文档库 最新最全的文档下载
当前位置:文档库 › 电极材料应用标准 MJS-EDM- B-0014

电极材料应用标准 MJS-EDM- B-0014

电极材料应用标准 MJS-EDM- B-0014

工艺技术标准

标准名称:

(EDM工艺标准)文件编号:MJS-EDM- B-0014 版本号:01

批准:

日期:

——版本所有 * 未经书面认可 * 不得复制 * 违者必究——第 1 页共 1 页

电位差计的原理和使用

实验八 电位差计的原理和使用 【实验目的】 1.掌握电位差计的工作原理和正确使用方法,加深对补偿法测量原理的理解和运用。 2.训练简单测量电路的设计和测量条件的选择。 【实验仪器】 UJ31型直流电位差计、SS1791双路输出直流稳压电源、标准电池、标准电阻、AC15/5灵敏电流计、FJ31型直流分压箱、滑线变阻器、直流电阻箱、待校验电表、待测干电池、待测电阻、开关和导线等。 【实验原理】 如图5.8.1所示,电位差计的工作原理是根据电 压补偿法,先使标准电池E n 与测量电路中的精密电阻R n 的两端电势差U st 相比较,再使被测电势差(或电压)E x 与准确可变的电势差U x 相比较,通过检流计G 两次指零来获得测量结果。电压补偿原理也可从电势差计的“校准”和“测量”两个步骤中理解。 校准:将K 2打向“标准”位置,检流计和校准电路联接,R n 取一预定值,其大小由标准电池E S 的电动势确定;把K 1合上,调节R P ,使检流计G 指零,即E n = IR n ,此时测量电路的工作电流已调好为 I = E n /R n 。校准工作电流的目的:使测量电路中的R x 流过一个已知的标准电流I o ,以保证R x 电阻盘上的电压示值(刻度值)与其(精密电阻R x 上的)实际电压值相一致。 测量:将K 2打向“未知”位置,检流计和被测电路联接,保持I o 不变(即R P 不变),K 1合上,调节R x ,使检流计G 指零,即有E x = U x = I o R x 。 由此可得x n n x R R E E = 。由于箱式电位差计面板上的测量盘是根据R x 电阻值标出其对应的电压刻度值,因此只要读出R x 电阻盘刻度的电压读数,即为被测电动势E x 的测量值。 所以,电位差计使用时,一定要先“校准”,后“测量”,两者不能倒置。 【实验装置】 1. UJ31型电位差计 UJ31型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或mV V 17110-μ(1K 置10?档)。使用 图5.8.1 电位差计的工作原理 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

标准电极电势表

标准电极电势表 标准电极电势可以用来计算化学电池或原电池的电化学势或电极电势。本表中所给出的电极电势以标准氢电极为参比电极,溶液中离子有效浓度为1mol/L ,气体分压为100kPa ,温度为298K ,所有离子的数据都在水溶液中测得。[1][2][3][4][5][6][7][8][9]单击每栏上方的符号可将数据按元素符号或标准电极电势值排序。 注:(s ) – 固体;(l ) – 液体;(g ) – 气体;(aq ) – 水溶液;(Hg ) – 汞齐。 半反应 E° (V)[注 1] 来源 Ba + + e ? Ba(s ) ?4.38 [10][1][3] Sr + + e ? Sr(s ) ?4.10 [11][1][3] Ca + + e ? Ca(s ) ?3.8 [11][1][3] Pr 3+ + e ? Pr 2+ ?3.1 [11] ?N 2(g ) + H + + e ? HN 3(aq ) ?3.09 [6] Li + + e ? Li(s ) ?3.0401 [5] N 2(g ) + 4?H 2O + 2?e ? 2?NH 2OH (aq ) + 2?OH ? ?3.04 [6] Cs + + e ? Cs(s ) ?3.026 [5] Ca(OH) 2(s ) + 2?e ? Ca(s ) + 2 OH ? ?3.02 [11] Rb + + e ? Rb(s ) ?2.98 [4] K + + e ? K(s ) ?2.931 [5]

半反应E° (V)[注 1]来源Mg+ + e? Mg(s) ?2.93 [10] Ba2+ + 2?e? Ba(s) ?2.912 [5] ? La(s) + 3OH??2.90 [5] La(OH) Fr+ + e? Fr(s) ?2.9 [11] Sr2+ + 2?e? Sr(s) ?2.899 [5] ? Sr(s) + 2?OH??2.88 [11] Sr(OH) Ca2+ + 2?e? Ca(s) ?2.868 [5] Eu2+ + 2?e? Eu(s) ?2.812 [5] Ra2+ + 2?e? Ra(s) ?2.8 [5] Yb2+ + 2?e? Yb(s) ?2.76 [11][1] Na+ + e? Na(s) ?2.71 [5][9] Sm2+ + 2?e? Sm(s) ?2.68 [11][1] No2+ + 2?e? No(s) ?2.50 [11] ?Hf(s) + 4?OH??2.50 [11] HfO(OH)

电动势的测定及其应用(实验报告)

实验报告 电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m =-nFE 式中△r G m 是电池反应的吉布斯自由能增量;n 为电极反应中电子得失数;F 为法拉第常数;E 为电池的电动势。从式中可知,测得电池的电动势E 后,便可求得△r G m ,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计 UJ25型箱式电位差计是一种测量低电势的电位差计,其测量围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2 所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调 节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温度不同 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

玻碳电极

玻碳电极 玻璃碳简称玻碳,是将聚丙烯腈树脂或酚醛树脂等在惰性气氛中缓慢加热至高温(达1800℃)处理成外形似玻璃状的非晶形碳,适于作电极的电子导体材料,在乒乓球底板中也被广泛使用。玻璃碳电极的优点是导电性好,化学稳定性高,热胀系数小,质地坚硬,气密性好,电势适用范围宽(约从-1~1V),相对于饱和甘汞电极),可制成圆柱、圆盘等电极形状,用它作基体还可制成汞膜玻碳电极和化学修饰电极等。在电化学实验或电分析化学中得到日益广泛的应用。玻碳电极比金电极好处理。金电极表面要处理的很干净还是要花不少功夫的。 文献中有不同的处理方法,如CV、恒电势法等, 同种方法也出现很多不同的酸度、电位、时间及扫速等。预处理的目的是为了在玻碳电极表面形成—COOH,—OH等活性基团,电极表面处于活化状态,而且易于电极的的修饰。不需要通氮除氧的,在PBS溶液中,只是要很宽的电位窗口下好像是0~1.5V进行氧化,氧化后,电极表面肉眼可以看到一层蓝色的膜。 固体电极表面的第一步处理是进行机械研磨、抛光至镜面程度,特别当电极表面上存在惰化层或很强的吸附层时,必须用机械或加热的方法处理。通常用于抛光电极的材料有金刚砂,CeO2 ,ZrO2 ,MgO和α-Al2O3粉,抛光时总是按抛光剂粒度较低的顺序依次进行研磨。实验时,将直径为3mm的玻碳电极先用金相砂纸(1#~7#)逐级抛光,再依次用1.0、0.3μm 的Al2O3浆在麂皮上抛光至镜面,每次抛光后先洗去表面污物,再移入超声水浴中清洗,每次2~3min,重复三次,最后依次用1:1乙醇、1:1HNO3和蒸馏水超声清洗 彻底洗涤后,电极要在0.5-1mol/L H2SO4溶液中用循环伏安法活化,扫描范围1.0~-1.0V,反复扫描直至达到稳定的循环伏安图为止。最后在0.20mol/LKNO3中记录1×10-3mol/L K3Fe(CN)6溶液的循环伏安曲线,以测试电极性能,扫描速度50 mV/s,扫描范围0.6 ~-0.1V。实验室条件下所得循环伏安图中的峰电位差在80mV以下,并尽可能接近64mV,电极方可使用,否则要重新处理电极,直到符合要求 玻碳电极活化后带羧基的方法:玻碳电极在10% HNO3 和2.5% K2Cr2O7溶液中活化,电位是1.5

原电池电动势的测定及应用

原电池电动势的测定及应用 姓名: 学号: 班级:2012级化工班 指导老师: 日期:2014-09-24 成绩: 一、实验目的: 1.掌握对消法测定电池电动势的原理及电位差计的使用。 2.了解可逆电池电动势的应用。 3.学会银电极、银—氯化银电极的制备和盐桥的制备。 二、实验原理: 1.原电池是由正,负两个电极和相应电解质溶液组成,电池反应中正极起还原作用,负极起氧化作用,电池反应是电池中两个电极反应的总和。电池电动势不能直接用伏特计来测量,因为当伏特计与待测电池接通后,整个线路中便有电流通过,电池内部由于存在内电阻而产生某一电位降,并在电池两极发生化学反应,溶液浓度发生变化,电动势数值不稳定,所以只有在无电流通过的情况下进行测定,即采用对消法。 测量电动势只能在无电流通过电池的情况下进行,因此需要用对消法(补偿法)来测定电动势。对消法测定电动势就是在所研究的电池的外电路上加一个方向相反的电压。当两者相等时,电路的电流为零(通过检流计指示)。对消法测电动势常用的仪器为电位差计,其简单原理如图所示: 1 2R R E E S X = 电极电势的测定原理:原电池是化学能转变为电能的装置,在电池放电反应中,正极(右边)起还原反应,负极起氧化反应。电池的电动势等于组成的电池的两个电极电位的差值。即: 氧化还原左 右αα??????θln _ZF RT E -=-=-=+

三、仪器与药品: 1. 仪器:电位差计 直流辐射式检流计 铂电极 银电极 饱和甘汞电极 稳压直流电源 导线 标准电池 盐桥 小烧杯若干 2. 药品:HCl (0.100m ) AgNO3(0.100m )KCl 饱和溶液 醌氢醌 未知PH 溶液 四、实验步骤 : 本实验测定如下两个电池的电动势: 1.①Hg -Hg 2Cl 2|饱和KCl 溶液||AgNO 3(0.100m)|Ag ②Hg -Hg 2Cl 2|饱和KCl 溶液||饱和有醌氢醌的未知PH 溶液|Pt 2.电极的制备 (1)铂电极、银—氯化银参比电极和饱和甘汞电极采用现成的商品,在使用前用蒸馏水洗净。若铂电极有油污,应在丙酮中浸泡,然后用蒸馏水冲洗。 (2)醌氢醌电极:将少量醌氢醌固体加入待测的未知PH 溶液中使成为饱和溶液,然后插入干净的铂电极即可。 3.(1)矫正电位计:先将功能选择开关扳到“外标”档。再将电位计的正负极短接,按“校准”归零。最后将外标正极与基准正极,外标负极与基准负极接,调数字至基准数(每台仪器都不同),按校准键归零。 (2)组成两个电池。 (3)将标准电池和待测电池分别接入电位差计上。在测标准电池是电位差计的正极连接Ag 电极,在测待测电极时电位计的正极连接Pt 电极。 (4)将功能选择开关扳到“测量”档。把标准电池正确接入电位差计上,从大到小从左到右旋转六个电势测量旋钮,直到调至检流计示数为零为止。按同样的方法测定未知电池电动势。 (5)根据Nernst 公式计算实验温度下电池①②的电动势理论值。 五、数据处理 : 室温:21℃ 测量值/V E 测量平均值/V V Ag Ag //+? V Ag Ag //θ?+ 相对 误差 一次 两次 三次 0.495453 0.7393 0.8031 7.944% 0.495880 0.495195 0.495283 0.327874 0.326129 0.324568 0.326190 1、已知饱和甘汞电极和银电极的电极电位与温度的关系如下 当t=21℃ 甘汞?=0.2412-6.61×10-4(t-25℃)-1.75×10-6(t-25℃)2-9.16×10-10(t-25℃)2 =0.2438V =+θ ?Ag Ag /0.7991-9.88×10-4(t-25℃)+7×10-7(t-25℃)2 =0.8031V 由于电池的电动势为甘汞??-=+Ag Ag E /,所以

铁氰化钾在玻碳电极上的氧化还原

铁氰化钾在玻碳电极上的氧化还原 一、实验目的。 (1)掌握循环伏安扫描法。 (2)学习测量峰电流和峰电位的方法。 (3)掌握受扩散控制电化学过程的判别方法。 二、实验原理 循环伏安法也是在电极上快速施加线性扫描电压,起始电压从Ei开始,沿某一方向变化,当达到某设定的终止电压Em后,再反向回扫至某设定的起始电压,形成一个三角波,电压扫描速率可以从每秒数毫伏到1V。 当溶液中存在氧化态物质Ox时,它在电极上可逆地还原生成还原态物质,即 Ox + ne → Red 反向回扫时,在电极表面生成的还原态Red则可逆地氧化成Ox,即 Red → Ox + ne 由此可得循环伏安法极化曲线。 在一定的溶液组成和实验条件下,峰电流与被测物质的浓度成正比。 从循环伏安法图中可以确定氧化峰峰电流Ipa、还原峰峰电流Ipc、氧化峰峰电位φpa和还原峰峰电位φpc。 对于可逆体系,氧化峰峰电流与还原峰峰电流比为 Ipa/Ipc =1 25℃时,氧化峰峰电位与还原峰峰电位差为 △φ=φpa- φpc≈58/n (mV) 条件电位为 φ。′=(φpa+ φpc)/2 由这些数值可判断一个电极过程的可逆性。 三、仪器与试剂 仪器 1,电化学分析仪;

的惰性电极,具有导电性好,硬度高,光洁度高,氢过电位高,极化范围宽,化学性稳定,可作为惰性电极直接用于 阳极溶出,阴极和变价离子的伏安测定,还可以作化学修饰电极)、Ag/AgCl电极、铂电极 3. 铁氰化钾标准溶液(50mM) 4.氯化钾溶液(0.5M) 四、实验步骤 1.溶液的配置 1)铁氰化钾标准溶液(50mmol/L)50mL容量瓶中。 2)配置1、2、5、10mM 一系列浓度的溶液。(分别移取0.5,1.0,2 .5,5.0mL 的铁氰化钾标准溶液于25mL的容量瓶中加入5mL的KCl溶液,用蒸馏水稀释至刻度,摇匀备用。) 2.体系换成浓度工作电极的预处理 用Al2O3粉末在湿的抛光布上抛光玻碳电极表面,在用蒸馏水冲洗干净. 3.调试 (1)打开仪器,电脑,准备好玻璃电极,Ag/AgCl电极,和铂电极并清洗干净。(2)双击桌面上的VaLab图标 4. 选择实验方法:循环伏安法 设置参数: 低电位: -100mv ; 高电位:800 mv 初始电位:-100mv; 扫描速度:50mv/s; 取样间隔: 2mv;静止时间:1S; 扫描次数:1; 5. 开始扫描:点击绿色的“三角形”。 6.将上述体系改变扫描速度分别为10mv/s、20mv/s、40mv/s、80mv/s、160mv/s,其他条件不变,作不同速度下的铁氰化钾溶液的循环伏安曲线 7.在同一扫速下扫不同浓度的铁氰化钾溶液的循环伏安曲线。 五、数据记录与处理 1. 峰值电流与扫描速度的二分之一次方的曲线。 2.峰电流对不同浓度下峰电流的曲线。 六结果与讨论 1实验时为什么要保持溶液静止? 为了使液相传质过程只受扩散控制 2为什么要抛光电极的表面? 在使用任何固体电极之前都必须清洁其表面,以便清除表面上玷污或吸附杂质造成的污染。正如大多数金属材料电极表面易生成氧化层一样,碳电极表面发生氧化后,会产生各种含氧基团(如醇、酚、羧基、酮醌和酸酐等),从而使电极的重现性、稳定性变差,灵敏度下降,失去应有的选择性。实验时,将直径为3mm的玻碳电极先用金相砂纸(1#~7#)逐级抛光,再依次用1.0、0.3μm的Al2O3浆在麂皮上抛光至镜面,每次抛光后先洗去表面污物,再移入超声水浴中清洗,每次2~3min,重复三次,最后依次用1:1乙醇、1:1HNO3和蒸馏水超

可逆电池的电动势及其应用习题

第九章可逆电池的电动势及其应用习题一、选择题 1.某电池的电池反应可写成: (1)H 2 (g)+ 2 1 O 2 (g)→ H 2 O(l) (2)2H 2 (g)+ O 2 (g)→ 2H 2 O(l) 相应的电动势和化学反应平衡常数分别用E 1,E 2 和K 1 ,K 2 表示,则 (A)E 1=E 2 K 1 =K 2 (B)E 1 ≠E 2 K 1 =K 2 (C)E 1=E 2 K 1 ≠K 2 (D)E 1 ≠E 2 K 1 ≠K 2 2.通过电动势的测定,可以求难溶盐的活度积。欲测AgCl(s)的活度积K SP ,应设计的电池是: (A)Ag|AgCl(s)|HCl(aq)|Cl 2 (g,pθ)|Pt (B)Pt| Cl 2 (g,pθ)| HCl(aq)||AgNO 3 (aq)|Ag (C)Ag |AgNO 3 (aq)| HCl(aq)|AgCl(s)|Ag (D)Ag|AgCl(s)| HCl(aq)||AgNO 3 (aq)|Ag 3.下列电池中,电动势E与Cl-的浓度无关的是 (A)Ag|AgCl(s)|KCl(aq)| Cl 2 (g,100kPa)| Pt (B)Ag|Ag+(aq)|| Cl- (aq)| Cl 2 (g,100kPa)| Pt (C)Ag|Ag+(aq)|| Cl- (aq)| AgCl(s) |Ag (D)Ag|AgCl(s) |KCl(aq)|Hg 2Cl 2 (s)|Hg 4.在电池Pt| H2 (g,pθ)| HCl (1mol·kg-1)||CuSO4(0.01 mol·kg-1)|Cu 的阴极中加入下面四种溶液,使电池电动势增大的是 (A)0.1 mol·kg-1CuSO 4 (B)0.1 mol·kg-1Na 2 SO 4 (C)0.1 mol·kg-1Na 2 S (D)0.1 mol·kg-1氨水 5.298K时,电池Zn|ZnCl2(m=0.5mol·kg-1)|AgCl(s)-Ag的电动势E=1.015V,其温度系数为-4.92×10-3V·K-1,若电池以可逆方式输出2法拉第的电量, 则电池反应的Δ r H m (单位:kJ·mol-1)应为 (A)–196 (B)–95 (C)224 (D)–224 6.在298K时,为了测定待测液的pH值而组成电池: Pt,H 2 (p?)|pH(x)溶液|甘汞电极

玻碳电极的打磨清洗

玻碳电极的打磨清洗 1.首先在麂皮上撒上少量0.05um的抛光粉(Al2O3)(可使用其他粒径抛光粉,颗粒由大到小依次打磨),然后滴加上少量的去离子水,用玻碳电极上绝缘的部分稍微搅匀。之后竖直的握玻碳电极,使玻碳电极在麂皮慢速的按圆形移动,每次打磨3min左右。 2.接着用去离子水冲洗电极表面除去附着的大团抛光粉。再移入超声水浴中清洗,每次2~3min。冲洗干净电极表面后,继续用抛光粉打磨,再清洗。整个过程重复五次,最后用蒸馏水超声清洗。 3.彻底洗涤后,电极要在0.5-1mol/L H2SO4溶液中用循环伏安法活化,扫描范围1.0~-1.0V,反复扫描直至达到稳定的循环伏安图为止。最后在0.20mol/LKNO3中记录1×10-3mol/L K3Fe(CN)6溶液的循环伏安曲线,以测试电极性能,扫描速度50 mV/s,扫描范围0.6 ~-0.1V。实验室条件下所得循环伏安图中的峰电位差在80mV以下,并尽可能接近64mV,电极方可使用,否则要重新处理电极,直到符合要求. 铂电极清洗 将铂电极浸入浓硝酸中30min,取出后用去离子水冲洗干净。 电解液的配制 配制电解液时,可先加入所需量的电解质,再加入去离子水(或其他溶剂)。溶解后,加入所需量的底物(浓度一般为10-3M,但10-4M测CV也可以出峰);注意不要配好各自的浓度后再混合。

玻碳电极清洗步骤: 1.打磨:打磨前用湿润的镜头纸轻轻拭擦电极表面,去除污物,确保电极表面光滑。取0.05微米的打磨浆液少许于打磨盘上,加DI水少许,按“8”字形打磨电极2-3分钟,打磨过程中确保电极表面压在打磨盘上,不能歪斜,否则打磨后的电极表面轻易变形,而不是平面。(以上打磨仅限电极表面没有大的划痕时,假如电极表面有明显的划痕,则需要分级打磨,即用1微米,0.5微米,0.05微米的打磨浆液依次打磨。因此,日常使用过程中请保护电极表面,不要形成明显的划痕) 2.将打磨好的电极头竖直放在盛有少量DI水的小烧杯中(注重:a. 水不要没过电极后端的金属, b. 玻璃碳不要触及烧杯底,否则电极表面轻易被杯底玻璃划伤),将小烧杯置于超声中超声2分钟,更换小烧杯中的DI水后重新超声。确认电极表面无残余打磨浆后,停止超声,取出电极,用DI水冲洗。 3.化学清洗:将步骤2处理过的电极的玻碳一头放于浓硫酸中(限PTFE外套的玻碳电极)30秒,取出后用DI水冲洗干净,然后将电极的玻碳一头放在1摩尔氢氧化钠溶液中30秒后取出,用DI水冲洗干净。 4. 将化学清洗过的电极用步骤2中方法超声3次(期间每次要更换DI水)。 5.将得到的电极在红外灯下烘干,或在空气气流中吹干。(用红外灯烘干的时候,注重不要在红外灯下强烈烤,可放在红外光线靠边缘光线不太强的地方,否则PTFE外套轻易被烤得松软,造成玻碳头松动,最终电极因接触不良而无法使用。) 除了工作电极之外还应该考虑电解池是否干净,参比电极是否稳定甚至整个电化学工作站的稳定性

玻碳电极的打磨清洗(经典版)知识讲解

玻碳电极的打磨清洗 (经典版)

玻碳电极的打磨清洗步骤 1、打磨:打磨前用湿润的镜头纸轻轻拭擦电极表面,去除污物,确保电极表面光滑。取0.3微米的抛光粉(Al2O3)少许于打磨盘(麂皮)上,然后滴加上少量的去离子(DI)水,用玻碳电极上绝缘的部分稍微搅匀。[也可配置成不同的Al2O3的悬浊液] 之后竖直的握玻碳电极,手臂肘部均匀用力,使玻碳电极在麂皮慢速的移动,其路径为圆形或者“8”字形,打磨电极2-3分钟,顺逆时针各磨100圈,打磨过程中确保电极表面压在打磨盘上,不能歪斜,否则打磨后的电极表面轻易变形,而不是平面。 (建议:磨电极时,拿捏电极的底部,不要太大力,这样能保持电极不会歪斜和损坏。) 切忌:不要左右或者上下打磨,这样会在铂碳电极上形成一道明显的划痕(由于你是平行的,所以经过麂皮面上同一个凸起的地方,形成划痕)。玻碳电极尽量少用砂纸打磨,会减少它的使用寿命,只要玻碳电极表面呈镜面,直接用氧化铝抛光粉抛光就可以了。 ★以上打磨仅限电极表面没有大的划痕时,假如电极表面有明显的划痕,则需要分级打磨,即用1微米,0.5微米,0.3微米,0.05微米的抛光粉依次打磨。因此,日常使用过程中请保护电极表面,不要形成明显的划痕。 2、用去离子水冲洗电极表面,然后将打磨好的电极头竖直放在盛有少量去离子水的小烧杯中(注重:a.水不要没过电极后端的金属, b.玻璃碳不要触及烧杯底,否则电极表面轻易被杯底玻璃划伤),将小烧杯置于超声水浴中超声清洗2-3min,重复三次。确认电极表面无残余打磨浆后,停止超声,取出电极,用DI水冲洗。 3、化学清洗:将步骤2处理过的电极的玻碳电极依次用1:1 HNO3(限聚四氟乙烯PTFE外套的玻碳电极)、1:1乙醇溶液(或丙酮)和DI水超声清洗2-3min 时间不能太长,否则容易损坏电极。

标准电极电势表(全)

在酸性溶液中(298K) 电对方程式E/V Li(I)-(0)Li++e-=Li-Cs(I)-(0)Cs++e-=Cs-Rb(I)-(0)Rb++e-=Rb- K(I)-(0)K++e-=K-Ba(II)-(0)Ba2++2e-=Ba-Sr(II)-(0)Sr2++2e-=Sr-Ca(II)-(0)Ca2++2e-=Ca-Na(I)-(0)Na++e-=Na-La(III)-(0)La3++3e-=La-Mg(II)-(0)Mg2++2e-=Mg-Ce(III)-(0)Ce3++3e-=Ce- H(0)-(-I)H2(g)+2e-=2H--Al(III)-(0)AlF63-+3e-=Al+6F--Th(IV)-(0)Th4++4e-=Th-Be(II)-(0)Be2++2e-=Be- U(III)-(0)U3++3e-=U-Hf(IV)-(0)HfO2++2H++4e-=Hf+H2O-Al(III)-(0)Al3++3e-=Al-Ti(II)-(0)Ti2++2e-=Ti-Zr(IV)-(0)ZrO2+4H++4e-=Zr+2H2O-Si(IV)-(0)[SiF6]2-+4e-=Si+6F--Mn(II)-(0)Mn2++2e-=Mn-Cr(II)-(0)Cr2++2e-=Cr-Ti(III)-(II)Ti3++e-=Ti2+- B(III)-(0)H3BO3+3H++3e-=B+3H2O-*Ti(IV)-(0)TiO2+4H++4e-=Ti+2H2O-Te(0)-(-II)Te+2H++2e-=H2Te-Zn(II)-(0)Zn2++2e-=Zn-Ta(V)-(0)Ta2O5+10H++10e-=2Ta+5H2O-Cr(III)-(0)Cr3++3e-=Cr-Nb(V)-(0)Nb2O5+l0H++10e-=2Nb+5H2O-As(0)-(-III)As+3H++3e-=AsH3- U(IV)-(III)U4++e-=U3+-Ga(III)-(0)Ga3++3e-=Ga-

标准氢电极

标准氢电极 品名:氢标准电极 拼音:qingbiaozhundianji 英文名称:standard hydrogen electrode 说明:由于单个电极的电势无法确定,故规定任何温度下标准状态的氢电极的电势为零,任何电极的电势就是该电极与标准氢电极所组成的电池的电势,这样就得到了“氢标”的电极势。标准状态是指氢电极的电解液中的氢离子活度为1,氢气的压强为0.1兆帕(约1大气压)的状态,温度为298.15K。 这只是一种假定的理想状态,通常是将镀有一层海绵状铂黑的铂片,浸入到H+浓度为1.0mol/L的酸溶液中,在298.15K时不断通入压力为100kPa的纯氢气,使铂黑吸附H2气至饱和,这是铂片就好像是用氢制成的电极一样。 实际测量时需用电势已知的参比电极替代标准氢电极,如甘汞电极、氯化银电极等。它们的电极势是通过与氢电极组成无液体接界的电池,通过精确测量用外推去求得的。 电极电势 一,电极电势的产生—双电层理论 德国化学家能斯特(H.W.Nernst)提出了双电层理论(electron double l ayer theory)解释电极电势的产生的原因。当金属放入溶液中时,一方面金属晶体中处于热运动的金属离子在极性水分子的作用下,离开金属表面进入溶液。金属性质愈活泼,这种趋势就愈大;另一方面溶液中的金属离子,由于受到金属表面电子的吸引,而在金属表面沉积,溶液中金属离子的浓度愈大,这种趋势也愈大。在一定浓度的溶液中达到平衡后,在金属和溶液两相界面上形成了一个带相反电荷的双电层(electron double layer),双电层的厚度虽然很小(约为10-8厘米数量级), 但却在金属和溶液之间产生了电势差。通常人们就把产生在金属和盐溶液之间的双电层间的电势差称为金属的电极电势(electrode potential),并以此描述电极得失电子能力的相对强弱。电极电势以符号E Mn+/ M表示, 单位为V(伏)。如锌的电极电势以EZn2+/ Zn 表示, 铜的电极电势以ECu2+/Cu 表示。 电极电势的大小主要取决于电极的本性,并受温度、介质和离子浓度等因素的影响。 2.标准电极电势 为了获得各种电极的电极电势数值,通常以某种电极的电极电势作标准与其它各待测电极组成电池,通过测定电池的电动势, 而确定各种不同电极的相对电极电 势E值。1953年国际纯粹化学与应用化学联合会(IUPAC)的建议,采用标准氢电极作为标准电极,并人为地规定标准氢电极的电极电势为零。 (1)标准氢电极电极符号: Pt|H2(101.3kPa)|H+(1mol.L-1) 电极反应: 2H+ + 2e = H2(g)

标准电极电势表

标准电极电势表 目录[隐藏] 电极电势的产生—双电层理论 定义 公式 电极电势内容 标准电极电势表 [编辑本段] 电极电势的产生—双电层理论 德国化学家能斯特(H.W.Nernst)提出了双电层理论(electron double lay er theory)解释电极电势的产生的原因。当金属放入溶液中时,一方面金属晶体中处于热运动的金属离子在极性水分子的作用下,离开金属表面进入溶液。金属性质越活泼,这种趋势就越大;另一方面溶液中的金属离子,由于受到金属表面电子的吸引,而在金属表面沉积,溶液中金属离子的浓度越大,这种趋势也越大。在一定浓度的溶液中达到平衡后,在金属和溶液两相界面上形成了一个带相反电荷的双电层(electron double layer),双电层的厚度虽然很小(约为10-8厘米数量级), 但却在金属和溶液之间产生了电势差。通常人们就把产生在金属和盐溶液之间的双电层间的电势差称为金属的电极电势(electrode potential),并以此描述电极得失电子能力的相对强弱。电极电势以符号E Mn+/ M表示, 单位为V(伏)。如锌的电极电势以EZn2+/ Zn 表示, 铜的电极电势以ECu2+/Cu 表示。 电极电势的大小主要取决于电极的本性,并受温度、介质和离子浓度等因素的影响。 [编辑本段] 定义 标准电极电势是可逆电极在标准状态及平衡态时的电势,也就是标准态时的电极电势. 标准电极电势有很大的实用价值,可用来判断氧化剂与还原剂的相对强弱,判断氧化还原反应的进行方向,计算原电池的电动势、反应自由能、平衡常数,计算其他半反应的标准电极电势,等等。将半反应按电极电势由低到高排序,可以得到标准电极电势表,可十分简明地判断氧还反应的方向. [编辑本段] 公式

电极电势的应用

?无机及分析化学?课程单元教学设计 ──?电极电势的应用? 一、教案头: 本次课题:电极电势的应用 二、教学设计 第一部分:组织教学和复习上次课主要内容(时间:5分钟) ①考勤 ②标准电极电势的测定及利用Nernst方程计算电极电势 第二部分:学习新内容(时间:38分钟) 步骤一告知,宣布本次课的教学内容、目标(时间:3分钟)

课件演示本次课的标题:电极电势的应用 教师讲述引入:我们在上次课中学习了电极电势的知识,电极电势除了可以计算原电池电动势以外,还有其它的一些应用,这节课我们就要一起学习电极电势的这些应用。 教学内容: 一、氧化剂、还原剂的相对强弱 二、氧化还原反应进行的方向 三、氧化还原反应进行的程度 四、元素电势图及其应用 教学目的:通过学习能能根据标准电极电势大小判断氧化剂、还原剂的相对性强弱:判断反应进行的方向,能利用元素电势图判断能否发生歧化反应或逆歧化反应、掌握E?与K?的互算。 步骤二讲授新课(时间:30分钟) 一、判断氧化剂、还原剂的相对强弱 教师讲述:E?小的电对对应的还原型物质还原性强 E?大的电对对应的氧化型物质氧化性强 深化对上述知识点的理解:讲解例题9-11 巩固练习:P127简答题第四题 二、判断氧化还原反应进行的方向 教师讲述:E?值大的的氧化态(O)氧化E?值小的还原态(R) 深化对上述知识点的理解:讲解例题9-12、例题9-12 巩固练习:P127简答题第四题 三、氧化还原反应进行的程度

教师指出:氧化还原反应的平衡常数K Θ与标准电极电势E Θ 的关系 ) -E (E 0.0592 0.0592¨ ¨lg -+==Z ZE K E ?越大,电势差越大,K ?也越大,所以K ?能判断氧化还原反应程度 深化理解:K Θ与E Θ关系之互算 例题9-14、 例题9-15已知298K 时下列电极反应的E ?值: 试求AgCl 的溶度积常数。 能力训练:有关K Θ与E Θ关系之互算的计算 (1) 0.2222V )aq (Cl Ag(s) e (s) AgCl 0.7991V Ag(s) e )aq (Ag =++=+---+E E g(s)A )L 1.0mol (g A )L 1.0mol (Cl AgCl(s) g(s)A 11-+--??解:设计一个原电池: 1 (s) AgCl )aq (Cl )aq (Ag )aq (Cl Ag(s) e (s) AgCl Ag(s) e )aq (Ag sp K K = ++++-+---+10-sp sp ¨101.80 7449.90.0592V 0.5769V 0.0592V ¨ lg - 0.0592V ¨ lg 0.5769V 0.222V 0.7991V ) Ag /AgCl ()Ag /Ag ( ¨ ?======+=-=+K ZE K ZE K E E E 24224)aq (6H )aq (O C 5H )aq (2MnO ++++-例:求反应

2020年玻碳电极的打磨清洗(经典版)

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 玻碳电极的打磨清洗步骤 1、打磨:打磨前用湿润的镜头纸轻轻拭擦电极表面,去除污物,确保电极表面光滑。取0.3微米的抛光粉(Al2O3)少许于打磨盘(麂皮)上,然后滴加上少量的去离子(DI)水,用玻碳电极上绝缘的部分稍微搅匀。[也可配置成不同的Al2O3的悬浊液] 之后竖直的握玻碳电极,手臂肘部均匀用力,使玻碳电极在麂皮慢速的移动,其路径为圆形或者“8”字形,打磨电极2-3分钟,顺逆时针各磨100圈,打磨过程中确保电极表面压在打磨盘上,不能歪斜,否则打磨后的电极表面轻易变形,而不是平面。 (建议:磨电极时,拿捏电极的底部,不要太大力,这样能保持电极不会歪斜和损坏。) 切忌:不要左右或者上下打磨,这样会在铂碳电极上形成一道明显的划痕(由于你是平行的,所以经过麂皮面上同一个凸起的地方,形成划痕)。玻碳电极尽量少用砂纸打磨,会减少它的使用寿命,只要玻碳电极表面呈镜面,直接用氧化铝抛光粉抛光就可以了。 ★以上打磨仅限电极表面没有大的划痕时,假如电极表面有明显的划痕,则需要分级打磨,即用1微米,0.5微米,0.3微米,0.05微米的抛光粉依次打磨。因此,日常使用过程中请保护电极表面,不要形成明显的划痕。 2、用去离子水冲洗电极表面,然后将打磨好的电极头竖直放在盛有少量去离子水的小烧杯中(注重:a.水不要没过电极后端的金属, b.玻璃碳不要触及烧杯底,否则电极表面轻易被杯底玻璃划伤),将小烧杯置于超声水浴中超声清洗2-3min,重复三次。确认电极表面无残余打磨浆后,停止超声,取出电极,用DI水冲洗。 3、化学清洗:将步骤2处理过的电极的玻碳电极依次用1:1 HNO3(限聚四氟乙烯PTFE外套的玻碳电极)、1:1乙醇溶液(或丙酮)和DI水超声清洗2-3min 时

中科院电化学问答答案

2005年电化学和电分析化学 1、标准电极电位和条件电位 各种标准状态下的被测电极与标准氢电极组成原电池,标准氢电极作为阳极(发生那氧化反应)用实验的方法测得的该电池电动势的数值,就是被测电极的标准电极电位。 对于实际体系,在某一特定条件下,该电对的氧化型的总浓度和还原型的总浓度均为1mol/L时的实际电位,就叫条件电位。 2、双电层 当电极插入溶液中后,在电极和溶液之间便有一个界面。如果导体电荷带正电荷,会对溶液中的负离子产生吸引作用,同时对正离子也有一定的排斥作用。结果在电极附近就会聚集很多负离子,叫做吸附层,在吸附层外一微小区域,由于静电引力的存在,也有电荷过剩现象存在,称为扩散层,这种结构就叫做双电层。3、极限电流和扩散电流 在电化学反应中,电解开始后,随着外加电压的继续增大,电流急剧上升,最后当外加电压增加到一定数值时,电流不再增加,达到一个极限值。此时的电流称为极限电流。极限电流与残余电流之差称为扩散电流。 4、半电池的形式电势 5、交流伏安法 在电路里负载两端并联一电压表,电路里串联电流表,通过电压和电流计算出阻抗,包括电容的容抗和电感的感抗。 二简答题 1、何谓循环伏安法?主要用于研究什么?从可逆性角度简述循环伏安曲线有几 类?具体依据及特点? 循环伏安法是以快速线性扫描的形式施加以三角波电压于工作电极上,得到循环伏安曲线的一种方法。 一般用于研究电极过程的可逆性、吸附性以及测定可逆体系标准电极电位,鉴别电极反应产物和研究化学反应控制的各个电极过程。 从可逆性的角度可有三类循环伏安曲线:(1)可逆过程ΔEp= 2.2RT/nF = 56.5/n mv,一般说来,ΔEp与实验条件有关,其数值在55/n ~65/n mv 时,可判断为

电动势的测定及其应用(实验报告)

实验报告电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m=-nFE 式中△r G m是电池反应的吉布斯自由能增量;n为电极反应中电子得失数;F为法拉第常数;E为电池的电动势。从式中可知,测得电池的电动势E后,便可求得△r G m,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计

UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温度不同引起标准电池电动势变化时,通过调节n R ,使工作电流保持不变。x R 被分成Ⅰ(1?)、Ⅱ(1.0?)和Ⅲ(001.0?)三个电阻转盘,并在转盘上标出对应x R 的电压值,电位差计处于补偿状态时可以从这三个转盘上直接读出未知电动势或未知电压。左下方的“粗”和“细”两个按钮,其作用是:按下“粗”铵钮,保护电阻和灵敏电流计串联,此时电流计的灵敏度降低;按下“细”按钮,保护电阻被短路,此时电流计的灵敏度提高。2K 为标准电池和未知电动势的转换开关。标准电池、灵敏电流计、工作电源和未知电动势x E 由相应的接线柱外接。 UJ25型电位差计的使用方法: (1)将2K 置到“断”,1K 置于“1?”档或“10?”档(视被测量值而定),分别接上标准电池、灵敏电流计、工作电源。被测电动势(或电压)接于“未知1”(或“未知2”)。 (2)根据温度修正公式计算标准电池的电动势)(t E n 的值,调节n R 的示值与其相等。将2K 置“标准”档,按下 “粗”按钮,调节1p R 、2p R 和3p R ,使灵敏电流计指针指零,再按下 “细”按钮,用2p R 和3p R 精确调节至灵敏电流计指针指零。此操作过程称为“校准”。 (3) 将2K 置“未知1”(或“未知2”)位置,按下“粗”按钮,调节读数转盘Ⅰ、 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

电化学原理思考题答案解析

第三章 1.自发形成的双电层和强制形成的双电层在性质和结构上有无不同为什么2.理想极化电极和不极化电极有什么区别它们在电化学中有什么重要用途答:当电极反应速率为0,电流全部用于改变双电层的电极体系的电极称为理想极化电极,可用于界面结构和性质的研究。理想不极化电极是指当电极反应速率和电子反应速率相等时,极化作用和去极化作用平衡,无极化现象,通向界面的电流全部用于电化学反应,可用作参比电极。 3.什么是电毛细现象为什么电毛细曲线是具有极大值的抛物线形状 答:电毛细现象是指界面张力随电极电位变化的现象。溶液界面存在双电层,剩余电荷无论带正电还是负电,同性电荷间相互排斥,使界面扩大,而界面张力力图使界面缩小,两者作用效果相反,因此带电界面的张力比不带电时小,且电荷密度越大,界面张力越小,因此电毛细曲线是具有极大值的抛物线形状。 4.标准氢电极的表面剩余电荷是否为零用什么办法能确定其表面带电状况答:不一定,标准氢电极电位为0指的是氢标电位,是人为规定的,电极表面剩余电荷密度为0时的电位指的是零电荷电位,其数值并不一定为0;因为形成相间电位差的原因除了离子双电层外,还有吸附双电层\ 偶极子双电层\金属表面电位。可通过零电荷电位判断电极表面带电状况,测定氢标电极的零电荷电位,若小于0则电极带正电,反之带负电。 5.你能根据电毛细曲线的基本规律分析气泡在电极上的附着力与电极电位有什么关系吗为什么有这种关系(提示:液体对电极表面的润湿性越高,气体在电极表面的附着力就越小。)6.为什么在微分电容曲线中,当电极电位绝对值较大时,会出现“平台”7.双电层的电容为什么会随电极电位变化试根据双电层结构的物理模型和数学模型型以解释。 8.双电层的积分电容和微分电容有什么区别和联系9.试述交流电桥法测量微分电容曲线的原理。10.影响双电层结构的主要因素是什么为什么 答:静电作用和热运动。静电作用使符号相反的剩余电荷相互靠近,贴于电极表面排列,热运动使荷电粒子外散,在这两种作用下界面层由紧密层和分散层组成。11.什么叫ψ1电位能否说ψ1电位的大小只取决于电解质总浓度而与电解质本性无关ψ1电位的符号是否总是与双电层总电位的符号一致为什么 答:距离电极表面d处的电位叫ψ1电位。不能,因为不同的紧密层d的大小不同,而紧密层的厚度显然与电解质本性有关,所以不能说ψ1电位的大小只取决于电解质总浓度而与电解质本性无关。当发生超载吸附时ψ1电位的符号与双电层总电位的符号不一致。 12.试述双电层方程式的推导思路。推导的结果说明了什么问题 13.如何通过微分电容曲线和电毛细曲线的分析来判断不同电位下的双电层结构答:14.比较用微分电容法和电毛细曲线法求解电极表面剩余电荷密度的优缺点。15.什么是特性吸附哪些类型的物质具有特性吸附的能力答:溶液中的各种粒子还可能因非静电作用力而发生吸附称为特性吸附。大部分无机阴离子,部分无机阳离子以及表面活性有机分子可发生特性吸附。

相关文档
相关文档 最新文档