文档库 最新最全的文档下载
当前位置:文档库 › TMS320F2812与液晶模块LCM3202401的软硬件接口设计

TMS320F2812与液晶模块LCM3202401的软硬件接口设计

TMS320F2812与液晶模块LCM3202401的软硬件接口设计
TMS320F2812与液晶模块LCM3202401的软硬件接口设计

软件工程基础知识点总结

软件工程基础部分知识点总结 知识点一软件工程的基本概念 1、软件定义:是计算机系统中与硬件相互依存的另一部分,是包括程序、数据以及相关文档的完整集合。 1)程序是软件开发人员根据用户需求开发的、用程序设计语言描述的、适合计算机执行的指令(语句)序列。 2)数据是使程序能够正常操作信息的数据结构。 3)文档是与程序开发、维护和使用有关的图文资料。 国标(GB)计算机软件的定义:与计算机系统的操作相关的计算机程序、规程、规则以及可能有的文件、文档及数据。 2、软件特点: 1)软件是一种逻辑实体,而不是物理实体,具有抽象性,是计算机的无形部分; 2)软件的生产与硬件不同,它没有明显的制作过程; 3)软件在运行、使用期间不存在磨损、老化问题; 4)软件的开发、运行对计算机系统具有依赖性,受计算机系统的限制,这导致了软件移植的问题; 5)软件复杂性高,成本昂贵; 6)软件开发涉及诸多的社会因素 3、软件的分类: 按照功能可以分为:应用软件、系统软件、支撑软件(或工具软件)

1)应用软件是为解决特定领域的应用而开发的软件。 2)系统软件是计算机管理自身资源,提高计算机使用效率并为计算机用户提供各种服务的软件。 3)支撑软件是介于系统软件和应用软件之间,协助用户开发软件的工具软件。 4、软件危机:是指在软件的开发和维护过程中所遇到的一系列严重问题。软件危机主要体现在以下几个方面: ①软件开发的实际成本和进度估计不准确 ②开发出来的软件常常不能使用户满意 ③软件产品的质量不高,存在漏洞,需要经常打补丁 ④大量已有的软件难以维护 ⑤软件缺少有关的文档资料 ⑥开发和维护成本不断提高,直接威胁计算机应用的扩大 ⑦软件生产技术进步缓慢,跟不上硬件的发展和人们需求增长 5、软件工程:此概念的出现源自软件危机。软件工程是指应用计算机科学、数学及管理科学等原理,以工程化的原则和方法来开发与维护软件的学科。 1)研究软件工程的主要目的就是在规定的时间、规定的开发费用内开发出满足用户需求的高质量的软件系统(高质量是指错误率低、好用、易用、可移植、易维护等)。 2)软件工程的三个要素:方法、工具和过程。 ①方法:完成软件工程项目的技术手段;

SOC的软硬件协同设计方法和技术

SOC的软硬件协同设计方法和技术 摘要: 随着嵌入式系统与微电子技术的飞速发展,硬件的集成度越来越高,这使得将CPU、存储器和I/O设备集成到一个硅片上成为可能,SOC应运而生,并以其集成度高、可靠性好、产品问世周期短等特点逐步成为当前嵌入式系统设计技术的主流。传统的嵌入式系统设计开发方法无法满足Soc设计的特殊要求,这给系统设计人员带来了巨大的挑战和机遇,因此针对Soc的设计方法学己经成为当前研究的热点课题。 论文首先分析了嵌入式系统设计的发展趋势,论述了传统设计开发方法和工具的局限性,针对Soc设计技术的特点探究了Soc软硬件协同设计方法的流程,并讨论了目前软硬件协同设计的现状。 关键词: 软硬件协同设计,可重用设计,SOC 背景: 计算机从1946年诞生以来,经历了一个快速发展的过程,现在的计算机没有变成科幻片电影中那样贪婪、庞大的怪物,而是变得小巧玲珑、无处不在,它们藏身在任何地方,又消失在所有地方,功能强大,却又无影无踪,这就是嵌入式系统。嵌入式系统是以应用为中心、计算机技术为基础、软件硬件可剪裁、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。嵌入式系统是将先进的计算机技术、微电子技术和现代电子系统技术与各个行业的具体应用相结合的产物,这一点决定了它必然是一个技术密集、高度分散、不断创新的知识集成系统。嵌入式系纫‘泛应用于国民经济和国防建设的各个领域,发展非常迅速,调查数据表明,嵌入式系统的增长为每年18%,大约是整个信息技术产业平均增长的两倍[1],目前世界上大约有2亿台通用计算机,而嵌入式处理器大约60亿个,嵌入式系统产业是二十一世纪信息产业的重要增长点。 随着集成电路制造工艺的飞速发展,嵌入式系统硬件的集成度越来越高,这使得将嵌入式微处理器、存储器、I/O设备等硬件组成部件集成到单个芯片上成为可能,片上系统SoC (System on Chip)应运而生[2]。SOC极大地缩小了系统体积;减少了板级系统SoB(System on Board)中芯片与芯片之间的互连延迟,从而提高了系统的性能; 强调设计重用思想,提高了设计效率,缩短了设计周期,减少了产品的上市时间。因此SOC以其集成度高、体积小、功耗少、可靠性好、产品问世周期短等优点得到了越来越广泛地应用,并且正在逐渐成为当前嵌入式系统设计的主流技术[3]。但Soc设计不同于传统嵌入式系统的开发,如何快速、有效地开发和设计Soc产品是当前嵌入式设计开发方法学的一个十分重要的研究领

软硬件测试方案

1.1.1软硬件测试方案 1.1.1.1测试目的和要求 1.1.1.1.1测试目的 作为软件开发的重要环节,软件测试越来越受到人们的重视,软件测试是软件工程过程的一个重要阶段,是在软件投入运行前,对软件需求分析、设计和编码各阶段产品的最终检查,是为了保证软件的正确性、完全性和一致性,从而检测软件错误、修正软件错误的过程。随着软件开发规模的增大、复杂程度的增加,以寻找软件中的错误为目的的测试工作就显得更加困难,因此要求测试计划和测试管理更加完备。本次测试安排在项目进行编码过程中和编码完成后进行,测试的内容包括系统界面风格、主要功能、容错能力、模块间的关联等等,依据正规步骤完成单元测试、边缘测试、整体测试。通过测试,及时发现存在于程序中的错误并根据测试结果对程序进行修改,从而确保提交给用户的程序是经过检验并能顺利运行的。 1.1.1.1.2测试的总体要求 软件测试可运用多种不同的测试策略来实现,最常用的方式是自底向上分阶段进行,对不同开发阶段的产品采用不同的测试方法进行检测,从测试开始,然后进行功能测试,最终进行系统测试。 尽早地和不断地进行软件测试。 保证系统风格与界面统一。 保证各系统联接正确,数据传送正常。

抽检程序的内部编写情况无误。 测试用例应由测试输入数据和对应的预期输出结果两部分组 成。 程序员应避免负责测试自己编写的程序。 测试用例,应当包括合理和不合理的输入条件。 应当检查程序是否有不希望的副作用。 程序流程和接口内容绝不可忽视。 充分注意测试中的群体现象。 严格执行测试计划。 对每个测试结果严格检查。 妥善保存文档。 性能测试和功能测试同等重要。 1.1.1.1.3测试人员及组织分工 参加测试人员包括技术支持组部分人员、开发小组全体成员、质保组测试成员和用户人员。组织分工如下: 单元测试:由实施组成员在编码过程中,各自以及交叉进行单元测试。 集成测试:由质保组两名测试成员、实施组两名成员进行集成测试。 系统测试:由技术组项目技术负责人、系统设计师、用户人员进行系统测试。

软硬件综合设计教学大纲

软硬件综合设计教学大纲 该课程是一门综合案例实践课。在学习该课程之前,学习者应该具备计算机软硬件及编程方面的基础知识。课程中通过3-5个案例的讲解,期望学习者能较全面的了解和掌握有关控制台编程、Web编程及系统硬件及数据分析方面的开发与设计流程,也希望能够帮助学习者尽快地将所学基础知识融入开发实践。 课程概述 《软硬件综合设计》是学习者在学习完计算机软硬件系列课程后必须进行的一项重要的学习与实践环节。通过该课程的学习,一方面,学习者可以系统地回顾前面课程中所学知识,另一方面也是最重要的方面,学习者要能够利用所学知识,独立地完成实际系统的开发,以此达到加深对前期课程知识的复习和巩固、并增强学习者动手能力的目的。 课程在内容组织上以开发案例为主,引入3到5个开发案例,主要涉及系统硬件设计、C控制台编程、基于Web的.NET编程和数据分析等内容。其中各个方向的案例均会由课程主讲老师为大家提供相关的设计与开发思路,帮助学习者尽快地进入设计与开发状态。学习之后,也有专门为学习者留出的项目开发练习。 课程的终极目标是每位学习者实现一个功能较完整、可运行的实际系统。通过对实际项目的设计开发,达到以下目的: 了解项目开发的一般过程; 学习项目开发过程中文档的编写; 完成对系列课程的总体复习; 增强对实际工程问题的认识,并培养学习者利用所学知识分析与解决实际问题的能力。 课程结束时需要学习者提供完整的开发文档和可运行系统的代码。其中设计文档主要包括需求分析报告、系统分析报告、系统设计报告、测试报告等。可运行的系统代码应该能够实现设计要求并调试通过。最后根据设计方案的合理性、程序编制正确性、调试结果准确性、设计报告的完整性等方面确定学习者的最后成绩。 课程按周组织,共8周,涉及4个方向的案例项目开发。包括:基于Web的.NET编程、系统硬件设计、C语言控制台编程和数据分析等内容。 需要特别强调的是:本课程属于“设计型”课程,需要学习者熟悉前面所学课程,并具有一定的程序设计能力和初步的系统开发经验。只有将课程所学知识真正理解并变成了自己的知识,才有可能按照要求去完成系统设计。

硬件电路设计基础知识

硬件电子电路基础

第一章半导体器件 §1-1 半导体基础知识 一、什么是半导体 半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物)

二、半导体的导电特性 本征半导体――纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略) 1、半导体的导电率会在外界因素作用下发生变化 ?掺杂──管子 ?温度──热敏元件 ?光照──光敏元件等 2、半导体中的两种载流子──自由电子和空穴 ?自由电子──受束缚的电子(-) ?空穴──电子跳走以后留下的坑(+) 三、杂质半导体──N型、P型 (前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。 ?N型半导体(自由电子多) 掺杂为+5价元素。如:磷;砷P──+5价使自由电子大大增加原理:Si──+4价P与Si形成共价键后多余了一个电子。 载流子组成: o本征激发的空穴和自由电子──数量少。 o掺杂后由P提供的自由电子──数量多。 o空穴──少子 o自由电子──多子 ?P型半导体(空穴多) 掺杂为+3价元素。如:硼;铝使空穴大大增加 原理:Si──+4价B与Si形成共价键后多余了一个空穴。 B──+3价 载流子组成:

o本征激发的空穴和自由电子──数量少。 o掺杂后由B提供的空穴──数量多。 o空穴──多子 o自由电子──少子 结论:N型半导体中的多数载流子为自由电子; P型半导体中的多数载流子为空穴。 §1-2 PN结 一、PN结的基本原理 1、什么是PN结 将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。 2、PN结的结构 分界面上的情况: P区:空穴多 N区:自由电子多 扩散运动: 多的往少的那去,并被复合掉。留下了正、负离子。 (正、负离子不能移动) 留下了一个正、负离子区──耗尽区。 由正、负离子区形成了一个内建电场(即势垒高度)。 方向:N--> P 大小:与材料和温度有关。(很小,约零点几伏)

硬件电路设计基础知识

硬件电路设计基础知识 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

硬件电子电路基础

第一章半导体器件 §1-1 半导体基础知识一、什么是半导体

半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物) 二、半导体的导电特性 本征半导体――纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略) 1、半导体的导电率会在外界因素作用下发生变化 掺杂──管子 温度──热敏元件 光照──光敏元件等 2、半导体中的两种载流子──自由电子和空穴 自由电子──受束缚的电子(-) 空穴──电子跳走以后留下的坑(+) 三、杂质半导体──N型、P型 (前讲)掺杂可以显着地改变半导体的导电特性,从而制造出杂质半导体。 N型半导体(自由电子多) 掺杂为+5价元素。如:磷;砷 P──+5价使自由电子大大增加 原理: Si──+4价 P与Si形成共价键后多余了一个电子。 载流子组成:

o本征激发的空穴和自由电子──数量少。 o掺杂后由P提供的自由电子──数量多。 o空穴──少子 o自由电子──多子 P型半导体(空穴多) 掺杂为+3价元素。如:硼;铝使空穴大大增加 原理: Si──+4价 B与Si形成共价键后多余了一个空穴。 B──+3价 载流子组成: o本征激发的空穴和自由电子──数量少。 o掺杂后由B提供的空穴──数量多。 o空穴──多子 o自由电子──少子 结论:N型半导体中的多数载流子为自由电子; P型半导体中的多数载流子为空穴。 §1-2 PN结 一、PN结的基本原理 1、什么是PN结 将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。

单片机软硬件联合仿真解决方案

单片机软硬件联合仿真解决方案摘要:本文介绍一种嵌入式系统仿真方法,通过一种特殊设计的指令集仿真器ISS将软件调试器软件Keil uVision2和硬件语言仿真器软件Modelsim连接起来,实现了软件和硬件的同步仿真。关键词:BFM,TCL,Verilog,Vhdl,PLI,Modelsim,Keil uVision2,ISS,TFTP,HTTP,虚拟网卡,Sniffer,SMART MEDIA,DMA,MAC,SRAM,CPLD缩略词解释:BFM:总线功能模块。在HDL硬件语言仿真中,BFM完成抽象描述数据和具体的时序信号之间的转换。PLI:Verilog编程语言接口,是C语言模块和Verilog 语言模块之间交换数据的接口定义。TCL:字面意思是工具命令语言,是一种解释执行语言,流行EDA软件一般都集成有TCL。使用TCL用户可以编写控制EDA工具的脚本程序,实现工具操作自动化。ISS:CPU指令集仿真器,可以执行CPU的机器码。TFTP:简单文件传输协议,Windows的tftp.exe既是该协议的客户端实现。SMART MEDIA:一种存储卡,常用于数码相机、MP3。DMA:直接内存访问。用于外部设备之间高速数据转移。MAC:媒体接入控制器。本文中是指网卡芯片。前言传统的嵌入式系统中,设计周期、硬件和软件的开发是分开进行的,并在硬件完成后才将系统集成在一起,很多情况下,硬件完成后才开始进行实时软件和整体调试。软硬件联合仿真是一种在物理原型可用前,能尽早开始调试程序的技术。软硬件联合仿真有可能使软件设计工程师在设计早期着手调试,而采用传统的方法,设计工程师直到硬件设计完成才能进行除错处理。有些软件可在没有硬件支持的情况下完成任务的编码,如不涉及到硬件的算法。与硬件相互作用的编码在获得硬件之前编写,但只有在硬件上运行后,才能真正对编码进行调试。通过采用软硬件联合仿真技术,可在设计早期开始这一设计调试过程。由于软件的开发通常在系统开发的后段完成,在设计周期中较早的开始调试有可能将使这一项目提早完成,该技术会降低首次将硬件和软件连接在一起时出现意外而致使项目延期完成所造成的风险。在取得物理原型前,采用软硬件联合仿真技术对硬件和软件之间的接口进行验证,将使你不会花太多的时间在后期系统调试上。当你确实拿到物理原型开始在上面跑软件的时候,你会发现经过测试的软件部分将会正常工作,这会节省项目后期的大量时间及努力。软硬件联合仿真系统由一个硬件执行环境和一个软件执行环境组成,通常软件环境和硬件环境都有自己的除错和控制界面,软件通过一系列由处理器启动的总线周期与硬件的交互作用。本文以一个Mini Web卡的开发介绍一种软硬件联合仿真系统。[!--empirenews.page--]该方案的核心是采用一个51单片机仿真引擎GoldBull ISS51(以下简称ISS51),ISS51是51单片机开发环境Keil uVision2的一个插件,ISS51具有连接Keil 和硬件仿真环境Modelsim的接口,可以实现软硬件同步仿真。在该系统中,Keil作为软件调试界面,Modelsim作为硬件仿真和调试界面,ISS51负责软件执行、监控软件断点、单步执行、内存和寄存器数据返回给Keil、CPU总线时序产生和捕获、内部功能模块(如定时器,串口)的运行等功能。Mini Web卡介绍Mini Web卡是一个运行在单片机上的Web服务器,提供网口连接,有大容量文件系统,提供TFTP和HTTP服务。尽管软件系统比较复杂,但优化编译后,执行代码还不足25K,为后续升级留下了足够空间。 51CPU采用SST89系列,这种CPU具有ISP功能,可以通过RS232串口,直接将目标码下载到CPU。DMA控制逻辑是一个可编程逻辑器件,采用的是ALTERA的CPLD EPM240,主要功能是实现外围器件之间的DMA传递。因为51CPU进行IO访问是很低效的,需要24个时钟周期才能进行一次IO访问,在外围设备之间转移数据则需要更多的时钟周期,使用DMA控制逻辑可以达到3个时钟周期就能转移一个字节。本系统中处理多种网络协议,需要大量报文收发和文件系统访问,采用DMA可以极大地提高51单片机的数据处理速度。DMA通道主要有MAC芯片与RAM之间的数据块转移,SMART MEDIA和RAM之间的数据块转移。网卡芯片采用的是AX88796,主要的优点是可以和51CPU方便地接口;支持100M以太网,速度高;有较大的接收报文缓存,能够平滑网络流量,减少因51CPU处理速度慢导致的报文丢弃和重发。SMART MEDIA是一个移动存储卡,主要用于存储文件,Mini Web卡支持8M到256M的SMD卡。文件系统是Mini Web卡的新开发模块,

软硬件开发流程及规范

机密

机密 0目录 0目录 (2) 1概述 (4) 1.1硬件开发过程简介 (4) 1.1.1硬件开发的基本过程 (4) 1.1.2硬件开发的规范化 (4) 1.2硬件工程师职责与基本技能 (5) 1.2.1硬件工程师职责 (5) 1.2.2硬件工程师基本素质与技术 (5) 2软硬件开发规范化管理 (6) 2.1硬件开发流程 (6) 2.1.1硬件开发流程文件介绍 (6) 2.1.2硬件开发流程详解 (6) 2.2硬件开发文档规范 (10) 2.2.1硬件开发文档规范文件介绍 (10) 2.2.2硬件开发文档编制规范详解 (11) 2.3与硬件开发相关的流程文件介绍 (13) 2.3.1项目立项流程: (13) 2.3.2项目实施管理流程: (14) 2.3.3软件开发流程: (14) 2.3.4系统测试工作流程: (14) 2.3.5内部验收流程 (14)

机密3附录一. 硬件设计流程图: (16) 4附录二. 软件设计流程图: (17) 5附录三. 编程规范 (19)

机密1概述 1.1 硬件开发过程简介 1.1.1硬件开发的基本过程 硬件开发的基本过程: 1.明确硬件总体需求情况,如CPU 处理能力、存储容量及速度,I/O 端口的分配、接口要求、电平要求、特殊电路(厚膜等)要求等等。 2.根据需求分析制定硬件总体方案,寻求关键器件及电路的技术资料、技术途径、技术支持,要比较充分地考虑技术可能性、可靠性以及成本控制,并对开发调试工具提出明确的要求。关键器件索取样品。 3.总体方案确定后,作硬件和单板软件的详细设计,包括绘制硬件原理图、单板软件功能框图及编码、PCB 布线,同时完成发物料清单。 4.领回PCB 板及物料后由焊工焊好1~2 块单板,作单板调试,对原理设计中的各功能进行调测,必要时修改原理图并作记录。 5.软硬件系统联调,一般的单板需硬件人员、单板软件人员的配合,特殊的单板(如主机板)需比较大型软件的开发,参与联调的软件人员更多。一般地,经过单板调试后在原理及PCB布线方面有些调整,需第二次投板。 6.内部验收及转中试,硬件项目完成开发过程。 1.1.2硬件开发的规范化 硬件开发的基本过程应遵循硬件开发流程规范文件执行,不仅如此,硬件开发涉及到技术的应用、器件的选择等,必须遵照相应的规范化措施才能达到质量保障的要求。这主要表现在,技术的采用要经过总体组的评审,器件和厂家的选择要参照物料认证部的相关文件,开发过程完成相应的规定文档,另外,常用的

安全软件理论与软硬件协同设计可行性研究报告

安全软件理论与软硬件协同设计可行性研究报告

安全软件理论与软硬件协同设计可行性研究报告 一、项目定义 1.项目名称 安全软件理论与软硬件协同设计 2.项目领域 本项目属于基础产业和高新技术领域,涉及计算机软件与理论,系统芯片设计及计算机应用等学科。 二、项目背景 1.项目背景 软件可靠性一直是计算机界关心的关键课题,1967年欧洲软件工程先驱者Floyd提出用归纳断言法来验证程序的正确性;1969年图灵奖获得者Hoare提出使用程序公理系统来验证程序的性质。 七十年代的典型程序语言的数学理论并不涉及程序的规范说明,因此不能用于软件的设计和开发。同时期的工作包括着重于程序性质的后验证的方法,被用于一些常见算法的分析与正确性证明,但缺乏支持规范分析和指导安全软件设计的演算技术。 长期以来国际上不少软件公司投入了大量的人力、物力和财

力探索软件设计可靠性技术。 设计严格安全软件系统需要解决下述二项关键技术问题: ●建立程序和软件规范的演算系统,在软件开发生命周期各阶段均使用数学演算技术来建立软件设计和开发文档。 ●设计完整的演算法则用来指导下述关键开发任务: (a)从用户需求导出软件系统各部件的规范说明; (b)从部件的规范说明演算出低层软件模块过程的功能说明。 在软件设计中用数学理论来指导严格安全软件系统设计,包括: ●同一数学框架中处理程序和软件规范; ●用符号演算实现程序和软件规范间的演算; ●用谓词演算验证设计方法的正确性; ●用代数方法从软件部件的抽象规范说明推算出低层次程序模块各个过程的规范说明。 学科负责人自1985年起对设计严格安全软件的完备演算理论进行了深入研究,取得了重大突破。主要创新点有: ●演算理论强调了设计正确软件的开发方法和使用数学演算来支持从软件到程序代码的转换; ●首先提出程序分解算式并第一次提出了求解规范方程的演算法则;

硬件基础知识

第三章硬件基础知识学习 通过上一课的学习,我们貌似成功的点亮了一个LED小灯,但是还有一些知识大家还没有 彻底明白。单片机是根据硬件电路图的设计来写代码的,所以我们不仅仅要学习编程知识,还有硬件知识,也要进一步的学习,这节课我们就要来穿插介绍电路硬件知识。 3.1 电磁干扰EMI 第一个知识点,去耦电容的应用,那首先要介绍一下去耦电容的应用背景,这个背景就是电磁干扰,也就是传说中的EMI。 1、冬天的时候,尤其是空气比较干燥的内陆城市,很多朋友都有这样的经历,手触碰到电脑外壳、铁柜子等物品的时候会被电击,实际上这就是“静电放电”现象,也称之为ESD。 2、不知道有没有同学有这样的经历,早期我们使用电钻这种电机设备,并且同时在听收音机或者看电视的时候,收音机或者电视会出现杂音,这就是“快速瞬间群脉冲”的效果,也称之为EFT。 3、以前的老电脑,有的性能不是很好,带电热插拔优盘、移动硬盘等外围设备的时候,内部会产生一个百万分之一秒的电源切换,直接导致电脑出现蓝屏或者重启现象,就是热插拔的“浪涌”效果,称之为Surge... ... 电磁干扰的内容有很多,我们这里不能一一列举,但是有些内容非常重要,后边我们要一点点的了解。这些问题大家不要认为是小问题,比如一个简单的静电放电,我们用手能感觉到的静电,可能已经达到3KV以上,如果用眼睛能看得到的,至少是5KV了,只是因为 这个电压虽然很高,电量却很小,因此不会对人体造成伤害。但是我们应用的这些半导体元器件就不一样了,一旦瞬间电压过高,就有可能造成器件的损坏。而且,即使不损坏,在2、3里边介绍的两种现象,也严重干扰到我们正常使用电子设备了。 基于以上的这些问题,就诞生了电磁兼容(EMC)这个名词。这节课我们仅仅讲一下去耦

硬件工程师必须掌握基础

第一部分.硬件工程师必须掌握基础知识与经验精华 目的:基于实际经验与实际项目详细理解并掌握成为合格的硬件工程师的最基本知识。成为合格的硬件工程师的必备知识,全部来源于工程实践的实际要求. 1) 基本设计规范 2) CPU基本知识、架构、性能及选型指导(MIPS,POWERPC,X86) 3) MOTOROLA公司的PowerPC系列基本知识、性能详解及选型指导 4) 网络处理器(INTEL、MOTOROLA、IBM)基本知识、架构、性能及选型 5) 多核CPU的基础知识及典型应用 6) 常用总线的基本知识、性能详解(总线带宽、效率等) 7) 各种存储器详细性能介绍,设计要点及选型指导(DDR I,DDR II,L2 CACHE) 8) DATACOM、TELECOM常用物理层接口芯片基本知识、性能、设计要点及选型指导 9) 常用器件选型指导 10)FPGA、CPLD、EPLD的详细性能、设计要点及选型指导 11)VHDL or Verilog HDL 12)网络基础:交换,路由 13)国内大型硬件设备公司的硬件研发规范和研发流程介绍: 第二部分.硬件开发工具 目的:“工欲善其事,必先利其器”,熟练使用业界最新、最流行的专业设计工具,才可完成复杂的硬件设计。为了让学员对自己的培训投资能够物超所值,我们不会象某些培训机构那样, 将大量时间浪费在工具的使用上面,课堂上我们将基本不讲授这些工具的使用方法,而是希望学员能够通过自己在课下学习,此部分我们只进行课堂上的关键部分的指导,本部分不是课程的重点内容,虽然工具的使用对于成为合格的硬件工程师是必须和必备的技能; 1) INNOVEDA公司的ViewDraw,PowerPCB,Cam350 2) CADENCE公司的OrCad,Allegro,Spectra 3) Altera公司的MAX+PLUS II 4) XILINX公司的FOUNDATION、ISE 第三部分.硬件总体设计及原理图设计的核心经验与知识精华 此部分,讲师将依据国内著名硬件设备公司的产品开发流程,以基于高速总线结构和高端CPU的几个硬件开发项目为主线,将详细、深入、专业地讲解、剖析硬件总体设计和原理设计的核心经验和知识精华,把业内一些“概不外传”的经验与精髓传授给学员。我们希望通过"真正的经验传授"使你迅速成长为优秀的硬件总体设计师; 核心要点: 1)原理图设计全部经验揭密2) 原理图检查checklist 3) 设计理念的根本改变:“纸上”作业4) 结合已经批量转产的高端产品的原理图(原件)进行讲解 1) 产品需求分析 2) 开发可行性分析 3) 系统方案调研,给出我们自己总结的、非常实用有效的、相关的检查项, 4) 硬件总体设计的检查: checklist 5) 总体架构,CPU选型,总线类型 6) 通信接口类型选择 7) 任务分解

软硬件协同开发

软硬件协同开发 软硬件协同设计的定义: 软硬件协同设计是指对系统中的软硬件部分使用统一的描述和工具进行集成开发,可完成全系统的设计验证并跨越软硬件界面进行系统优化。 嵌入式系统设计早期,主要有两种方式:一是针对一个特定的硬件进行软件开发;二是根据一个已有的软件实现其具体的硬件结构。前者是一个软件开发问题;后者是一个软件固化的问题。早期的这种设计没有统一的软硬件协同表示方法;没有设计空间搜索,从而不能自动地进行不同的软硬件划分,并对不同的划分进行评估;不能从系统级进行验证,不容易发现软硬件边界的兼容问题;上市周期较长。因此,早期的设计存在各种缺陷和不足。使用软硬件协同设计后,从系统功能描述开始,将软硬件完成的功能作全盘考虑并均衡,在设计空间搜索技术的支持下,设计出不同的软硬件体系结构并进行评估,最终找到较理想的目标系统的软硬件体系结构,然后使用软硬件划分理论进行软硬件划分并设计实现。在设计实现时,始终保持软件和硬件设计的并行进行,并提供互相通信的支持。在设计后期对整个系统进行验证,最终设计出满足条件限制的目标系统。 由于软硬件协同设计是电子系统复杂化后的一种设计新趋势,现在嵌入式设计尽量依靠对软硬件的同时设计,用一种能对软硬件同时设计的系统描述来进行设计,其中SoC和SoPC是这一趋势的典型代表。 SoC设计技术始于20世纪90年代中期,它是一种系统级的设计技术。如今,电子系统的设计已不再是利用各种通用集成电路IC(Integrated Circuit)进行印刷电路板PCB(Printed Circuit Board)板级的设计和调试,而是转向以大规模现场可 编程逻辑阵列FPGA (Field Programmable Gate Array)或专用集成电路ASIC (Application Specific Integrated Circuit)为物理载体的系统级的芯片设计。使用ASIC为物理载体进行芯片设计的技术称为片上系统技术,即SoC; 使用FPGA作为物理载体进行芯片设计的技术称为可编程片上系统技术,即SoPC(System on Programmable Chip)。SoC技术和SoPC技术都是系统级的芯片设计技术(统称为广义SoC)。 软硬件划分理论从成本和性能出发,决定软硬件的划分依据和方法。基本原则是高速、低功耗由硬件实现;多品种、小批量由软件实现;处理器和专用硬件并用以提高处理速度和降低功耗。划分的方法从两方面着手:一是面向软件,从软件到硬件满足时序要求;二是面向硬件,从硬件到软件降低成本。在划分时,要考虑目标体系结构、粒度、软硬件实现所占用的成本等各种因素。划分完后,产生软硬件分割界面,供软硬件沟通、验证和测试使用。 由于同时对软件和硬件的同时设计,使软硬件的复用程度加大,但现在还没有一种大家公认的且可以使用的系统功能描述语言可供设计者使用,这是软硬件协同开发还是具有相当大的难度,这是由于协同开发具有极大的技术和是建立在现有理论之上的一个更高层次的设计理论,还找不到一个定义一个系统级的软件功能描述或硬件功能描述,这使得现在的软硬件开发还未达到全面应用的局面。

硬件电路设计基础知识.docx

硬件电子电路基础关于本课程 § 4—2乙类功率放大电路 § 4—3丙类功率放大电路 § 4—4丙类谐振倍频电路 第五章正弦波振荡器 § 5—1反馈型正弦波振荡器的工作原理 § 5— 2 LC正弦波振荡电路 § 5— 3 LC振荡器的频率稳定度 § 5—4石英晶体振荡器 § 5— 5 RC正弦波振荡器

第一章半导体器件 §1半导体基础知识 §1PN 结 §-1二极管 §1晶体三极管 §1场效应管 §1半导体基础知识 、什么是半导体半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si锗Ge等+ 4价元素以及化合物) 、半导体的导电特性本征半导体一一纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略)

1、半导体的导电率会在外界因素作用下发生变化 ?掺杂一一管子 *温度--- 热敏元件 ?光照——光敏元件等 2、半导体中的两种载流子一一自由电子和空穴 ?自由电子——受束缚的电子(一) ?空穴——电子跳走以后留下的坑(+ ) 三、杂质半导体——N型、P型 (前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。 *N型半导体(自由电子多) 掺杂为+ 5价元素。女口:磷;砷P—+ 5价使自由电子大大增加原理:Si—+ 4价P与Si形成共价键后多余了一个电子。 载流子组成: o本征激发的空穴和自由电子——数量少。 o掺杂后由P提供的自由电子——数量多。 o 空穴——少子 o 自由电子------ 多子 ?P型半导体(空穴多) 掺杂为+ 3价元素。女口:硼;铝使空穴大大增加 原理:Si—+ 4价B与Si形成共价键后多余了一个空穴。 B——+ 3价 载流子组成: o本征激发的空穴和自由电子数量少。 o掺杂后由B提供的空穴——数量多。 o 空穴——多子 o 自由电子——少子

软硬件协同设计

基于底层硬件的软件设计,涉及了设备驱动程序的设计、嵌入式实时操作系统的定制/移植、基于底层硬件的软件体系架构等实用技术。主要包括两个方面的内容:一是通用计算机在Windows、Linux和VxWorks等常见操作系统下的串/并/网络通信实现和USB、ISA、PCI 设备/板卡的驱动程序设计;二是嵌入式应用体系的直接基本软件架构与基于μC/OS、DSP/BIOS、WinCE/EXP、μCLinux及VxWorks等常见嵌入式实时操作系统下的基本软件架构及各类常见嵌入式软件体系下的UART、SPI、CAN、EMAC、ADC、DAC、存储器件等外设/接口的驱动软件设计。书中还介绍了如何使用CPLD/FPGA/PAC等器件进行可编程数字/模拟逻辑软件的设计,进而实现所需的特定外设/接口及其连接与FPGASoPC软硬件协同的设计。请参考《基于底层硬件的软件设计》 软硬件协同设计 一、软硬件协同设计的定义: 软硬件协同设计是指对系统中的软硬件部分使用统一的描述和工具进行集成开发,可完成全系统的设计验证并跨越软硬件界面进行系统优化。 二、软硬件协同设计理论: 首先是系统的描述方法。目前广泛采用的硬件描述语言是否仍然有效?如何来定义一个系统级的软件功能描述或硬件功能描述?迄今为止,尚没有一个大家公认的且可以使用的系统功能描述语言可供设计者使用。 其次是这一全新的设计理论与已有的集成电路设计理论之间的接口。可以预见,这种全新的设计理论应该是现有集成电路设计理论的完善,是建立在现有理论之上的一个更高层次的设计理论,它与现有理论一起组成了更为完善的理论体系。在这种假设下,这种设计理论的输出就应该是现有理论的输入。 第三,这种全新的软硬件协同设计理论将如何确定最优性原则。显然,沿用以往的最优性准则是不够的。除了芯片设计师们已经熟知的速度、面积等硬件优化指标外,与软件相关的如代码长度、资源利用率、稳定性等指标也必须由设计者认真地加以考虑。 第四,如何对这样的一个包含软件和硬件的系统的功能进行验证。除了验证所必须的环境之外,确认设计错误发生的地方和机理将是一个不得不面对的课题。最后,功耗问题。传统的集成电路在功耗的分析和估计方面已有一整套理论和方法。但是,要用这些现成的理论来分析和估计含有软件和硬件两部分的SOC将是远远不够的。简单地对一个硬件设计进行功耗分析是可以的,但是由于软件运行引起的动态功耗则只能通过软硬件的联合运行才能知道。 其实,还可以举出很多新理论要涉及的问题,它们一起构成了面向SOC的软硬件协同设计的理论体系。 软硬件协同设计所涉及到的内容有:HW-SW 协同设计流程、HW-SW 划分、HW-SW 并行综合、HW-SW 并行仿真。 三、软件硬件协同设计的设计流程:

产品设计过程---硬件开发

产品设计过程——硬件开发 ●课程简介: 本课程以产品设计过程为主线,详细讲解产品设计过程中的各个环节,帮助学员理解产品开发流程,树立按流程办事和流程优化的思想,更好地开展工作。 ●适合对象:硬件研发类新员工 ●培训目标: 学完本课程后,学员能够达到:了解产品设计过程,并在实际工作中能够按流程办事。 ●课程要点: 硬件工程师职责与基本技能 硬件开发规范化管理的重要性 硬件开发过程及文档规范详解 与硬件开发相关的流程文件介绍

产品设计过程——硬件开发 第一章硬件工程师职责与基本技能 第一节硬件工程师职责 一个技术领先、运行可靠的硬件平台是公司产品质量的基础,硬件工程师职责神圣,责任重大。 1、硬件工程师应勇于尝试新的先进技术之应用,在产品硬件设计中大胆创新。 2、坚持采用开放式的硬件架构,把握硬件技术的主流和未来发展,在设计中考 虑将来的技术升级。 3、充分利用公司现有的成熟技术,保持产品技术上的继承生。 4、在设计中考虑成本,控制产品的性能价格比达到最优。 5、技术开放,资源共享,促进公司整体的技术提升。 第二节硬件工程师的基本素质与技术 硬件工程师应掌握如下基本技能: 1、由需求分析至总体方案、详细设计的设计创造能力; 2、熟练运用设计工具,设计原理图,EPLD,FPGA调试程序的能力; 3、运用仿真设备,示波器,逻辑分析仪调测硬件的能力; 4、掌握常用的标准电路的设计能力,如CPU电路,WDT电路,滤波电路,高 速信号传输线的匹配电路等; 5、故障定位,解决问题的能力; 6、文档的写作能力; 7、接触供应商,保守公司机密的技能。

第二章硬件开发规范化管理 第一节硬件开发规范化管理的重要性 在公司的规范化管理中,硬件开发的规范化是一项重要内容。硬件开发规范化管理是在公司的《硬件开发流程》及相关的《硬件开发文档编制规范》,《PCB 投板流程》等文件中规划的。硬件开发流程是指导硬件工程师按规范化方式进行开发的准则,规范了硬件开发的全过程。硬件开发流程制定的目的是规范硬件开发过程控制,硬件开发质量,确保硬件开发能按预定目的完成。 硬件开发流程不但规范化了硬件开发的全过程,同时也从总体上,规定了硬件开发所完成的任务。做为一名硬件工程师深刻领会硬件开发流程中各项内容,在日常工作中自觉按流程办事,是非常重要的,否则若大一个公司就会走向混乱。所有硬件工程师应把学流程、按流程办事、发展完善流程、监督流程的执行作为自己的一项职责,为公司的管理规范化做出的贡献。 总之,硬件开发流程是硬件工程师规范日常开发工作的重要依据,全体硬件工程师必须认真学习。 第二节硬件开发过程详解 硬件开发过程对硬件开发的全过程进行了科学分解,规范了硬件开发的五大任务,也划分硬件开发的五大阶段。 1、硬件需求分析 2、硬件系统设计 3、硬件开发及过程控制 4、系统联调 5、文档归档及验收申请 硬件开发真正起始应在立项后,即接到立项任务书后,但在实际工作中,许多项目在立项之前已做了大量硬件设计工作。立项完成后,项目组就已有了产品规格说明书,系统需求说明书及项目总体方案书,这些文件都已进行过评审。 1、硬件需求分析

嵌入式系统的软硬件协同设计

嵌入式系统的软硬件协同设计 中软卓越厦门ETC 苏洪球 传统的先硬件后软件嵌入式系统的系统设计模式需要反复修改、反复试验,整个设计过程在很大程度上依赖于设计者的经验,设计周期、开发成本高,在反复修改过程中,常常会在某些方面背离原始设计的要求。 软硬件协同设计为解决上述问题而提出的一种全新的系统设计思想。他依据系统目标要求,通过综合分析系统软硬件功能及现有资源,最大限度地挖掘系统软硬件之间的并发性,协同设计软硬件体系结构,以便系统能工作在最佳工作状态的一种设计方法,可以充分利用现有的软硬件资源,缩短系统开发周期、降低开发成本、提高系统性能,避免由于独立设计软硬件体系结构而带来的弊端。 1 协同设计与传统设计方法的比较 嵌入式系统是由若干个功能模块组成的,这些功能模块按照其性质可以分为软件模块和硬件模块两类。在过去几十年内,系统的设计方法经历了很大的变化,有自上向下的设计方法,也有模块化设计方法,他们总体上都是硬件模块优先的设计方法,将其统称为传统的设计方法。 这种设计方法将硬件和软件分为两个独立的部分。在整个设计过程中,通常采“硬件优先”的原则,即在粗略估计软件任务需求的情况下,首先进行硬件设计,然后在此硬件设计平台上进行软件设计。由于在硬件设计过程中缺乏对软件构架和实现机制的清晰了解,硬件设计工作带有一定的盲目性。他的系统优化由于设计空间的限制,只能改善硬件和软件各自的性能,不可能对系统做出较好的综合优化,得到的最终设计结果很难充分利用硬软件资源,难以适应现代复杂的、大规模的系统设计任务。 而嵌式系统软硬件协同设计是让软件设计和硬件设计作为一个整体并行设计,找到软硬件的最佳结合点,从而使系统高效工作。 软硬件协同设计最主要的一个优点就是在设计过程中,硬件和软件设计是相互作用的,这种相互作用发生在设计过程的各个阶段和各个层次。 设计过程充分体现了软硬件的协同性。在软硬件功能分配时就考虑到了现有的软硬件资源,在软硬件功能的设计和仿真评价过程中,软件和硬件是互相支持的。这就使得软硬件功能模块能够在设计开发的早期互相结合,从而及早发现问题及早解决,避免了,至少可以减

计算机软硬件基础知识

第1章计算机系统概述 §1.1计算机系统的组成 一个完整的计算机系统由硬件系统和软件系统两部分组成,如图1.1所示。硬件系统是构成计算机系统的各种物理设备的总称。硬件是机器的实体,软件是它的灵魂。计算机的功能不仅仅取决于硬件,更大程度上是由安装的软件系统所决定。硬件与软件密切相关,相互依存。在计算机系统中,硬件与软件的功能分担,在硬件基础上逐层地扩充软件是形成强大的计算机系统的有效途径。 §1.1 计算机硬件系统的基本组成 从硬件体系结构上看,它们的基本结构都基于冯·诺依曼存储程序原理的设计思想,即由运算器、控制器、存储器、输入设备和输出设备五大部分组成。 微型计算机(简称为微机)的各部件之间是用总线相连接的,系统总线成为计算机内部传输各种信息的通道。

1.1.1 运算器、控制器和中央处理器 1.运算器 运算器也称为算术逻辑单元。它的功能就是在控制器的控制下,对取自内存或内部寄存器的数据进行算术运算或逻辑运算。离开了运算器,计算机的各种运算都不能实现。 2.控制器 控制器一般由指令寄存器、指令译码器、时序电路和控制电路组成。控制器对计算机系统的其他各部分进行协调与控制,并对输入输出设备的运行进行监控,使计算机有条不紊地自动地执行程序。没有控制器,计算机各组成部件将是分散独立的,不能成为一个功能完善的计算机系统。 3.中央处理器CPU(Central Processing Unit) 在决定计算机的总体性能方面,没有任何其他的单一部件比CPU更重要了,CPU由控制器和运算器组成。 关于CPU,我们应了解以下几点: ⑴必须按照CPU的特殊要求编写软件,因此,为某个处理器编写的程序可能在不同型号的处理器上不兼容; ⑵某些CPU比其他CPU处理数据的速度快得多,这是由于它们的数据总线宽度和系统时钟的速度不同影响了计算机的性能; ⑶CPU地址总线的宽度决定了其可能使用内存的最大数目。 下面就以上内容说明有关术语。 ⑴兼容性 由于各种处理器都有特定的指令集,为某种计算机设计的程序在另一种计算机上可能无法运行。可在给定计算机上运行的程序即与该计算机的处理器兼容。 ⑵数据总线 决定CPU速度的一个重要因素是数据总线宽度,它是用位(8,16,32或64)来衡量的。当人们说“这是16位计算机”或“那是32位计算机”时,他们指的就是总线宽度。总线的位数决定了计算机可同时处理的位数,这一数目也就是计算机中“字”的长度。16位计算机中“字”长16位,而32位计算机中“字”长32位。 数据总线将CPU与内存相连,并提供计算机外部设备的通道。 ⑶地址总线 内存由许多存储单元组成,每一个单元可以存放若干位数据代码,该代码可以是指令,也可以是数据。为区分不同的存储单元,所有存储单元均按一定顺序编号,该编号称为地址编码,简称地址。 ⑷控制总线 控制总线是传送计算机系统中控制信号的一组线,用于发布控制命令和实现对设备的控制和监视功能。 ⑸系统时钟频率 总线不是影响计算机速度的唯一因素。计算机系统内有一个时钟发生器定时地发出脉冲,管理CPU的处理功能。每秒系统时钟产生脉冲的次数叫时钟频率,也称主频,单位为赫兹(Hz)。100万周称为1兆赫兹(MHz)。时钟频率越高,就意味着处理速度越快。当

相关文档