 成都 2"| C-P 北京1 ? 济南3 9 C-P 长春 E J3-K1 1开滦 15 韩城 2大城 16 蒲县 3济南 17 柳林 4淮北 18 吴堡 5淮南 19 三交 6平顶山 20 临县 7荥巩 21 兴县 8焦作 22 丰城 9安阳 23 冷水江 10晋城 24 涟邵 11屯留 25 沈北 12阳泉 26 红阳 29 阜新 13澄合 27 铁法 30 辽河 14彬长 28 鹤岗 T3 武汉二 长沙 2 : P2 上海 P2 P2 福州 卢台北

苏里格气田压裂及返排工艺分析

苏里格气田压裂及返排工艺分析 第一部分返排工艺 一、放喷返排工艺过程及特点分析 压裂停泵后20-30分钟内开始放喷返排,根据压裂工艺、管柱特点和地层的需要,放喷过程通常需要4个阶段:闭合控制阶段,放大排量阶段,压力上升阶段,间歇放喷阶段。 A、闭合控制阶段: 工作制度:根据压后停泵压力的大小, 2-6mm油嘴控制,排量控制在100-200L/min。 特点分析: 1、由于采用前置液拌注氮气,压裂后井底附近地层空隙基本被液体占据,短时间内液体不易与氮气和天然气混合,液体中溶解的气量较少,所以此阶段排出物以液体为主。 2、因压裂施工的欠量顶替以及压裂液残余粘度的影响,此阶段通常有部分支撑剂被带出地面,一般在0.5m3左右。 3、通常油压降落速度要高于套压降落速度,当套压高于油压1MPa时,封隔器解封,油管内的液体在油套管压差和地层压力及液体的弹性能量作用下排出井筒。 4、当井底压力低于裂缝闭合压力,裂缝完全闭合时,控制排量阶段结束,这个过程一般需要2-4小时。 B、放大排量阶段: 工作制度:通常用8-10mm油嘴控制或畅放,排量控制在500L/min以下,以地层不出砂,放喷管线出口不见砂粒(或检查油嘴的磨损程度)为控制原则。 特点分析: 1、此阶段初期排出物以液体为主是塞状流,后期为气液两相流,气水同喷。在此阶段通常都能见气点火。 2、裂缝完全闭合,支撑剂受岩石应力的挤压作用被夹持在裂缝壁面内部,能够比较稳定的固定在一个位置上。

3、此阶段油套压经历了一个先降落至零后再升高的过程(地质条件好的井油压只降到2-3 MPa,左右),而且油压要先于套压上升。 4、这个过程因井的类别不同,所需时间有较大差别,从几小时到十几个小时不等。 5、由于气体的指进效应,裂缝和地层中的氮气和天然气向井筒运移速度要快于液体,气、液溶解度增大,进入油管内的气量增加,喷式加大,井口油压上升,流体呈气液混合状态、出口见喷势,此阶段结束。 C、压力上升阶段: 工作制度:用6-10mm油嘴进行控制,并随着气量增大、压力上升而逐步减小油嘴。 特点分析: 1、阶段初期呈气液两相流,中期呈段塞流(先是一段含液气体之后是一段含气液体),后期因氮气和天然气的溶解度增大,以致在流动过程中形成不了水柱,而只能在高速气流带动下以雾状形式排出井筒,呈雾状流 2、油压上升到2-3 MPa以上。 3、返排液量在70-80%以上,即可转入后期间放阶段。 D、间歇放喷阶段 工作制度:由于深入地层远处的液体向油管聚集速度小于气体,返排液量减少,出气量增大,排液效率降低,则应关井恢复,采取间开工作制度,选择4-8 mm 油嘴放喷。 特点分析: 1、关井时,由于油套环形空间截面积较油管流通截面积大,进入环形空间内的气量多,气体与液体进行置换后占据液体上部空间,并在液体上部形成一定的压强而将环形空间的液体推向油管,同时,地层内液体也进入井筒。 2、当井口压力上升速率较低时,说明表压加液柱压力已接近地层压力,地层流向井底的液体减少,这时应开井放喷;当开井后见到雾状流就应再次关井恢复。 3、油管内流体的分布(从井口到井底)为纯气段、气液过渡带段、液体段(含溶解气)。开井后的第一段是纯气流,第二段是两相流(气液过渡段,以气为主),第三段是塞状流(液柱段),第四段为气液两相流,气水同喷,第五段为雾状流。

压裂设计规范

中国石油天然气集团公司企业标准 油水井压裂设计规范 Specification for fracturing program or oil&water well l范围 本标准规定了压裂井选井选层的依据、地质设计的编写、工艺设计的选择与编写、施工准备、压裂施工、压裂后排液、求产、资料录取、施工总结、压裂施工质量控制和安全与环保的技术要求。 本标准适用于油水井压裂设计。探井、气井压裂设计亦可参照使用。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示标准均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 SY/T 5107-1995水基压裂液性能评价方法 SY/T 5108-1997压裂支撑剂性能测试推荐方法 SY/T 5289-2000油井压裂效果评价方法 SY/T 5836-93 中深井压裂设计施工方法 SY/T 6088-94深井压裂工艺作法 SY/T 6362-1998石油天然气井下作业健康、安全与环境管理体系指南 3选井、选层 3.1选井、选层应具备的资料 3.1.1地质情况:区块构造,井所处构造的位置,井与周围油、水井的连通情况,井控面积,距断层的距离。 3.1.2钻井资料:钻井液性能、浸泡油层的时间、钻井过程中事故处理、固井情况。 3.1.3井身结构:套管组合,各类套管规格、钢级、壁厚。 3.1.4储层参数和物性:储层岩性、物性、岩石力学参数、地应力剖面参数、地层破裂压力、含油水饱和度、地层天然裂缝的发育情况、储层敏感性分析、气测资料,组合测井资料。3.1.5射孔资料:射孔方式、射孔井段、射孔弹类型、射孔方位角、孔数、孔密。

压裂工艺

第三章压裂施工与设备 第一节压裂施工概述 1、压裂施工的准备工作 ⑴数据资料 压裂施工前需具有有关井数据资料,压前的破裂压力试 验数据和压裂设计指导书。有关井的数据资料应包括管柱和 井口设备的尺寸大小和额定压力值,套管和地层的隔离情 况,地层及其上下遮挡层情况。了解裂缝高度的遮挡层以及 附近水层和漏层的位置,射开的孔眼数和孔眼的大小等。 破裂压裂试验可在正式压裂施工前进行。根据破裂压 裂试验的数据,特别是原先估计的裂缝高度如有变化,或根 据压力压降曲线而得到更准确的液体滤失系数时,可能会修 改压裂施工设计。修改过的最后设计应包括排量施工表、预 期的井口压力、总液量、添加剂和支撑剂浓度等。图2-3-1常规施工泵入装置简图 ⑵施工设备摆放 现场施工设备必须按标准摆放,以利于协调指挥和管理。见图2-3-1。 ⑶施工前检查 施工前要检查施工要求配备的物品,确保其质量和数量和性能。 井场准备情况检查。主要考虑是否有足够大的场地并方便施工车辆进出。它对施工进展、施工质量及安全都很重要。 设备准备情况检查。要求施工设备使用状态良好,能完成现场施工,现场还必须备有足够的易损件。 压裂材料检查。主要是指压裂液和支撑剂的检查。检查压裂液细菌污染情况及胶凝物的水化和交联性能,这些可简单通过检查储罐的清洁程度、配液时间、环境温度、液体颜色、气味等来确定。必要时,可对每一罐压裂液进行小规模交联和混合试验。对支撑剂要确认其型号,检查其杂志含量等。 2、实施压裂施工 ⑴设备运转情况检查 关闭井口阀门,对所有的施工管线进行最高限压试验。在最高限压下,压力

稳定至少一分钟,系统设备没有渗漏,就说明设备和注入系统合格,可以进行施工,否则必须进行紧固或更换相关部件。 ⑵施工监测 注入排量和加砂量是监测的主要内容,排量不仅决定施工用液的总量,也影响施工质量。用涡轮流量计可在压裂监测装置上提供直观的记录,可用一实际排量来进行标定。也可通过计数泵的冲程次数,并已知每一冲次的容量,来校验液体排量,但有一定误差,较精确地确定注入排量的方法是从压裂液罐内计量泵入液体的体积和泵入时间,这三种方法都应使用,将这三种方法分别测得的结果进行互相校核,以便尽可能确切地得出实际排量。 加砂量的测量同样也是较困难的,整个施工过程中测量误差也可能导致施工结论本质上的差别。加砂也可用几种方法进行测量,所有方法应相互配合能使误差最小。监测支撑剂用量的最可靠方法就是测量支撑剂罐,在施工期间,应按预先设计的加砂程序表,确定各个不同施工阶段用完一罐支撑剂的时间。多数搅拌器都装备有螺旋推进器,用以控制向压裂液中添加支撑剂的速率。螺旋推进器每旋转一周,就输送一定量的支撑剂,然而对于不同的搅拌器,螺旋推进器每旋转一周输送量是不同的,因此,要对每一台搅拌器必须进行标定,以确定不同注入排量下,输送正确的支撑剂量时所需要的转速。可用放射性密度计监测支撑剂浓度,而且非常有效,特别是在浓度突然变化时。这种密度计需对照施工期间总的砂量来进行标定,以便更有效地监测整个施工过程。 ⑶压力波动 在压裂施工期间,正确推断引起施工压力波动原因是非常重要的。有四种 引起压力波动的原因,即力学问题、胶体性能变化、支撑剂浓度的改变和地层 响应。 引起施工压力异常的最常见的力学问题是压裂液通过射孔孔眼时受到限制。当某些孔眼不能流过流体时,则其余孔眼上的流量就会增加,因而造成高的压力降落,使地面的施工压力比预料的要高。可能会迫使改变施工程序。如果地面的施工压力比预料的高,可用瞬时停泵压力来检验井底压力,以便确定预计的井底压力是否正确。已知泵入排量和施工管路的摩擦阻力,就可计算出畅通的孔眼数,当某些孔眼被堵塞,或者是孔眼没有同裂缝相连通,或是孔眼直径比预计的要小时,则计算出的畅通孔眼数就可能少于实际射孔数。?在继续进行压裂施工之前,

水力压裂裂缝暂堵转向机理与转向规律研究

水力压裂裂缝暂堵转向机理与转向规律研究储层改造是页岩油气、致密油气等非常规油气开发的核心技术,通过水力压裂形成复杂裂缝网络,实现体积改造是水力压裂施工的目标。当储层可压性较差或应力差较大时,难以形成复杂裂缝网络,通过暂堵逼迫裂缝转向是增强缝网扩展复杂性的重要手段。 到目前为止,虽然现场实践已取得较好成效,但裂缝暂堵转向的力学机理、扩展规律和调控方法等尚处于探索阶段,迫切需要开展人工裂缝暂堵转向机理和规律研究。本文探索了新的实验方法,发展了水力压裂数值算法,通过岩芯测试、物理模拟和数值模拟研究,对非常规储层的可压性和转向能力、转向剂对裂缝的暂堵规律、裂缝转向扩展规律进行了研究,主要取得成果如下:(1)致密储层成缝能力测试与评价。 储层成缝能力(可压性)是裂缝转向的基础和重要影响因素。实验发现:(1)页岩存在强微观非均质性,并与矿物成分、天然裂隙和TOC含量等一起,是影响页岩储层成缝能力的重要因素。 (2)流体对页岩的岩石力学性质具有显著影响,并与页岩储层的超低含水饱和度、粘土含量、TOC和微纳米孔隙有关。(3)基于基质脆性、天然裂隙密度和声发射活动性,建立了综合评价致密储层成缝能力的新方法。 油田现场应用说明此方法是可行的。(2)裂缝转向机理和规律的真三轴模拟实验研究。 利用真三轴水力压裂物模实验装置,研究了纤维暂堵裂缝的转向扩展规律,得出裂缝转向的主要控制因素为储层成缝能力及其非均质性、水平主应力差、天然裂缝分布、初级裂缝宽度、纤维浓度、粘度与排量等,得到了暂堵形成的条件

与图版,并给出了裂缝发生转向时的临界应力差;并以人工裂缝倾角、地应力差、成缝能力和缝内流压为主要参数,建立了裂缝转向能力的评价模型。(3)基于PGD 法(Proper Generalized Decomposition),针对水力压裂裂缝转向和网络化扩展数值模拟需要,建立并求解了完全耦合条件下水力压裂裂缝扩展模型,PGD算法 适合于高效、快速求解以非线性、瞬态、耦合为特征的水力压裂问题,计算速度明显快于传统的有限元方法。 (4)应用PGD算法进行了裂缝转向的模拟,结论与真三轴物理模拟结果一致。裂缝转向主要控制因素为储层性质、水平主应力差、缝间干扰、裂缝暂堵效率、粘度与排量等。 在低应力差、较短裂缝间距条件下,缝间干扰强,裂缝端部较容易发生转向;天然裂缝剪切滑移对裂缝转向具有明显影响,在剪应力和流体压力联合作用下,裂缝更易转向;在转向处裂缝宽度和净压力发生突变,缝宽变窄,净压力降低。本文研究成果将为非常规油气转向压裂改造提供理论依据和技术支持。

压裂工艺设计优化及效果分析

压裂工艺设计优化及效果分析 摘要:压裂工艺,不仅能够增加油田的产量,还能够保证油田的稳产,以提升油田的经济效益。但是,从压裂的应用情况来看,依然存在各种各样的问题,所以,需要详细研究压裂工艺设计优化及效果分析,以供人们参考。 关键词:压裂工艺;优化;效果;分析 前言: 随着压裂工艺的迅猛发展,它被广泛的应用在油田开发当中,从而增加油田的产量,进而促进石油工业的发展。但不是所有的压裂措施都能够达到预期的增产效果,所以,对压裂工艺设计优化及效果分析是很有必要的,它能够确保压裂成效,从而获得良好的增产效果,以满足油田开发的需求。 1.压裂工艺设计优化及应用情况 对于压裂工艺设计优化来说,主要体现在以下三大方面:第一,对施工规模进行优选;第二,对压裂层段进行优化;第三,对压裂工艺进行优化。 1.1对施工规模进行优选 首先,应该加大薄差储层的施工改造规模,自2014年以来,根据某区块薄差储层的发育特征,对穿透比范围和加砂规模进行科学的确定,以使改造效果达到最佳,表1为裂缝穿透比的优化范围;其次,应该充分掌握重复压裂层位的

改造需求,如果之前的改造层位是高含水层,那么就需要选用选择性压裂技术,先将高含水层暂时堵住,改造还没有动用的小层;最后,还应该加大三元复合驱采出井和注入井的规模,对三元复合驱采出井的压裂时机进行优选,采取相应的压前举措,以确保措施成效。如果三元?秃锨?的注入井比较困难,需要在油田间进行良好交流,以确保注入成效。 1.2对压裂层段进行优化 首先,应该对油层发育和剩余油分布情况进行分析,对压裂层段进行优选;其次,应该选用薄隔层压裂工艺技术,对压裂层段进行细分,这在一定程度上能够提高措施的针对性。 1.3对压裂工艺进行优化 首先,应该对发育差难压储层进行压前加酸处理;其次,应该对隔层小、油层多且薄的层段进行多裂缝压裂工艺的优选,以加大卡段内的裂缝条数,这对增加裂缝波和体积来说是很有帮助的;最后,还应该对高含水层位采用选择性压裂工艺技术,为了改造较低含水层位,先将高含水层暂时堵住。 2.效果分析 对于效果分析来说,主要体现在以下三大方面:第一,对优化施工规模的效果进行分析;第二,对薄差层优化施工规模的效果进行分析;第三,对优化压裂工艺的效果进行分析。

压裂液,基本知识,对储层伤害的评价

酸性交联压裂液伤害性评价实验报告 1 压裂液基础知识 水力压裂是油气层改造与油井增产的重要方法,得到广泛的应用,对于油气的生产起着不可代替的作用。几十年来,国内外油田对压裂液技术方面进行了广泛的研究。该技术发展是越来越成熟,目前压裂液体系的发展更是日新月异,国内外均出现了天然植物胶冻胶压裂液、泡沫压裂液、酸基压裂液、乳化压裂液、油基压裂液、清洁压裂液等先进的压裂液进一步为油气的勘探开发和增储上做出了重大贡献。我们对一些国内外先进的压裂液体系做了一些介绍,并了解了国内外压裂液的发展方向和概况。同时为了更清楚地认识压裂液中各种化学添加剂性能优劣对地层伤的害性,对其伤害性的评价就显得十分重要和必要了。 1.1 压裂液在压裂施工中基本的作用: (1)使用水力劈尖作用形成裂缝并使之延伸; (2)沿裂缝输送并辅置压裂支撑剂; (3)压裂后液体能最大限度地破胶与反排,减少裂缝与地层的伤害,并使储集层中存在一定长度的高导流的支撑带。 1.2 理想压裂液应满足的性能要求: (1)良好的耐温耐剪切性能。在不同的储层温度、剪切速率与剪切时间下,压裂液保持有较高的黏度,以满足造缝与携砂性能的需要。 (2)滤失少。压裂液的滤失性能主要取决于压裂液的造壁滤失特性、黏度特性和压缩特性。在其中加入降滤失水剂将大大减少压裂液的滤失量。 (3)携砂能力强。压裂液的携砂能力主要取决于压裂液的黏度与弹性。压裂液只要有较高的黏度与弹性就可以悬浮与携带支撑剂进入裂缝前沿。并形成合理的砂体分布。 一般裂缝内压裂液的黏度保持在50~100mpa*s。

(4)低摩阻。压裂液在管道中的摩阻愈小在外泵压力一定的条件下用于造缝的有效马力就愈大。一般要求压裂液的降阻率在50%以上。 (5)配伍性。压裂液进入地层后与各种岩石矿物及流体接触,不应该发生不利于油气渗率的物理或化学反应。 (6)易破胶、低残渣。压裂液快速彻底破胶是加快压裂液反排,减少压裂液在地层中的滞留时间的必然要求。降低压裂液残渣是保持支撑裂缝高导流能力,降低支撑裂缝伤害的关键因素。 (7)易反排。影响压裂液反排的因素有:压裂液的密度、压裂液的表面、界面张力和压裂液破胶液黏度。 (8)货源广、便于配制与价格便宜。随着大型压裂的发展,压裂液的需求量很大,其是压裂成本构成的主要部分,所以压裂液的可操作性和经济可行性是影响压裂液选择和压裂施工的重要因素。 2国内外先进压裂液的发展趋势与研究概况: 目前国内外压裂液的研究趋势是开展具有低残渣或无残渣、易破胶、配伍性好、低成本、低伤害等特点压裂液配方体系的研究,减小压裂液对储层的伤害成为压裂液研究的热点。 2.1清洁压裂液 粘弹性表面活性剂压裂液(VES)是在盐水中添加表面活性剂形成的一种低粘阳离子胶凝液,又被称为清洁压裂液(clear FRAC)。它由长链脂肪酸衍生的季胺盐组成,在盐水中季胺盐分子形成蚯蚓状或杆状胶束,这些胶束类似于聚合物链,能够卷曲,形成一种粘弹性的流体,其粘度是通过表面活性剂杆状胶束的相互缠绕而形成的,这与瓜胶等植物胶压裂液的粘度形成机理不一样。植物胶压裂液不耐剪切,由于分子链的断开,剪切过程中植物胶的粘度会永久的丧失。而清洁压裂液胶束的形成和相互缠绕是表面活性剂分子之间和表面活性剂聚集体之间的行为,其变化的速率远远的大于流体的流动速率,表现为清洁压裂液的表观粘度不随时间而变化以及通过高剪切后体系的粘度又能够得到恢复。当压裂液暴露到烃液中或被地层水稀释时发生破胶,无需另外添加破胶剂。清洁压裂液中不含任何高聚物,它主要

压裂工艺设计样本

山西省阳城CMM项目LSWJ-3井压裂作业施工设计 中国联盛投资集团有限公司二○一一年六月

山西省阳城CMM项目 LSWJ-3井压裂作业施工设计 编写人: 审核人: 甲方审核: 甲方审批: 项目单位: 中国联盛投资集团有限公司 设计单位: 汇金石油技术服务有限责任公司 二〇一一年六月二十日

目录 一、基本数据 (1) 二、施工目的及依据 (2) 三、压裂层段 (2) 四、施工参数 (2) 五、压裂液配方及各种原料、添加剂用量 (3) 六、压裂施工泵注程序 (3) 七、施工准备 (5) 八、施工步骤 (6) 九、质量保证要求 (10) 十、 HSE要求................................. 错误!未定义书签。十一、完井资料的整理与提交 .. (12) 十二、压裂管柱示意图 (14) 十三、完井管柱结构示意图 (15) 附件 (16)

一、基本数据

二、施工目的及依据 ( 1) 经过压裂改造煤层, 增强煤层近井地带的渗透能力, 有效地将煤层天然裂隙系统与 井孔连通起来。 (2)解除井眼附近因钻井、固井可能造成的储层污染, 增加产气能力, 为减少施工泵压 的摩阻采用光套管泵入的方式。 ( 3) 经过压裂后排采, 进一步认识煤层气储层特征。 (3)本设计依据中国石油行业标准《SY/T5836中深井压裂设计施工作法》及《煤层气 压裂技术规范》。 三、压裂层段 四、施工参数

五、压裂液配方及各种原料、添加剂用量 ( 1) 压裂液配方 清水: 清水 ( 2) 原料、添加剂用量 3#煤层: 设计清水量: 460.60m3 配置清水: 500m3 15#煤层: 设计清水量: 188.50m3 配置清水: 200m3配液说明: ①配液水质PH为6.5-7.5, 机械杂质小于0.2%。 ②技术要求: 配液用水需精细过滤。 六、压裂施工泵注程序 下层( 15#煤层) 泵注程序

油田压裂新技术工艺

2012年4月8日星期日 1、黑油模型:指油质较重性质的油藏类型。黑油模型是最完善、最成熟,也是应用最为广 泛的模型。是油藏数值模拟的基础,其它模型大都是黑油模型的扩展。 (1)黑油模型的基本假设:(1)油藏中的渗流是等温渗流。(2)油藏中最多只有油、气、水三相,每一相均遵守达西定律。(3)油藏烃类只含有油、气两个组分。在油藏状态下,油气两组分可能形成油气两相,油组分完全存在于油相内,气组分则可以以自由气的方式存在于气相中,也可以以溶解气的方式存在于油相中,所以地层内油相为油组分和气组分的某种组合。在常规油田中,一般不考虑油组分向气组分挥发的现象。(4)油藏中气体的溶解和逸出是瞬间完成的,即认为油藏中油气两相瞬时达到相平衡状态。(5)油水之间不互溶;天然气也假定不溶于水。 (2)物性:页岩最突出的特点是孔隙度和渗透率极低,典型的气页岩的基质渗透率处于微达西~纳达西范围,因此气体在储层中的流动主要取决于页岩中天然裂缝的发育情况 (3)矿物组成:粘土矿物和碳酸盐含量低、粉砂质或硅质(石英)含量较高比较有利。(4)裂缝:裂缝发育适中。 2012-4-9 4、压裂工艺成果 压裂工艺推陈出新,分段压裂、裂缝性气藏压裂、火山岩压裂、降滤压裂、重复压裂、转向压裂、控缝高压裂等压裂技术得到了成功应用,特别是水平井分段压裂技术的推广应用,在保障油气田增储上产方面发挥了巨大作用。 较好指标:

水平井压裂分段数:9段 深层气压裂最大支撑剂量: 908.5t (角64-2H井) 最大注入井筒液量: 4261.1m3 最大酸压规模:1603 m3 ?水力喷射分层加砂压裂在四川、长庆地区施工20余井次,平均单井次缩短施工周期20天以上;气井应用不动管柱分层压裂技术307井次,施工成功率99%;平均单井缩短试气周期20天以上;连续混配压裂施工405井次,累计配液88898 m3,累计缩短施工周期425天。 ?裸眼封隔器分段压裂取得突破性进展。全年在苏里格等地区现场应用22井次,并取得良好效果。长城钻探在苏里格气田采用裸眼封隔器进行压裂投产后产量是临近直井的5倍以上。 ?川庆钻探与美国EOG公司合作,在角64-2H井应用水平井泵送电缆桥塞压裂技术,成功完成水平井9段分层加砂压裂施工,注入液体4261.1m3,支撑剂908.5t,刷新此项工艺技术作业时间最短、段数最多(9段)、注入砂量最大、注入液量最多、累计作业时间最长等5项亚洲记录, ?2010年,国产水平井裸眼封隔器及配套工具的成功研发和推广应用,打破了外国公司的垄断,取得了很好的增产效果,产量是临近直井的3倍以上。 ?2010年,川庆钻探在合川 2口井成功进行了连续油管喷砂射孔环空6-7级分段压裂现场施工;西南油气田的威201页岩气井也已进行了2次的页岩气压裂改造施工,为非常规气藏有效开发探索出了新的途径。 5、机械分段压裂技术 机械分段压裂技术包括裸眼封隔器分段压裂技术、动管柱套管内多封隔器卡封分段压裂技术、不动管柱套管内多封隔器卡封分段压裂技术、封隔器+桥塞分段压裂技术等。 1、裸眼封隔器分段压裂 ◆裸眼封隔器分段压裂是苏里格水平井储层改造的主要方式:到目前苏里格共完成裸眼分段压裂36井(167段),占整个水平井改造总井数的81.8%。 ◆应用规模逐年扩大: 09年8井次、10年1~7月28井次。 ◆技术水平逐步提高:分段数从3段到10段(工具已下井,近期压裂施工),最长水平段1512m,最大下入深度5235m。 套管鞋:3698.81

压裂工艺原理介绍)

水力压裂 水力压裂水力压裂水力压裂在油田开发中,人们发现,在对油层进行高压注水时,油层的吸水量开始随注水压力的上升而按一定比例增加。开始当压力值突破某一限度时,就会出现吸水量成几倍或几十倍的增加,远远超出了原来的比例,而且当突破某一限度后即使压力降低一些,其吸水量仍然很大。实践中的这一偶然发现,给人们以认识油的新启示:既然油层通过高压作用能提高注入量,那么通过高压作用能否提高油层的产量呢?经过多次证明:油层通过高压作用后,不但可以提高产量,而且能较大幅度的提高产量。最早进行压裂工作的是1947年在美国的湖果顿气田克列帕1号井进行的,苏联是1954年开始的,而我国是1952年在延长油矿开始的。40年代末水力压裂常作为一口井的增产措施来对待,但发展至今在油气田开发中的意义,已远远超过了一口井的增产增注作用。在一定条件下能起到改善采油或注水剖面,提高注水效果,加快油田开发速度和经济效果的作用。近些年来,国外在开发极低渗透率(以微达西计)的气田中,水力压裂起到了关键性的作用。本来没有开采价值的气田,经大型压裂后成为有相当储量及开发规模很大的气田。从这个意义上讲,水力压裂在油气资源的勘探上起者巨大的作用。由于上述原因,水力压裂无论在理论上、设备上、工艺上,在短短的几十年来发展的很快。现今的压裂设备能力,一次施工可用液量3000~4000米3,加砂300米3,可压开6000米的井深,裂缝长达1000米。从实践中,我们认识到压裂是油气井增产、注水井增注的一项重要措施。其优点是:施工简单、成本较低、增产(注)显著。适用于岩性微密、低渗透地层。§§§§4.1 压裂的增产原理压裂的增产原理压裂的增产原理压裂的增产原理一一一一. 压裂的过程压裂的过程压裂的过程压裂的过程压裂是靠水(液体)传导压力的,故也叫水力压裂。其过程是:在地面采用高压大排量的泵,利用液体传压的原理,将具有一定粘度的液体以大于油层吸收能力的排量向井内注入,使井筒内的压力逐渐提高。当压力增高到大于油层破裂所需要的压力时,油层就会形成一条或几条水平或垂直裂缝。当继续注入液体时,裂缝也会向油层深处延伸与扩展,直到液体注入速度等于油层渗透速度时,裂缝才会停止延伸与扩展。如果地面停止注入夜体,油层由于外来压力消失,又会使裂缝闭合,为了防止停泵后裂缝闭合,在挤入的液体中加入支撑剂(如石英砂、核桃壳等),使油层中形成导流能力很强的添砂裂缝。 导流能力导流能力导流能力导流能力=添砂裂缝渗透率添砂裂缝渗透率添砂裂缝渗透率添砂裂缝渗透率Kf××××裂缝宽度裂缝宽度裂缝宽度裂缝宽度W 二二二二. 增产

压裂基础知识

压裂基础知识

压裂基础知识 一、水力压裂原理 (一)基本原理 水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中,在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,便在井底附近地层产生裂缝;继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和高导流能力的填砂裂缝,使井达到增产增注的目的。 (二)增产原理 1、形成的填砂裂缝的导流能力比原地层系数大得多,可大几倍到几十倍,大大增加了地层到井筒的连通能力; 2、由原来渗流阻力大的径向流渗流方式转变为单向流渗流方式,增大了渗流截面,减小了渗流阻力;

3、可能沟通独立的透镜体或天然裂缝系统,增加新的油源; 4、裂缝穿透井底附近地层的污染堵塞带,解除堵塞,因而可以显著增加产量。 二、压裂材料 (一)压裂液 在压裂过程中注入的液体统称为压裂液,根据压裂过程中注入井内的压裂液在不同施工阶段所起的作用不同,可把压裂液分为前置液、携砂液、顶替液三种。 1、根据作用不同分类 前置液:它的作用是破裂地层并造成一定几何尺寸的裂缝,以便后面的携砂液进人在温度较高的地层里,它还可起一定的降温作用。有时为了提高前置液的工作效率,在前置液中还加入一定量的细砂(粒径100-140目,砂比10%左右)以堵塞地层中的 微隙,减少液体的滤失。

携砂液:它起到将支撑剂带入裂缝中并将支撑剂填在裂缝内预定位置上的作用。在压裂液的总量中,这部分比例很大。携砂液和其他压裂液一样,有造缝及冷却地层的作用。携砂液由于需要携带密度很高的支撑剂,必须使用交联的压裂液(如冻胶等)。 顶替液:顶替液是在加砂程序结束后,用来将携砂液全部替人裂缝中,以提高携砂液的效率和防止井筒沉砂。 2、根据类型不同分类 根据压裂液类型不同,可以将压裂液分为水基压裂液、油基压裂液、泡沫压裂液等。 (1)水基压裂液:水基压裂液是用水溶胀性聚合物(称为成胶剂)经交链剂(又叫交联剂)交链后形成的冻胶。常用的成胶剂有植物胶(瓜尔胶、田菁、皂仁等)、纤维素衍生物(羟乙基纤维素、羧甲基轻乙基纤维素等)以及合成聚合物(聚丙烯酞胺、聚乙烯醇);交链剂有硼酸盐和钛、锆等有机金属盐等。在施工结束后,为了使冻胶破胶还需要加入破胶剂。常用破胶剂

压裂设计作业

人工裂缝支撑剂铺置优化设计 讲义

1 课程设计相关要求 1.1 专业硕士课程设计目的 目的:掌握水力压裂过程中支撑剂在裂缝中的铺置规律,并对压裂施工参数进行优化设计。 完成途径:理论学习、数学计算、软件应用 1.2 主要任务 每3人一组完成一个课题,每个课题参数不同。 主要任务: (1)计算砂粒沉降匀速、阻力速度、平衡流速、平衡时断面高度、平衡时间、平衡砂堤高度; (2)敏感性分析; (3)参数优化设计 注意:计算参数由同学自行设计,可参考示例。同一组同学参数可一样,不同组同学参数必须完全不相同,否则两组同学成绩均为零。

2 支撑剂沉降数学模型 支撑剂在裂缝中的分布情况,决定了压裂后填砂裂缝的导流能力和增产效果。而支撑剂在裂缝中的沉降受到诸多因素的影响,包括砂浓度、壁颗粒形状等因素。 2.1 支撑剂在压裂液中的自由沉降 对于支撑剂在压裂液中的沉降现象,研究的起步是非常早的。早在50年代,人们就认识到了支撑剂在输送过程中,由于液体的粘性力不可能完全的大于支撑剂颗粒自身的重力,会引起支撑剂在随着压裂液的前进过程中产生沉降现象[7];并对这种现象进行了理论上的研究,应用于水力压裂的设计中,取得了一定的效果。目前对于在牛顿液体中单颗粒的自由沉降或群粒的干扰沉降均有比较成熟的计算方法,对于非牛顿液体的幂律型液体中的沉降规律也有所认识、但对于带有粘弹性的冻胶压裂液中的沉降行为及其计算方法,只能说处于定性的、半定量的研究阶段,还有许多工作等待继续去做[8]。 2.1.1 单颗粒在牛顿流体中的自由沉降 质量为m 的颗粒在力1F 的作用下,在液体中以速度u 沉降。若2F 及3F 分别代表浮力及阻力,则在速度u 的方向上合力F 为: 123F F F F =-- (2-1) 将以上各种力的参数代入上式,则可写成下式: 2 (/)()2 s d A u F ma ma C ρρρ=-- (2-2) 式中 a ——加速度,m/s 2; ρ——压裂液净液的密度,kg/m 3; ρs ——砂粒的密度,kg/m 3; A ——垂直于沉降方向的颗粒面积,m 2; C d ——阻力系数,无因次; m ——颗粒的质量,kg ; u ——单颗粒的重力沉降速度,m/s 。 设球形颗粒在重力下沉降,则上式中的a ,A ,m 分别为: a g =,24p A d π=,36 p s m d π ρ=。 式中 g ——重力加速度,m/s 2; d p ——颗粒直径,m 。 又知:du F ma m dt == 将上面各式分别代入(2-2)式中并进行整理,可得到:

压裂专业知识

压裂讲座 第一节压裂设备 1.压裂车: 压裂车是压裂的主要设备,它的作用是向井内注入高压、大排量的压裂液,将地层压开,把支撑剂挤入裂缝。压裂车主要由运载、动力、传动、泵体等四大件组成。压裂泵是压裂车的工作主机。现场施工对压裂车的技术性能要求很高,压裂车必须具有压力高、排量大、耐腐蚀、抗磨损性强等特点。 2.混砂车: 混砂车的作用是按一定的比例和程序混砂,并把混砂液供给压裂车。它的结构主要由传动、供液和输砂系统三部分组成。 3.平衡车: 平衡车的作用是保持封隔器上下的压差在一定的范围内,保护封隔器和套管。另外,当施工中出现砂堵、砂卡等事故时,平衡车还可以立即进行反洗或反压井,排除故障。 4.仪表车: 仪表车的作用是在压裂施工远距离遥控压裂车和混砂车,采集和显示施工参数,进行实时数据采集、施工监测及裂缝模拟并对施工的全过程进行分析。 5.管汇车: 管汇车的作用是运输管汇,如;高压三通、四通、单流阀、控制阀等。 第二节压裂施工基本程序 1.循环: 将压裂液由液罐车打到压裂车再返回液罐车。循环路线是液罐车-混砂车-压裂泵-高压管汇-液罐车,旨在检查压裂泵上水情况以及管线连接情况。循环时要逐车逐档进行,以出口排液正常为合格。 2.试压: 关死井口总闸,对地面高压管线、井口、连接丝扣、油壬等憋压30-40Mpa,保持2-3min不刺不漏为合格。 3.试挤: 试压合格后,打开总闸门,用1-2台压裂车将试剂液挤入油层,直到压力稳定为止。目的是检查井下管柱及井下工具是否正常,掌握油水的吸水能力。

4.压裂: 在试挤压力和排量稳定后,同时启动全部车辆向井内注入压裂液,使井底压力迅速升高,当井底压力超过地层破裂压力时,地层就会形成裂缝。 5.支撑剂: 开始混砂比要小,当判断砂子已进入裂缝,相应提高混砂比。 6.替挤: 预计加砂量完全加完后,就立即泵入顶替液,把地面管线及井筒中的携砂液全部顶替到裂缝中去,防止余砂乘积井底形成砂卡。 7.反洗或活动管柱 顶替后立即反洗井或活动管柱防止余砂残存在井筒封隔器卡距之内,造成砂卡。 第三节压裂液原理 压裂的实质是利用高压泵组,将具有一定粘度的液体高速注入地层。当泵的注入速度大于地层的吸收速度时,地层就会产生破裂或使原来的微小缝隙张开,形成较大的裂缝。随着液体的不断注入,已形成的裂缝向内延伸。为了防止停泵以后,裂缝在上部岩层的饿重力下重新闭和,要在注入的液体中加入支撑剂,使支撑剂充填在压开的饿裂缝中,以支撑缝面。 根据压裂液在压裂过程中不同阶段的作用,可分为前置液,携砂液和顶替液。 1. 前置液: 前置液的作用是破裂地层,造成一定几何尺寸的裂缝,以备后面的携砂液进入。在温度较高的地层里,还可以起到一定的降温作用。 2. 携砂液: 携砂液的作用是用来将地面的支撑剂带入裂缝,并携至裂缝中的预定位置,同时还有延伸裂缝、冷却地层的作用。 3. 顶替液: 顶替液的作用是将携砂液送到预定位置,将井筒中的全部携砂液替入裂缝中。4.支撑剂: 支撑剂是指用压裂液带入裂缝,在压力释放后用以支撑裂缝的物质。 5.破坏剂: 破坏剂包括破胶剂、破乳剂、降粘剂等。破胶剂是用来破坏冻胶交联结构的。破乳剂用于破坏乳状液的稳定性,降粘剂用于减少稠化液的粘度。 6.减阻剂: 减阻剂是通过减少紊流,减少流动时的能量损失来减少压裂液的流动摩阻。

压裂工艺题库样本

压裂酸化工艺题库汇编 一、填空题 1、压裂施工主泵注程序包括前置液、携砂液和顶替液三个阶段。 2、当前压裂使用的支撑剂最常见的有石英砂和陶粒。 3、支撑剂粒径范围可分为0.225/0.45mm( 80/40目) 、0.45/0.9mm( 40/20目) 和0.9/1.25mm三种不同规格。 4、常见的压裂方式有合层压裂、单层选压、一次多层分压。 5、压裂注入方式包括油管注入、环空注入、套管注入和油套混注。 6、玉门油田常见的压裂油管是31/2″( Φ89mm) 。 7、套管尺寸为Φ139.7mm*124.26mm*7.72mm的单位长度上容积为12.13L/m。 Φ139.7mm*121.36mm*9.17mm的单位长度上容积为11.57L/m。 8、油管尺寸为Φ89mm*76mm*6.5mm的单位长度上容积为4.54L/m 9、压裂常见的井口KQ78/105型是采气井口装置, 105代表最大工作压力为105MPa; 78代表公称通径为78mm; 限压是 105 Mpa。10、压裂液应具备良好的流变性、滤失少、稳定性好、摩阻损失小、携砂能力强、配伍性好、残渣低、对地层的伤害小等特点。 11、压裂液胶联剂分有机硼和无机硼。 12、现场施工胶联剂用硼砂配制。 13、压裂常见的破胶剂是过硫酸铵和胶囊。 15、常见的体积流量单位是m3/min、 L/min_。

16、布置压裂施工井场时, 压裂液罐距离井口位置大于28米。 17、 1英寸=( 25.4) mm 1磅=( 0.454) Kg 1桶=( 158.988) L 1psi=( 7*10-3) MPa 18、压裂液常见的有: 水基压裂液、油基压裂液、酸基压裂液、泡沫压裂液_。 19、前置液的作用是: 压开、扩展、延伸裂缝。 20、携砂液的作用是: 携带支撑剂进入裂缝, 并起扩展延伸裂缝。 21、砂比一般指的是: 携砂液加砂量和携砂液净液量的体积比。 22、压裂液配液材料: 稠化剂、 PH调节剂、破乳助排剂、杀菌剂、粘土防膨剂、温度稳定剂等。 23、压裂液的滤失性能是指压裂液渗透到_ 地层内的能力。 24、一般情况下, 压裂液的滤失_低_有助于延伸裂缝, 压裂液粘度高有助于压开裂缝。 25、压裂液粘度高 , 携砂能力强。 26、油管压裂施工中, 常采用套管加压平衡的方法来保护上封隔器套管。 27、常见的Y211-115封隔器, 分类代号Y代表压缩式; 支撑方式代号2代表单向卡瓦; 坐封方式代号1代表提放管柱; 解封方式代号1代表提放管柱; 115代表刚体最大外径。 28、压裂施工中, 向井内挤入液体的速度高于油层的吸收速度, 井底压力升到足够值时, 将压开地层。 29、为避免砂堵, 砂卡, 压裂加砂完毕后应向井筒内注入_顶替液_

相关文档