文档库 最新最全的文档下载
当前位置:文档库 › GPIG气举排水采气优化设计软件的研制与应用

GPIG气举排水采气优化设计软件的研制与应用

GPIG气举排水采气优化设计软件的研制与应用
GPIG气举排水采气优化设计软件的研制与应用

收稿日期:2001-12-10

作者简介:唐寒冰,女,1988年毕业于重庆石油校采油工程专业,在西南油气田分公司采气工艺研究所工作。地址:(618300)四川省广汉市

,电话:028 ********。

开采工艺

GPIG 气举排水采气优化设计软件的研制与应用

唐寒冰1

,曹世昌2

,蒲蓉蓉

1

(1西南油气田分公司采气工艺研究所 2西南油气田分公司重庆气矿)

摘 要:为促进气举工艺的深入推广应用,西南油气田分公司采气工艺研究所研制了具有经济评价功能的气举工艺优化设计软件,以尽可能减少无功作业,提高气举效率。文中论述了气举排水采气优化设计软件(以下简称 软件!)的结构、功能和现场推广应用情况。

关键词:气举;排水采气;软件;应用

中图分类号:TE 377 文献标识码:A 文章编号:1006-768X(2002)03-052-03

软件设计思路

结合生产井目前生产状况,进行工艺常规设计,即工艺井的某些重要参数如产气、产液指数、井底流压、地层压力等未知,或数据不精确、不齐全时所作的工艺设计,设计所采用的数学模型,有行业标准的选用行业标准,没有行业标准的按适用为主,兼顾先进的原则,使设计结果最大限度符合生产现场实际。对生产井数据资料齐全,气举配套工艺措施较完备

的井进行节点分析和优化设计;采用直观的方法,建立油、套管数据库、在设计图中能够通过移动鼠标快速数据修改,以确定井口油压、注气压力、启动压力、顶阀深度等设计参数。设计图中,设置重要参数和设计结果窗口,便于用户实行人机对话时快速查询。采用井身结构简图,用户可根据井身结构图一目了然地就知设计气举阀的安装位置、气举管柱结构(图1)。软件具有设计与经济评价的功能(图2)。

图1 GPIC 气举水采气优化软件界面

?

52? 钻 采 工 艺2002年

图2 经济效益评价示意图

软件主要功能

GPIG气举排水采气优化设计软件具有以下主要功能:(1)确定最深注入点;(2)气举阀间距设计;

(3)气举阀调试参数设计;(4)敏感参数分析(注气压力、注气量、井口油压、启动压力、顶阀深度、排液量);(5)多种设计方案优化(包括正举、反举);(6)经济方案评价;(7)具有图形缩放功能,设计报告(包括设计图、井下流程简图等)自动输出。

设计中的流压参数根据四川气田多年使用情况推荐两种方法进行计算,同时预留实测或CAMCO、Brown图版,可输入流压模块。

软件运行环境

1 硬件环境

IB M-PC Pentium以上及其兼容机;16MB以上内存;50MB以上未经压缩的磁盘空间;MS-Windows支持的鼠标器、光驱各一个。

2 软件环境

Microsoft Windows95/98/2000/XP简体中文或英文Microsoft Windows95/98/2000/XP,具备简体中文环境。

软件系统总体结构优化设计

GPIG气举排水采气优化设计软件是由4个相对独立又交互联系的一级子系统组成:#数据采集模块;?工艺优化设计模块;%设计分析(包括经济效益评价)模块;&设计报告输出模块。软件菜单和工具栏采用与Windows平台相类似的格式,包括文件!、视图!、工具!、设备表!、帮助!五个一级菜单(图3)。

软件一级菜单各项功能仿Window平台设计,这里不再详细介绍。在帮助!一栏中,对于软件使

用!,用户通过按F1键可以实现在线帮助,这点同样与Window软件对应的帮助功能相似(图4)。

图3 软件系统示意图

图4 软件模块详细结构示意图

软件模块详细结构

1 数据采集模块

模块功能是为工艺参数设计、设计报告输出、经济评价进行数据准备(图5)。

图5 数据采集模块示意图

2 工艺设计模块

在用户资料齐全的情况下软件自动化进行优化设计分析;如果设计井参数不全,特别是产气指数和产液指数未知时软件自动转为常规设计。此时,用户需要与软件提示配合,交互操作,从而优选设计方案;同时,在进行气举方案设计时,用户可以根据实际条件需要,更改辅助条件!进行设置及参数设计,如气举阀类型、气举阀调试温度等(图6)。

3 设计分析模块

在工艺设计!和设计分析!两个模块中,用户既可通过更改输入数据,也可通过鼠标的上、下、左、右移动改变数据来重新进行气举设计(图7)。

图6 工艺设计模块图

?

53

?

第25卷 第3期钻 采 工 艺

图7 设计分析模块示意图

4 报告输出模块

主要功能是自动输出设计报告,包括封面、已知参数、设计气举参数、气举阀调试参数、气举设计图、井下流程简图、推荐气举工艺地面流程图(图8)

图8 报告输出模块示意图

应用实例

本软件优化设计已在四川、青海、华北等油气田推广应用,获得了显著的增产效益,提高了气举工艺的效率和水平。以四川盆地气田中4井为例介绍该软件的应用效果(表1)。

1 中4井设计基本参数

表1 中4井设计基本参数表

构造位置川西北气矿中坝须二气藏构造北端设计井深

3750m 完钻井深2586 05m 完钻层位须家河

完井方法裸眼

完钻日期1972年11月18日投产日期1973年8月11日

产层中深2578 5m 油管尺寸64mm ?2580 0m 天然气相对密度0 637套管尺寸178mm ?2535 5m 水相对密度1 05

井口温度

32(日产天然气(2 5~3 0)?104m 3井底温度

72(日产水(23 0~27 0)m 3井口油压(0 99~1 09)MPa

临界温度201 8K 临界压力

4 719MPa

井底流压

6 199MPa

测压日期1997年8月8日

2 气举设计及施工情况

该井正常生产时日产气(2 0~2 5)?104m 3左右,日产地层水20~27 4m 3左右,井底流压为6 0~6 2MPa 。该井于1997年10月10日至16日进行修井作业后,关井复压至20日,决定利用气举恢复

表2 中4井气举设计及施工参数表

阀参数12345设计阀深度(m)18002042 162218 942346 962407 92施工阀深度(m)1796 52044 212216 192349 842408 17阀深度误差(m)-3 5+2 05-2 75+2 88+0 25阀孔径(mm)5 05 05 05 05 0打开压力6 45?10-4Pa

设计870830800785780调试

870830810770760阀编号93-2-002

93-2-027

93-2-007

93-2-017

93-2-010

备注阀深度误差在)5 0m 内,符合气举施工标准,气举阀调试温度15 6(设计气举参数

启动压力:5 5~6 0MPa 工作压力:5 0~5 5MPa

注入气量:(2 0~2 5)?104m 3/d 产水量:25~30m 3/d 产气量:2 5~3 0?104m 3/d

生产。通过软件分析,设计启动压力6 0MPa 、工作压力5 0~5 5MPa 。21日实施气举(图9)。其它相关设计数据见表2。3 气举前后对比

从图9中可以看出,在实施气举时,井口温度明显高于自喷时的温度,表明气举时产水量明显高于自喷产水量,这从水产量曲线上也可看出。在气举

初期井口温度先上升后略有所下降,表明在初期带出压井液后地层水逐步产出,以后随着地层水量减少,井口温度也相应随之下降。从套压(注气压力)的变化来看,套压逐步降低,表明下入的5只气举阀正在逐步卸载,保证了单点注气;同时注气压力与设计相比,误差在0 5MPa 以内。从气产量的变化来看,与该井自喷相比,除初期前3d 的(下转第61页)

?

54? 钻 采 工 艺2002年

现场应用

1.第一阶段现场试验

自1999年11月24日~2000年7月18日,共在23口井使用了KQG-FP 防喷脱接器。对第一阶段现场试验的23口井跟踪发现,有2口井因密封性强造成气锁锁死使活塞下不去当场返工,一次成功率95.7%,二次作业施工起出2口井,检查无异常,二次作业密封率100%。

根据对23口井的现场试验情况分析,提出2条整改意见:#将防喷脱接器托体密封体内的 O !型密封圈去掉,减缓气锁效应;?密封体与对接杆之间的配套间隙要尽量减小,使其既达到能够卸压,又满足在工具下井过程中防喷效果良好的要求。2.第二阶段现场试验

从2000年7月22日起,均采取去掉密封体内 O !型密封圈下井试验,并且继续跟踪二次作业密封问题。第二阶段现场试验下入93口井,其中二次作业检泵起出14口井,14口井中有1口井二次作业失败,没有达到密封。93口井中下管时因密封体内孔与对接杆之间间隙过大而致使井喷的有3口井,

在93口井中有90口井一次合格,下井一次成功率96.8%;二次作业14口井中,有一口失效,密封率92.9%;针对密封性问题,进行了第二次改进:有卸压并带 O !型密封圈入P24井,修后下 95整筒泵,下泵时密封性增强,卸压不理想,但对接时用水泥车打压5MPa,对接正常。

综上分析,KQG-FP 防喷脱接器在现场上的应用效果是比较好的,针对卸压与密封之间的关系问题,多次调整 O !型密封圈试验,基本上达到设计要求,为KQG-FP 型防喷脱接器在现场上推广应用提供了依据。

结论及建议

(1)KQG-FP 防喷脱接器具有集防喷、对接、脱锁3种功能为一体的特点和超强承载性能。结构简单,操作方便,实用性强。

(2)存在的问题是密封托体与对接杆配套间隙过大。建议改进时密封托体内带 O !型密封圈,密封托体悬挂牢,轻微顿不掉,并能达到卸压窜气。

(编辑:黄晓川,刘英)

(上接第54页

)

图9 中4井气举前后采气曲线

产气量明显较低外,即从10月24日起,本井产气量明显高于自喷时产气量,均在3 0?104

m 3

以上。由

于在修井作业期间共注入压井液738 6m 3,考虑修井作业期间该井未产水量359 11m 3(按14d 计算),因此本井必须在进行气举的排水量大于1097 71m 3

,才可停止气举。实际进行气举截止10月31日

共排水1152 71m 3

,于是在11月就停止气举,该井转为自喷生产至今。

结论

GPIG 气举排水采气优化设计软件!软件经西南油气田分公司各气矿、青海南翼山气田、华北采油二厂共计22口井的应用,现场实际与设计结果吻合良好,历年累计增产天然气超过2 0?108

m 3

,应用前景广阔。

[1] K E 布朗 升举法采油工艺 石油工业出版社,1987 [2] 杨继盛 采气工业基础 石油工业出版社,1989

[3] 杨川东 采气工程 石油工业出版社,1997

[4] 彭永清,等 油气井措施经济评价方法研究 天然气

工业,1998(1)

[5]H.Dale Beggs,Production Op timization Using NODAL TM

Analysis

[6] Kermit E.Brown and James F.Lea Nodal Systems of Oil and

Gas Wells,J PT ,1985(10)

(编辑:黄晓川)

?

61? 第25卷 第3期钻 采 工 艺

Key words:high pressure centrifugal pump, injection water pump station,automatic monitoring,energy saving and costs reducing

DEVELOPMENT A ND APPLICATION OF OPTIMUM DESIGN SOFTWARE OF GPIG GAS-LIFT DRA INAGE GAS RECOVERY

TANG Hanbing and PU Rongrong(Gas production Research Institute,Southwest Oil&Gas Co.of China, Guanghan,Sichuan618300,China),and C AO Shichang (Chongqing Gas Field,Southwest Oil&Gas C o.of China),DPT25(3),2002:52~54

Abstract:In order to promote the popularization and application of the gas-lift production technology,the optimum software of gas-lift technology has been developed by Gas Production Technology Reseaech Institute,which possesses the function of economy evaluation.The software can reduce lost work and improve gas-lift efficiency.This paper discusses the structure, function,and application on site of optimum design software of the gas-lift dewa tering gas recovery.

Key words:gas-lift,drainage gas recovery, software,application

DEVELOPMENT A ND APPLICATION OF HIGH-PRESSURE ROTATING CONTROL HEAD X IAN Weiw ei and RE N Xiang(Drilling& Production Tech.Res.Inst.of SPA,Guanghan,Sichuan 618300,China),DPT25(3),2002:55~56

Abstract:Rotating Control Head(RC H)is a critical equipment used for underbalanced drilling technology.The majority of RC H used in China oil fields are expensive import products.Rotating blowout preventers made in China early are limited in lo w-pressure well underbalanced drilling.A type of high-pressure RC H is developed by Mechanical Center affiliated to Drilling& Production Tec h.Res.Inst.of SPA.The ne w RC H with two strip rubbers can sealing10.5MPa dynamic pressure and21MPa static pressure.

Key words:rotating control head,rotating blo wout preventers,underbalanced drilling,development, application

GAS PRODUC ING WELLHEAD EX ISTING PROBLEMS A ND CORRESPONDING STRATEGY LI Taiyuan(Research Institute of Southern Sichuan Oil/Gas Fields,Luzhou,Sichuan646001,China),DPT 25(3),2002:57~59

Abstract:For the influencing of some factors on gas producing wellhead,such as:scouring of gas and liquid, temperature,pressure,vibration,hydrogen sulfide corrosion and frequent opening and closing gate valve etc.,the problem of gas producing wellhead seal failure is inevitablly occured.It has affected the normal production of gas well.The paper analyses the causes of seal failure for gas producing wellhead,presents the operation technique of eliminating seal faiure,discusses the flange leakage of gas producing wellhead,No.1,2,3gate valve leakage,special cross jackscre w leaka ge and casing head sealing etc.proble ms.And the specific methods of using C Q type gate valve displacing CYb gate valve is presented.

Key words:gas producing wellhead,sealing, analysis,method

RESEARCH AND IMPROVEMENT OF KQG-FP BLOWOUT ON-OFF CONNECTOR

SHI Jingping(Chendu College of Science and Engineering,Chendu,Sichuan610059,China),TANG Qinghua(Daqing Oilfield No.3Oil Production Factory), DPT25(3),2002:60~61

Abstract:This paper presents the structure and working principle of KQG-FP blowout on-off connector.It has three functions blowout control,butted joint and unlock,and has features of simple structure and prac tical.Through field application,the blo wout on-off connector can realize snubbing service,and it is improved on the basis of existing proble ms.

Key words:blowout on-off connector,sealing property,snubbing service

ENERGY-SAVING TRA NSFORMATION OF BEAM PUMPING UNIT

Guo Dengming and AI Wei(Jianghan Petroleum Institute,Jingzhou,Hubei434102,China),GU Zhifeng, SUN Sanming and GAO Huiliang(Henan Petroleum Exploration Bureau),DPT25(3),2002:62~63

Abstract:This paper presents the features of out phase beam-balanced pumping unit.Taking C YJY12-4.8-73HB beam unit as e xample,the specific methods of beam pumping unit energy-saving transformation are explained.After beam pumping unit is transformed, electricity-saving is above10%,working Status and force fea tures of beam unit are improved.Stability of beam unit is increased,and lifetime is prolonged.

Key w ords:bea m pumping unit,out phase beam-balanced pumping unit,long stroke pumping unit, transformation,economic benefit

DEVELOPMENT AND AP PLIC ATION OF BR EAK PREV ENTION TOP VALVE HOUSING

?

4

?

DRILLING&PRODUC TION TECHNOLOGY Vol.25No.3May2002

天然气排水采气技术分析

天然气排水采气技术分析 发表时间:2018-05-22T11:06:20.183Z 来源:《基层建设》2018年第4期作者:王龙瓛张阳 [导读] 摘要:虽然我国天然气储藏量十分巨大,但由于各个气田区域的地质环境比较复杂,所以在开采过程中要采用合理的施工技术。 中石化华北油气分公司采气一厂 摘要:虽然我国天然气储藏量十分巨大,但由于各个气田区域的地质环境比较复杂,所以在开采过程中要采用合理的施工技术。本文对现阶段我国各大气田通常采用的排水采气技术进行了论述,以给天然气排水采气工作提供一点借鉴。 关键词:天然气;排水;采气;技术 天然气开采过程中会遇到各种问题,目前我国在长期实践中已经对多种排水采气技术进行了完善。在低碳环保理念的发展下,天然气作为21世纪的主要能源将逐步替代石油和煤炭的主导地位。但是随着气藏的开发,我国大多数气藏丌始受到水侵,气井井底也开始慢慢积液,井底积液的存在不仅增加了气层的冋正,限制了天然气井的生产能力,而且影响气井的产气速度,最终导致整个气藏釆收率的降低。如果想要降低开采过程中各种问题的发生概率,就要对当前的排水采气技术开展进一步的研究。 1.同心毛细管技术 低压气井积液和油气腐蚀是采集井下天然气时经常遇到的问题,针对这种问题,天然气采集技术人员研发出了同心毛细管。该技术在应用过程中,把同心毛细管的每一根管柱设置在天然气井内部生产射孔的最低端,然后不断发射化学剂泡沫,将同心毛细管喷射到井底,适当降低井底的压力,天然气在流动过程中就自动携带出泡沫液化的液体,从而有效改善了天然气井底积液的状况,进一步提高了排水效果。同心毛细管技术的实际应用,不仅使天然气开采成本大大降低,还有效提高了天然气的开采量。 2.气式举排水采气技术 气举式排水采气技术有开放式、半闭气式和闭气式三种工作方式。油套管中存在一个环形空间,在利用气举式排水采气技术施工的过程中,如果气源经过环形空间而进入油管,并从油管中排放出来,我们叫这种方式为正举。而如果让气源先经过油管,在通过油套管环形空间排出来就叫做反举。 天然气井的深度对气举式技术的运用影响甚微,该技术在应用过程中,设备操作步骤比较简单,天然气开采人员在管理和使用时十分方便。所以,很多天然气田都通常采用这种技术来排水采气,从而提高天然气开采的经济效益。但气举式排水采气技术有一个缺点,就是在往气井中加注气源的时候经常会发生气流回压的状况,容易发生难以完全排除水平井中积液的情况。 3.泡沫排水采气技术 泡沫排水采气技术是将某种特定的化学活性剂注入到天然气井中,井内的气体和水份会与这些活性剂发生化学反应而形成泡沫,以此使井内气水两边的垂管产生的流动滑脱损耗大大减少,从而将垂管带水动力增加,然后气井中的水会在自然气流的带动下排除气井。泡沫排水采气技术施工成本较低,同时由于操作简单,一般工作人员可轻易施工,所以排水采气效率很高,普遍应用于多种天然气井的排水采气工作中。 但泡沫排水采气技术对泡沫剂有很高的要求,如果排水采气过程中使用了不合理的泡沫剂很容易对天然气井地层造成污染。而且,泡沫排水采气技术目前只能在自喷式气井中应用,同时气井内管道的通畅性与其自喷能力会对该技术的顺利使用产生极大影响。 4.连续循环采气技术 过去的柱塞举升排水采气技术在施工过程中,一旦遇到气井出砂的情况,就会对柱塞举升工作造成较大影响。如果利用速度管开展采气工作,一旦管柱口直径达不到基本要求,就可能加大工作难度。而连续循环采气技术就是针对此类问题而被创造出来的,该技术运用气体压缩设备,将气井井筒内的天然气根据气井循环注入到气井内部,并依据有关的形式将其压缩,将其再引入井筒,形成不断循环的状态。这种循环方式能够加快天然气的流动速度,以此把气井内的积液排到井外,以避免积液出现累积现象。该技术在实际施工过程中,及时遇到井底流压较低或气井出砂状况,也能把井内积液顺利排出。 5.深抽排水采气技术 深抽排水采气技术是利用抽水泵把井底积液抽出来的简单工艺,这也是一种被普遍采用的技术。深抽排水采气技术一般在深度达两千米以内的深井环境中使用,如果气井深度超出两千米,就会使抽水泵工作效率降低,相应增加了设备的负荷,造成系统频率下降,从而会影响到整个排水采气系统的正常运行,最终导致成本上升[2]。 针对这一问题,相关技术人员进行了技术创新,发明了以玻璃钢和钢混合柱以及长冲程整体泵筒为主要结构的深井泵,以该深井泵为主导的深抽排水采气技术的应用将抽水深度突破到两千米以上深度,并在深抽设备表面进行镀铬工艺,使外部因素对设备的影响大大降低,增强了该技术的可操作性,同时也提高了采气效率。 6.复合式排水采气技术 复合式排水采气技术,是在采气过程中采用两种及以上方式组合而成的排水采气方式。由于我国区域面积较大,各个地区的天然气井周边环境存在巨大差异。于是,天然气开采单位工作人员就会针对自身区域的真实状况,将多种排水采气技术融合到一起,合理利用它们的优势,以达到增加采气量的效果。 如在水平井的排水采气工作中,可以将气举式和泡沫式结合,向气井内同时加入活性剂和气源,气体在托举积液的过程中,会在活性剂的作用下与积液发生反应,产生出大量泡沫,从而减小气体的托举力,排水回流现象也进一步减少,保证了排水采气工作的安全性和经济效益。 7.排水采气工艺优选 不同的排水采气井都有自身的特殊性,表现在产层物性、深度、压力、流体性质、井的流入特性,井的气、水产出能力和井身结构等方面,同时每项排水采气工艺也有其自身的特殊性,这在于升举能力的表现方式和它的适应性。只有将这两个特殊性恰当地结合才可能产生好的工艺效果。技术因素:排水采气技术综合评价的技术因素包括的内容,主要有:开采条件适应性、设备使用状况、预计增产气量、排液量和最大井深等。其中,开采条件适应性是指某一排水采气技术对气井的地质、开采及环境因素的敏感性。 8.结束语 排水采气工艺的应用能够有效保障天然气开采过程中环境的安全性,从而为天然气的开采工作奠定基础。近几年随着工业革命的逐渐发

排水采气工艺技术现状及新进展样本

排水采气工艺技术现状及新进展 防水治水方法综述 当前国内外治水措施归纳起来有三大类: 控气排水、水井排水和堵水。控气排水是经过控制气井产量, 即抬高井底回压来减小水侵压差入而减缓了水侵。其实质是控气控水, 现场有时也称为”控水采气”。排水采气则是利用水井主动采水来消耗水体能量, 经过减小气和水的压差控制水侵, 从而保护气井稳定生产。堵水则是经过注水泥桥寒或高分于堵水剂堵塞水侵通道, 以达到控制水侵的目的。 三种措施虽方式不同, 但基本原理都是尽可能降低或消除水侵压差、释放水体能量域增加水相流动阻力。控气排水主要是以气井为实施对象, 着眼点是气; 水井排水则以水为实施对象, 着眼点是水。堵水以体现气水压差的介质条件为实施对象, 着眼点是渗滤通道。控气排水是一种现场常见的方法。在出水初期水侵原因不明时常常采用股资省.便于操作.但不利于提高气藏采速和开采规模; 水井排水的实施对象巳转至水, 工艺要求相对较高俱有更积极、更主动的意义; 堵水常常受技术条件限制, 当前实际应用很少。不论哪种措施, 其目的都是为了提高采收率, 都应针对不同的水侵机理、方式, 依据经济效盖来选择和确定。 一、现状综述 中国的气藏大多属于封闭性的弹性水驱气藏, 在开发中都不同程度地产地层水。由于地层水的干扰, 使气田在采出程度还不高的情况下就提前进入递减阶段, 甚至造成气井水淹停产, 影响气田最终采收率, 因此如何提高有水气藏的采收率, 是国内外长期以来所致力研究和解决的重要课题之一。中国经过十几年的实践和发展, 以四川气田为代表, 已形成了一定生产能力、比较成熟的下列工艺技术。 当前排水采气工艺技术评价

用高压气源气举排水采气

用高压气源气举排水采气 摘要地层的压力不断下降,单井产能逐渐衰竭,各气井的携液能力都在逐渐下降。井筒内积液会不断增加,不断增高的液柱对产气层的回压也不断增加。如果我们不及时把井筒内的积液顺利排出去,静液柱将会把气层压死,造成气井停产。 关键词井筒;高压气源;气举 随着文23气田开发进入中后期,地层的压力不断下降,单井产能逐渐衰竭,各气井的携液能力都在逐渐下降。井筒内积液会不断增加,不断增高的液柱对产气层的回压也不断增加。如果我们不及时把井筒内的积液顺利排出去,静液柱将会把气层压死,造成气井停产。怎样才能及时把井筒液体排出去?这里介绍一种用高压气源气举排液的方法。文69-1-2-3井、东块文108井、文108-2井、文108-5井、文23-17井都用此办法让其停产后顺利复活。 气举排水采气——利用天然气的压能来排除井内的液体,从而把天然气采出地面的采气方法。 按排水装置原理不同分为: 气举阀排水 柱塞间歇排水 1 气举阀的气举排水 1.1 条件:1)高压气源;2)油管管柱上不安装气举阀;3)高压气的压力与液柱的高度相匹配。 1.2 原理:无气举阀的气举排水采气是利用高压气源从套管(油管)注入高压气,让井筒积液经过喇叭口,从油管(油套环空)排出,从而达到排液复产目的。 1.3 操作: (1)尽量选择压力高、产量高的井作为高压气源井给积液井注气。 (2)在井口设置放喷罐,连接好相应的放喷流程,可套注油放、油注套放,或二者均可(但井口三种流程互不相同)。 (3)开始注气时,可把注气压力调到最高值,注气约10-30分钟,井口出液。这种要把注气压力和注气量逐步调低,使注气压力和注气量与井口排液达到

采气技术新发展重点分析

采气技术新发展重点分析 【摘要】世界经济发展离不开能源的需求,为了缓解当前能源紧缺以及环境问题,不少国家开始实行可持续发展战略,而天然气的开发也越来越受到广泛的关注。随着气田开发以及开采技术研发程度的加深,采气技术水平也有了很大的进步。本文就采气技术新发展重点方面做出分析,旨在为气田企业在开采天然气提供技术方面的支撑。 【关键词】采气技术新发展研发重点连续油管 随着科技的不断进步和经济的高速发展,一些新型气田采气技术也不断应用于我国天然气开发与生产当中,既提高的开采效率,又降低了成本费用,推动这我国“绿色能源”产业的发展,例如气井排水采气新技术、聚合物控水采气技术、气藏整体治水技术等。与此同时,开展了对采气新工艺、新设备、井下作业模式、气井修复等方面综合研发;对气井内部气水分离、回注系统、喷射气举、射泵流等气田生产技术方面进行改进、调整与完善;采用智能化的举升机械设备,使得采气技术向着遥控化、自动化、系统化等道路前进。因此,采气技术新发展的最终目的就是为了提高天然气的开采程度,增加气井产量,减少因操作和维护保养而引起的成本造价,从而体现新采气技术开发的经济效益和社会效益。 1 气藏排水采气技术 这种技术就是将气藏当作系统化的整体开展排水采气作业,其既要对水淹井和气水同产井进行分析,又要协调好纯气井天然气开采作业,其技术处理难题就是怎样科学地对排水井、采气经、气水同产井等气井的井位仅仅设置,还要如何对其排水量、排水时间加以确定,来尽可能地削弱水侵强度,对气藏最终采收率加以提高。 1.1 强排水采气法 这种方法主要是在大排量采气(200m3/ d以上)情况下,排水量不足,使得排水量远小于地层出水量,对地层压力有着迅速的降低作用,其工艺技术大都为电潜泵和气举技术方式。 1.2 气水联合开采法 此种采气方法是把气井内部的气、水当作整体,并采取气藏数值模型进行对应的描述,来完成排水井位高低,排水量以及采气量大小的设计工作。采用这种方法能够提高气井的采收率,合理增加天然气储备量。 1.3 阻水开采法 此种技术工艺可以有效用于气藏初始阶段的整体排水,同样也可以应用于中

排水采气工艺技术

排水采气工艺技术

故在液体中的气泡总是很快上升至液面,使液体以泡沫的方式被带出,达到排出井内积液的目的。 该工艺适用于弱喷、间喷的产水气井,井底温度≤120℃,抗凝析油的泡排剂要求凝析油量在总液量中的比例不超过30%,其最大排水能力<100 m3/d,最大井深<3500m。泡排的投入采出比在1:30以上,经济效益十分显著。 3 柱塞气举排水采气技术 柱塞气举是一种用于气井见水初期的排水采气工艺。它是将柱塞作为气、液之间的机械截面,依靠气井原有的气体压力,以一种循环的方式使柱塞在油管内上、下移动,从而减少液体的回落,消除了气体穿透液体段塞的可能,提高了间歇气举举升效率。柱塞的具体工作过程是:关井后柱塞在自身重力的作用下沉没到安装在生产管柱内的弹簧承接器顶部,关井期间柱塞下方的能量得以恢复,即油气聚集;开井后,在柱塞上下两段压差作用下,柱塞和其上方的液体被一同向上举升,液体举出井口后,柱塞下方的天然气得以释放,完成一个举升过程;柱塞到达井口或延时结束后,井口自动关闭,柱塞重新回落到弹簧承接器顶部,再重复上述步骤。如果井筒内结蜡、结晶盐或垢物,则在柱塞上下往复运行过程中将会得到及时清除。 该工艺设备简单,全套设备中只有一个运动件——柱塞,柱塞作为设备中唯一的易损件,可在井口自动捕捉或极易手工捕捉,容易从一口井起出转向另一口井,不需立井架,检查、维修或更换都很方便。另外,井下所有设备可用钢丝绳起出,不需起油管,作业比较简单,运行费用低。 该工艺适用于弱喷或间喷的小产水量气井,最大排水能力<50m3/d,气液比>700~1000m3/ m3,柱塞可下入深度(卡定器位置)<3000m,一般应用于深度2500m左右,对斜井或弯曲井受限。 柱塞在运行的同时还可消除蜡、水化物及砂等的沉积堵塞问题,而且柱塞每循环举升液量可在很大的范围内进行调整,从而达到了稳定产量和提高举升效率的目的。 4 气举排水采气技术 气举排水采气技术是通过气举阀,从地面将高压天然气注入停喷的井中,利用气体的能量举升井筒中的液体,使井恢复生产能力。气举可分为连续气举和

排水采气工艺技术及其发展趋势

国内外排水采气工艺技术及其发展趋势 一、国内排水采气技术 1、泡沫排水采气工艺 泡沫排水采气工艺是将表面活性剂注入井内,与气水混合产生泡沫,减少气水两相垂直管流动的滑脱损失,增加带水量,起到助排的作用。由于没有人工给垂直管举升补充能量,该工艺用于尚有一定自喷能力的井。 泡沫排水采气机理 a.泡沫效应

在气层水中添加一定量的起泡剂,就能使油管中气水两相管流流动状态发生显著变化。气水两相介质在流动过程中高度泡沫化,密度显著降低,从而减少了管流的压力损失和携带积液所需要的气流速度。 b.分散效应 气水同产井中,存在液滴分散在气流中的现象,这种分散能力取决于气流对液相的搅动、冲击程度。搅动愈激烈,分散程度愈高,液滴愈小,就愈易被气流带至地面。气流对液相的分散作用是一个克服表面张力作功的过程,分散得越小,作的功就越多。起泡剂的分散效应:起泡剂是一种表面活性剂,可以使液相表面张力大幅度下降,达到同一分散程度所作的功将大大减小。 c.减阻效应 减阻的概念起源于“在流体中加少量添加剂,流体可输性增加”。减阻剂是一些不溶的固体纤维、可溶的长链高分子聚合物及缔合胶体。减阻剂能不同程度地降低气水混合物管流流动阻力,提高液相的可输性。 d.洗涤效应 起泡剂通常也是洗涤剂,它对井筒附近地层孔隙和井壁的清洗,包含着酸化、吸附、润湿、乳化、渗透等作用,特别是大量泡沫的生成,有利于不溶性污垢包裹在泡沫中被带出井口,这将解除堵塞,疏通孔道,改善气井的生产能力。 1.1)起泡剂的组成及消泡原理 起泡剂由表面活性剂、稳定剂、防腐剂、缓蚀剂等复配而成。其主要成分是表面活性剂,一般含量为30%~40%。 表面活性剂是一种线性分子,由两种不同基团组成,一种是亲水基团,与水分子的作用力强,另一种是亲油基团,与水分子不易接近。当表面活性剂溶于水中后,根据相似相溶原理,亲水基团倾向于留在水中,而亲油基团倾向于分子在液体表面上整齐地取向排列形成吸附层,此时溶液表面张力大幅降低,当有气体进入表面活性剂溶液时,亲水基团定向排列在液膜内,亲油基团则定向排列在液膜内外两面,靠分子作用力形成稳定的泡沫。 1.2)起泡剂的注入方式 起泡剂一般从油套环空注入,水呈泡沫段塞状态从油管与气一同排出后,在地面进行分离。注起泡剂的方式有便携式投药筒、泡沫排水专用车、井场平衡罐及电动柱塞计量泵等多种,需根据井场条件选择。 1.3)性能要求

泡沫排水采气工艺技术探究

泡沫排水采气工艺技术探究 摘要:天然气开采不同于石油开采,经常在井壁和井底出现积液过多的情况,阻碍采气工作,造成气井减产或过早停产。而排液采气技术可以较好地解决这一问题,本文通过对排液采气工艺技术适应的气井条件进行分析,进而对排液采气工艺技术的特点、原理和操作流程等进行了探究。 关键词:地质要素排液采气技术探究 近年来,我国天然气的开采和使用量不断加大,对于采气工艺技术的要求也越来越高。为了提高天然气产量,实现气井的高产稳产,需要对采气工艺技术进行探究和分析。气井开采后在井内容易出现积液现象,影响气井的产量和寿命,而排液采气是解决这一问题的技术保障,所以,需要对出现积液的气井进行排液开采。本文将通过对排液采气工艺技术的分析,对采气工艺技术进行探究。 一、排液采气技术及适应的气田地质特征 我国适合采用排液采气工艺技术的气田,一般都具有封闭性弱和弹性水驱的特征。需要具备封闭性,是因为较强的封闭性和定容性等特征可以使气井排液采气更加利于操作。另外,适合排液采气技术的气田需要具备气井自身产水有限的条件。气井内部的液滴在分布上受到裂缝的影响,一般都是沉积在气井内部裂缝系统的内部封闭区间内。在气井内壁沿着裂缝流动的积液,可以通过气井内部的自然能量和人工升举等技术进行排液,而气井的井底积液,因为气井内部的地层水在井底区域内聚集,非常便于通过人工升举和机抽排水等技术进行排液采气。 我国的天然气资源相对而言采气难度较高,现在已经开发的气田,基本上都是低孔低渗的弱弹性水驱气田,不利于高效采气。特别是气井进入中后期开发阶段,这种类型的气井非常容易受到内部积液的影响而提前停产或大幅度减产,即使是正常类型的气井,进入中后期后也会受到内部积液的影响。为了应对内部积液对气井开采寿命和产量的这种消极影响,需要通过采取技术手段保证气井积液的产生和气体的流出相互协调,这样就可以实现将气井内部井壁或井底的积液排除井口,提高气井的采气量和采收率,并延长气井的开采寿命。从这个意义上说,排液采气技术是挖掘含水气井生产潜力,提高采收率和延长开发时间的的重要技术手段,现在我国已经发展比较成熟的排液排水采气技术包括泡沫排水、机抽排水、优选管柱排水排液、柱塞升举排水和螺杆泵排水等。近年来,随着单项的排液采气技术的成熟和完善,逐步开始探索复合型的排液采气技术,综合利用不同技术的优势,实现最佳的天然气开采目标,其中气举泡沫排水和机抽、喷射复合排水采气工艺技术是较为常用的复合型排液采气技术。综合而言,泡沫排水排液采气工艺技术的应用是比较广泛的。 二、泡沫排水采气工艺技术相关属性分析 泡沫排水采气技术是通过向气井内部注入某种能够遇水起泡的表面活性剂,

排水采气方法优选

页岩气井排水采气的方法优选 摘要:随着页岩气的开采水平的不断提高,人们对页岩气井开采经济目标也不断增加。我国已发现的页岩气气藏的地质特点和产期层出水的现象,给达到我们产量目标带来了很大的困难。页岩气井的井筒积液如果长时间存在的话,不仅会造成产气层的伤害,还会影响到页岩气井的产量,因此,把井筒里的产出液在第一时间排出是页岩气井生产的必要工作。本文研究了在排液采气相关文献的基础上,研究高产液页岩气井的排液采气方案的优选及适用条件,以解决出液严重对产量的影响的问题。 概述:天然气作为一种优质的清洁型化石能源,将逐渐取代煤炭和石油,成为我国能源结构的主体。不过,当前我国多数气藏受水侵的现象严重,气井井底出现了大量的积液,增加了气井排水采气的难度,降低了气井的生产能力,需要最大程度发挥排水采气技术的功能,以清除井底积液,提高气井的生产力。 1、泡沫排水采气。 原理是通过套管(用油管生产的气井,占多数)或油管(用套管生产的气井)注入表面活性剂,在天然气流的搅动下,气液充分混合,形成泡沫。随着气泡界面的生成,液体被连续举升,泡沫柱底部的液体不断补充进来,直到井底水替净。起泡剂通过分散、减阻、洗涤等作用,使井筒积液形成泡沫,并使不溶性污垢如泥沙和淤渣等包裹在泡沫中随气流排出起到疏导气水通道增产稳产的作用。在水平井中,设计出了水平井专用的泡沫排水棒,该棒利用干冰遇水产生大量气体而形成的反作用力把泡沫排水剂推送至水平井的最末端,使得在最优处产生泡沫,从而使得排水采气的效果最好。 该技术适用于低压、水产量不大的气井,尤其适用于弱喷或间歇自喷气水井,日排液量在120m /d以下,井深一般不受限制。此种工艺管理、操作极为方便,且投资少效益高,易推广,是一种非常经济、有效的排水采气技术。。泡沫排水采气技术的选井原则如下:①井底温度要<150℃,井深≤4000m[1]。②气井井底油管鞋处气流的速度要>0.1m/s,产水量<150m3/d。③二氧化碳含量要≤86g/m3、地层水总矿化度≤50000mg/L、含凝析油≤45%、硫化氢含量要≤23g/m3。④油管鞋必须在气层的中部段,因如果距离中部较远的话,井底的积液过高,泡沫剂一流到油管鞋处就会被气流冲走,达不到排除积水效果。 2、气举排水采气。 依靠从地面注入井内的高压气体与油层产出流体在井筒中汇合,利用气体的膨胀使井筒中的混合液密度降低,以将其排出地面的一种举升方式。气举排水采气工艺适用于弱喷、间歇自喷和水淹气井。排量大,日排液量可高达300m~,适宜于气藏强排液;适应性广、不受井深、井斜及地层水化学成分的限制;适用于中、低含硫气井。该工艺设计、安装比较简单,易于管理,是一种少投入、多产出的先进工艺技术。该技术的选井原则如下:①井深≤4200m。 ②开式气举:产水量可控制在50-250m3/d,井底静压Pr≥15MPa。③闭式气举:产水量可控制在50-150m3/d,井底静压Pr≥8MPa[2]。④半闭式气举:分正举和反举。正举:产水量可控制在50-250m3/d,井底静压Pr≥10MPa。反举:产水量可控制在300-400m3/d,井底静压Pr≥14MPa。 3、机抽排水采气技术 机抽排水采气技术的主要原理是在抽抽机的基础上,将电动机运转的能量转变为抽抽机上下重复运作的能力,通过抽抽杆上下摆动泵柱塞,利用油管排出液体,利用套管采出气体。该技术的优点有:操作和设备简单、投资成本低、可靠性能高、采气的效果高。该技术的缺

低压产气井排水采气工艺技术

龙源期刊网 https://www.wendangku.net/doc/1418476946.html, 低压产气井排水采气工艺技术 作者:仇小爽 来源:《中国化工贸易·下旬刊》2018年第09期 摘要:在低压产井项目开展中,排水采气工艺技术应用效果质量高低直接对整体项目建 设的质量有着重要影响,因 此,结合实际对低压产气井排水采气工艺技术进行分析,探究其操作要点,希望研究讨论可以给同类工程提供一些参考。 关键词:低压产气井;排水;采气工艺;技术 气田开采时,天然气的开采施工通常都是通过气层自身所具备的能量,最终达到自喷生产的目标。伴随着开采的持续进行,就会存在有低压的问题。如果天然气产量持续下降,也就无法将更大量的液体带入到地面上,从而导致井下积液的问题的存在,如果这种情况没有得到有效的控制,就会造成气田生产的停滞,需要立即将液体排出,从而可以实现生产的有序进行。因此,在实践中需要应用排水采气艺术,彻底的解决井下积液的问题,提高产量。 1 概述 低压低产的天然气生产中,如果不能及时的解决和处理积液的问题,就会导致产量无法保证,油气田的开采也就无法顺利进行。因此,在对于低压低产的油气田进行开采的过程中,必须要应用先进的排水采气工艺技术来达到开采的需要。低压低产气井在开采的过程中,虽然开采是持续进行的,但是产量却非常低,而有些油井的开采是间歇进行的,产量更是无法保证。针对这种情况,需要采取有效的措施来提升排水采气的效果,从而可以提高产量,满足开采工作的需要。 2 低压低产气井排水采气工艺技术 2.1 泡沫排水采气工艺技术 通过应用泡沫技术可以及时将油气田井内的积液技术的排出,从而可以有效的促进开采的顺利进行,还能够提高产量。在开采过程中,通过设备向井内注入起泡剂,从而将该材料与井内的积液有效的混合,然后产生大量的泡沫,这些泡沫因为密度比较低,在井筒内上升的过程中,滑脱损失会比较小,从而可以大大提升了气体的产量,还能够满足开采工作中排气的需要。 在应用泡沫排水技术的过程中,要根据工程的需要选择最佳的起泡剂,同时还应该严格控制注入的量,满足设计的需要,如果泡沫剂的过多就会导致材料的浪费严重;如果加入量过少也就无法达到应有的要求。在加入起泡剂的过程中,要使用注醇泵将材料注入到醇管线内,从

排水采气工艺技术

排水采气工艺技术 由于在气井中常有烃类凝析液或地层水流入井底。当气井产量高、井底气液速度大而井中流体的数量相对较少时,水将完全被气流携带至地面,否则,井筒中将出现积液。积液的存在将增大对气层的回压,并限制其生产能力,有时甚至会将气层完全压死以致关井。排除气井井筒及井底附近地层积液过多或产水,并使气井恢复正常生产的措施,称为排水采气。排水采气工艺可分为:机械法和物理化学法。机械法即优选管柱排水采气工艺、气举排水采气工艺、电潜泵排水采气工艺、机抽等排水采气工艺,物理化学法即泡沫排水采气法及化学堵水等方法。这些工艺的选择取决于气藏的地质特征、产水气井的生产状态和经济投入的考虑。 1 优选管柱排水采气技术 在气水井生产中后期,随着气井产气量和排水量的显著下降,气液两相间的滑脱损失就取代摩阻损失,上升为影响提高气井最终采收率的主要矛盾。这时气井往往因举液速度太低,不能将地层水即使排出地面而水淹。优选管柱排水采气工艺就是在有水气井开采到中后期,重新调整自喷管柱,减少气流的滑脱损失,以充分利用气井自身能量的一种自力式排水采气方法。优选管柱排水采气工艺,其理论成熟,施工容易,管理方便,工作制度可调,免修期长,投资少,除优选与地层流动条件相匹配的油管柱外,无须另外特殊设备和动力装置,是充分利用气井自身能量实现连续排水生产,以延长气井带水自喷期的一项开采工艺技术。 该技术适用于开采中后期具有一定能量的间喷井、弱喷井,能延长气水井的自喷期,适用于井深<3000m,产水量<100 m3/d。对采用油管公称直径≤60mm 进行小油管排水采气的工艺井,最大排水量50m3/d,油管强度制约油管下深。工艺实施后需要配合诱喷工艺使施工井恢复生产。 2 泡沫排水采气技术 泡沫排水采气技术是通过地面设备向井内注入泡沫助采剂,降低井内积液的表、界面张力,使其呈低表面张力和高表面粘度的状态,利用井内自生气体或注入外部气源(天然气或液氮)产生泡沫。由于气体与液体的密度相差很大,故在液体中的气泡总是很快上升至液面,使液体以泡沫的方式被带出,达到排出井内积液的目的。

机抽泡排采气技术改进与实践探讨

机抽泡排采气技术改进与实践探讨 摘要:排水采气工艺技术是挖掘有水气藏气井生产潜力,提高气藏采收率的重要措施之一。气田进入高采出程度后,在同一口井采用两种或两种以上的排水措施维持产气量就属于复合排水采气技术。泡排技术是用于自喷采气井上的排液采气井技术。通过把以前主要用于自喷采气井的泡排技术应用于机抽排液采气井上,可以降低油套环空液柱在井底产生的流压,提高气井的产能。 关键词:泡排;自喷井;机抽井;采气 前言 排水采气工艺技术是挖掘有水气藏气井生产潜力,提高气藏采收率的重要措施之一。排水采气工艺技术是挖掘有水气藏气井生产潜力,提高气藏采收率的重要措施之一。目前国内外比较常用的排水采气工艺主要有优选管柱排水采气、泡沫排水采气、柱塞气举排水采气、气举排水采气、机抽油排水采气、电潜泵排水采气和射流泵排水采气工艺,这些工艺的选择主要取决于气藏的地质特征、产水气井的生产状态和经济投入的考虑。其中:泡排采气工艺是针对自喷能力不足,气流速度低于临界流速的气井采取的有效排水采气方法。随着地层能量的降低和积液加剧,气举、泡排等排液采气工艺技术已经不能维持气井自喷生产,机抽排液成为油田气井排液采气的主要手段。但机抽排液采气受泵深和泵效限制,仍有一部分井筒积液排除,造成了生产压差降低,近井水锁效应,严重影响气井产能。把以前主要用于自喷采气井的泡排技术应用于机抽排液采气井上,可以降低油套环空液柱在井底产生的流压,提高气井的产能。 1 机抽排液采气存在问题 油田天然气开发存在地层能量的不足,井筒积液严重的问题。随着地层能量的降低和积液加剧,气举、泡排等排液采气工艺技术已经不能维持气井自喷生产,机抽排液成为油田气井排液采气的主要手段。但机抽排液采气受泵深和泵效限制,排液效果不够理想:即使使用∮32mm泵下入深度也不超过2400米。又由于受气体影响,泵效较低,沉没度保持相当高的水平,动液面到油层中深保持一定积液,增加了井底流压,降低了生产压差。同时,由于近井带地层压力下降,而井筒积液在井筒回压加上井壁地层微孔隙中形成的指向地层中凹向气相的弯液面毛管压力的作用下,以缓慢的反向渗吸方式渗入地层,从而造成近井地层堵塞,即“水锁”效应。水锁现象使得近井地带含水饱和度急剧增加,导致气相相对渗透率降低,阻碍油气的通过。 2 机抽泡排技术改进 针对这一问题,把以前主要用于自喷采上的泡排技术应用于机抽排液采气井上,在药剂选择、泡排周期、施工工艺等方面研究、试验,总结出一套有效的机抽泡排技术,并在油田实施中取得了很好的经济和社会效益。通过从油套环空注

基于含水气井排水采气新工艺技术研究

基于含水气井排水采气新工艺技术研究 文章对现阶段比较常见的含水气井排水采气新工艺展开了详细地阐述,并且进一步研究了组合形式的排水采气工艺,主要的目的就是为气田含水气井排水采气工作的正常开展提供有价值的理论依据。 标签:含水气井;排水采气;新工艺技术;研究 目前,我国排水采气工艺诸多,而在含水气井方面,传统排水采气工艺的效果并不理想,所以,要想使采气效率得以全面提升,需要采用含水气井采气全新工艺。 1 含水气井排水采气工艺的阐述 1.1 气举排水采气工艺 对气举排水采气工艺的使用,主要是利用气举阀来将高压天然气灌注至气井当中,进而在气体能力的作用下举升气井液体,以保证停喷气井生产力及时恢复。其中,该工艺技术主要包括间歇气举与连续气举。其中,连续气举具体指的就是在地面注入高压气体,进而在井筒内部实现气体和油层产出流体的有效汇合,同时,在膨胀作用的影响下,使井筒内部的混合液密度不断降低,最终排除混合液。这种工艺技术是对膨胀能量的一种利用,能够保证排液量的提升。而气举排水采气这种工艺,排液量大是最明显的特征,而且适应性也十分广泛,并不会受到井深度以及地层水化学成分影响,为此,被普遍运用在弱喷与间歇性自喷含水气井当中。 1.2 优选管柱排水采气工艺 若油管直径越大,那么气井的产量就会越高,但是,如果油管的直径较大就不能保证持续携液,如果油管的直径较小,就会导致天然气流速过快,使举升液效率不断提升。为此,应当更换直径较小的油管,为携液连续性提供保障,而这也被称之为优选管柱排水采气工艺。针对含水气井中后期开采,优选管柱排水采气工艺经常应用,主要是运用数学模型来明确连续携液临界流速与流量,对管柱进行合理地设计,确保排液是连续的。通常,如果气井的排液能力良好,需要使用大管径油管来生产,使产气量得以提升。然而,針对中后期排水能力相对薄弱的气井,需要对油管直径进行减小,进而增强气流带水能力,在短时间内恢复气井生产的能力。 1.3 泡沫排水采气工艺 利用套管或者是油管来注入起泡剂,进而和井底的积液相互混合,能够在气流搅动的作用下形成密度偏低的含水泡沫,对井筒内部的气水流态予以转变,这就是泡沫排水采气工艺。该工艺的应用能够有效地减少举升液柱重力与滑脱的损

排水采气工艺技术

排水采气工艺技术 排水采气工艺技术是挖掘有水气藏气井生产潜力,提高气藏采收率的重要措施之一。 自五十年代美国首次将抽油机用于中小水量气井排水以来,到目前国外已发展了优选管柱、机抽、泡排、气举、柱塞举升、电潜泵、射流泵、气体射流泵和螺杆泵等多套成熟的单井排水采气工艺技术。近年来,在这些应用已较为成熟的工艺技术方面的发展主要是新装备的配套研制。国外还研究应用一些新的排水采气技术,如同心毛细管技术、天然气连续循环技术、井下气液分离同井回注技术、井下排水采气工艺、带压缩机的排水采气技术。 我国排水采气工艺以四川、西南油气田分公司为代表完善配套了泡排、气举、机抽、优选管柱、电潜泵、射流泵等六套排水采气工艺技术,并在此基础上研究应用了气举/泡排、机抽/喷射复合排水采气工艺。 1.泡沫排水采气工艺技术 药剂由单一品种的起泡剂发展到了适合一般气井的8001—8003、含硫气井的84—S,凝析气井800(b)发泡剂,以及泡棒、酸棒和滑棒等固体发泡剂。该工艺排液能力达100m3/d,井深可达3500m左右。 在泡沫排水采气工艺中国外还应用了同心毛细管加药工艺,它是针对低压气井积液、油气井防蜡等实际生产问题而研制出的一种新型工具,通常用316型不锈钢不锈钢制成,盘绕在一个同心毛细管滚筒上。整套装置包括一个同心毛细管滚筒、一台吊车和一套不压井装置。在同心毛细管底部装一套井下注入/单向阀组件。化学发泡剂通过同心毛细管注入后经过单向阀被注入到井底。 这种同心毛细管柱可以在同一口井中重复多次使用,也可以起出用于别的气井,具有经济、安全和高效的特点,其最大下入深度可达7315m。 2.优选管柱排水采气工艺技术

柱塞气举排水采气工艺技术的应用

柱塞气举排水采气工艺技术的应用 摘要:根据苏里格“三低”气田的现状,通过柱塞气举现场试验情况,分析柱塞工艺的适用性,开展试验效果评价,为低产低效气井探索一种与之相适应的排水采气工艺方法。 关键词:苏里格气田柱塞气举排水采气 一、应用背景 苏里格气田是低产、低压、低丰度、非均质性强的复杂气田。2008年之前投产的气井压力和产能都普遍较低,不能满足生产过程中的气井携液要求,导致部分气井井底产生积液,严重影响了气井连续稳定生产。因此,研究一套适合低产、低效气田开发的排水采气工艺技术成为苏里格气田发掘气井产能、长期稳产的有力保障。 二、柱塞气举工艺原理 1.柱塞气举工艺组成 柱塞气举装置的组成主要包括(1)防喷管:主要功能为放喷、缓冲,必要时可以捕捉柱塞;(2)地面控制装置:主要由时间--周期控制器和气动阀组成;气动阀按控制器定时发出的指令开关;(3)井底座落器:限位,并缓冲柱塞下行碰撞冲击;(4)柱塞:关键装置,充当天然气与液体间的机械界面。 2.柱塞气举工艺原理 柱塞气举装置的正常工作由时间周期控制器控制气动阀的开关来完成。当气动阀关闭时,柱塞自行下落,柱塞下落至井下座落器时,油管中液面不断上升并超出柱塞高度。当气动阀打开时,气体迅速进入油管,与地层流入井底的气一起推动柱塞及其上液体升向井口,直到把柱塞上部的液体举升至地面,待气井生产一定时间需要恢复地层压力时,气动阀自动关闭,柱塞下落,开始下一次工作循环。 三、柱塞气举现场应用及效果评价 1. 选井原则 根据试验取得的经验,柱塞工艺的适用条件如下: 1.1气井自身具有一定的产能,自喷生产井; 1.2日产水量小于5m3/d;

某井气举排水采气工艺设计

重庆科技学院 毕业设计(论文)题目某井气举排水采气工艺设计 院(系)石油与天然气工程学院 专业班级油气开采10-01 学生姓名张克厅学号2010630616 指导教师徐春碧职称副教授评阅教师职称 2013年 6 月 8 日

学生毕业设计(论文)原创性声明 本人以信誉声明:所呈交的毕业设计是在指导导师的指导下进行的设计工作及取得的成果,设计中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 毕业设计(论文)作者(签字):张克厅 年月日

摘要 气举是通过气举阀,从地面将高压气体注入停泵的井中,利用气体的能量举升井筒中液体,使井恢复生产能力。气举可分为连续气举和间歇气举两种方式。影响气举方式选择的因素有:井的产率、井底压力、产液指数、举升高度及注气压力等。对那些井底压力和产能高的井,通常采用连续气举生产;对那些产能及井底压力低的井,则采用间歇气举或活塞气举。 气举排水采气技术是通过气举阀,从地面将高压天然气注入停喷的井中,利用气体的能量逐级举升井筒中的液体,使井恢复生产能力。气举可分为连续气举和间歇气举两种方式。目前现场普遍采用连续气举的方式。2010年在建南构造建34井开展连续气举排水采气工艺试验,取得了比较显著的成效。通过对现场试验情况进行分析,总结了连续气举排水采气工艺在建南气田气藏水侵治理中取得的成功经验。 关键词:建34井气举阀连续气举排水采气试验

电潜泵排水采气工艺技术措施

能源环保与安全 应用下入井下的潜油多级离心泵装置,将气井的积液抽汲到地面上来,降低积液对气体产生的不利影响。电潜泵排水采气生产中,控制最佳的积液的排量,大幅度降低井底的回压,促使气体顺利入井,因此提高了气井的生产能力。 一、排水采气技术措施概述 气井生产过程中,由于井下积液的存在,严重影响到气井的生产能力,严重的情况甚至迫使气井停产。为了恢复气井的正常生产状况,采取最佳的排水采气的技术措施,是非常必要的。 气井生产中的各种排水采气技术措施的应用,降低井下积液对气井带来的不利影响,恢复气井的正常生产状态,为获得最佳的产气量,提供保证措施。气举排水采气技术措施、泡沫排水采气技术措施、抽油机排水采气技术措施、电潜泵排水采气技术措施的应用,解决气井井下积液的技术难点问题,促进气井高效生产,为气田生产提供帮助。 2电潜泵排水采气工艺技术措施 电潜泵排水采气技术措施的应用,选择电动潜油离心泵设备,依据电动机的驱动,提高多级离心泵的抽汲能力,将气井井下的积液开采到地面上来,降低井底的回压,为气流入井提供便利的条件。 1.电潜泵装置的优越性。利用电潜泵装置进行排水采气,由于电动潜油离心泵的安装深度及排量的特点,使用于压力低,产水量高的气井的排水采气生产。与气举排水采气方式对比,产生更小的井底回压,有利于提高排水采气的生产效率。 结合可调式的变频机组的应用,降低了电能的消耗,相应地降低了气井排水采气的生产成本。在低速下频繁启动潜油电泵机组,符合气井排水采气的需要,具有灵活的特性,发挥电潜泵的优越性,提高排水采气的效果。 电潜泵井下的温度变送器和压力变送器的安装和维护比较容易,能够实现排水采气工艺的自动控制和管理,提高采气生产的自动化程度,降低人为因素带来的不利影响。而且电动潜油离心泵排水采气方式的应用,不受井斜角的限制,具有非常广泛的应用价值。 2.电潜泵排水采气工艺的应用。结合气井积液的实际,设计最佳的电潜泵井下管柱系统,结合高压电能的输入, 带动井下的电动机高速旋转,将电能转 换为机械能,带动井下的多级离心泵运 行,抽汲井下的液体,解决气井积液的 问题。 主要的生产装备均在井下管柱系统 中,井下的潜油电动机、多级离心泵系 统,成为电潜泵排水采气的关键部件, 维护保养的难度大。井下的温度的影 响,需要选择和应用高强度的电动机系 统,同时对传输电能的电缆的要求比较 高。 为了提高电潜泵排水采气的经济 性,加强对电潜泵机组的管理,提高设 备的安全运行效率。降低设备的损耗, 尽可能延长各种部件的使用寿命,才能 保证气井排水采气的正常进行,获得最 佳的天然气产能,满足气田生产的技术 要求。 3.电潜泵排水采集技术的关键措 施。气井的排水采气技术措施,必须将 井下的气体和液体实施分离处理,才能 保证电潜泵具有较大的抽汲能力,将井 下的积液抽汲到地面上来,排出积液对 气井生产带来的不良影响。井筒中的离 心式分离技术的应用以及变频控制技术 的实现,保证了电潜泵排水采气效率的 提高。 利用地面的变频器自动控制井下的 潜油电动机和多级离心泵的运行状态, 井下的积液通过旋转式的气体分离器, 将气体分离至油套管的环形空间,避免 大量的气体进入到多级离心泵导致泵效 过低,影响到排液的效果。经过特种的 气井排液管线,使井下的积液进入到出 水管线,进一步分离处理后,降低对气 井产物的影响。井下产出的天然气经过 分离处理后,进入到集气管线,为用户 提供可靠的天然气供应。 应用离心式的气体分离器,将气井 中的气体和液体进行分离,避免大量的 气体进入到多级离心泵,而影响到潜油 电泵机组的高效运行,无法达到最佳的 排水采气的状态。安装在潜油多级离心 泵的下端,将进入到离心泵的气体分离 除去。当气液两相进入到分离器的入口 后,促使分离器产生离心力,由于气液 产生的离心力不同,通过分离器的出口 排出液体,进入到潜油电泵中,依靠泵 的增压作用,而将气井的井下积液举升 到地面上来。而气体经过油套管的环形 空间上升,经过井口采气树的收集,成 为气井产量的一部分,被回收利用。 变频控制技术能够有效地控制潜 油多级离心泵的启动和停止,保护潜油 电动多级离心泵的保护装置,避免由于 电能的供给问题,而影响到井下设备的 安全运行,增加修井作业施工的频次, 相应地增加电动潜油离心泵机组的故障 率,降低气井排水采气的效率。对井下 的电动机的过载保护,延时保护技术的 应用,保证井下电动机的安全运行。同 时选择和应用高强度的电缆,将地面的 高压电力输送给井下的电动机,才能促 使电动机运行,将动力传递给井下的多 级离心泵,抽汲井液,实施排水采气的 功能,达到排水采气的技术标准。通过 变频调速技术措施的应用,扩大电潜泵 机组的排液范围,降低电动系统的启动 应力,保证电动机的安全运行。实现无 级调速,降低泵机组的电能消耗。合理 控制机组的运行方式,使其达到最佳的 排水采气的效果。 三、结论 通过对电潜泵排水采气工艺技术 措施的研究,结合电动潜油离心泵的应 用,提高气井排水采气的效果,为达到 气井的开采价值,提供可靠的保证措 施。结合气田生产的实际状况,对电动 潜油离心泵排水采气的技术措施进行优 化,设计合理的排水采气的生产运行参 数,结合变频调速技术的应用,降低电 能的消耗,相应减少气井排水采气的资 金投入,降低电潜泵机组的维修成本, 提高气井排水采气生产的效率。 参考文献: [1]李仕昆. 电潜泵排水采气技术研究及应用[J]. 云 南煤炭, 2014(2):63-65. [2]李生德. 探析深井电潜泵排水采气工艺技术 研究及应用[J]. 工程技术(全文版), 2017(2):00264- 00264. [3]熊杰, 王学强, 孙新云, et al. 深井电潜泵排水采 气工艺技术研究及应用[J]. 钻采工艺, 2012(4):60- 61. [4]刘鑫. 致密砂岩气藏富水区开发技术对策研究 [D]. 成都理工大学, 2012. [5]郭守振, 刘唯贤, 孙景丽, et al. 致密砂岩气藏开 发后期综合监测技术应用研究[J]. 内蒙古石油化 工, 2017(09):102-103. 电潜泵排水采气工艺技术措施 翟宗宝 吴有明 杨文忠 谢建国 塔西南博大油气开发部 【摘 要】电潜泵排水采气的工艺属于人工举升的技术措施,解决气井的积液问题,恢复气井的正常运行状态,为开采出更多的天然气资源,提供最佳的技术支持。优化电潜泵的运行参数,提高排水采气的效率,尽可能降低电潜泵的运营成本,不断提高气田生产的经济效益。 【关键词】电潜泵;排水采气;工艺技术;措施 81

气举排水采气分析-简要

关于气举排水采气井施工现状分析 2019年7月

目录 一.定义 (1) 二.原理与过程简介 (1) 三.工艺流程简介 (3) 四.实例分析与建议 (3)

一.定义 气举排水采气是依靠外来高压气源或压缩机,向井筒内注入高压气体与产层产出流体在井筒中混合,降低井筒内流体的密度及其静水压力,从而降低井底流压,使产层流体流入井筒并被举至地面的一种排水采气方式。 气举过程示意图 二.原理与过程简介 当气井水锁停产时,油套管内的液面在同一位置。当高压气体进入油套环空后,环空内的液面被挤压下降,如不考虑液体被挤入地层,油套环空内的液体则全部进入油管,油管内的液面上升,在此过程中压缩机的压力不断升高。当油套环空内的液面下降到油管管鞋时,压缩机压力达到最大,称启动压力。注入气体进入油管与油管内的液体

混合,液面不断上升,直至喷出地面,在开始喷出之前,井底压力大于或等于地层压力,喷出之后由于油套环空仍继续进气,油管内液体继续喷出,使混有天然气液体密度进一步降低,井底压力相应降低,压缩机压力也随之下降,当井底压力低于地层压力是,地层流体就流入井内。由于地层出液使油管内混气液体密度稍有增加,因而压缩机压力又有所上升,经过一段时间后趋于稳定,达到稳定生产状态,此时压缩机压力称为工作压力。所以压缩机停止作业时液面进行短暂恢复,液面重新升高。压缩机重新启动后,必须将这段时间内恢复的液体重新排出去,所以导致多次开机排除井底固有的积液有限,恢复生产的层位和产能有限,特别对于水平井的水平段积液的排除更是有限。并且过于频繁重复的停开机作业,反复的使压缩机达到最大压力,这势必会加大压缩机的损耗及能耗,增加作业成本,缩短压缩机的正常使用寿命。 水平井身结构示意图直井身结构示意图

相关文档