文档库 最新最全的文档下载
当前位置:文档库 › TPS1200断面监测机载与后处理软件_V4.3

TPS1200断面监测机载与后处理软件_V4.3

操作手册 V4.3

软件标识

感谢您购买徕卡TPS1200断面监测机载与后处理软件。使用中如有什么问题或修改意见,请与我们联系,我们将竭诚为您服务。

为正确、可靠地使用本软件,请仔细阅读本用户手册或CD中相关电子文档中的详细说明。

关于使用本软件的权利与义务,请参照《徕卡软件许可协议》。

软件标识在软件CD标签上,标有该软件的注册号和版本号。请在下面填写上版本号与注册号,以便你在需要的时候,与徕卡测量系统(上海)有限公司或授权的代理店联系。

注 册 号:

软件版本:

1 概述 (1)

1.1 系统组成 (1)

1.2 使用特点 (1)

1.3 运行环境 (1)

2 机载程序 (2)

2.1程序安装与卸载 (2)

2.2 数据准备 (2)

2.3 启动程序 (3)

2.4 设站定向 (4)

2.5 线路设计 (4)

2.6 放样测量 (4)

2.7 输出数据 (10)

2.8 分析计算 (11)

2.9 图形指导..............................122.10 单独放样.. (13)

2.10 相对放样 (14)

3 PC后处理程序 (16)

3.1 程序的安装与卸载 (16)

3.2 编辑设计数据 (17)

3.3 分析计算 (21)

3.4 文件菜单 (24)

3.5 通用术语 (25)

4 附录 (27)

4.1 平曲线设计数据输入 (27)

4.2 断面设计数据输入 (29)

4.3 竖曲线设计数据输入 (30)

4.4 使用中提示信息 (31)

目录

ProfileSurvey

1

本程序主要用于施工建筑物横断面超欠挖的检查,通过机载程序和PC 后处理程序完成指定断面的自动观测与数据分析。 1.1 系统组成

机载程序ProfileSurvey.azh:安装在仪器系统

中,控制仪器完成各种操作。

PC 后处理程序LeicaOfficeTools.exe,安装在PC

机上,用于数据的分析整理。

1.2 使用特点

全中文操作,界面沿袭windows 风格,平易近人,操作人员可轻松掌握。功能强大,可控制仪器对断面进行自动测量,自动采集数据,通过后处理程序自动分析,输出图表。

1.3 运行环境

机载程序:Leica TPS 1200免棱镜功能全站仪 PC 后处理程序:windows 2000以上操作系统

1. 概述

2.1程序安装与卸载

程序的安装

将光盘中ProfileSurvey.azh拷贝至CF卡System 目录下,在仪器主页面中运行:6 工具\3上载系统文件\1 应用程序

,出现以下页面

在程序选项中选择ProfileSurvey.azh文件,点击F1继续即可完成机载程序的安装。

调出仪器机载程序清单,选择断面测量后即可启动

ProfileSurvey.azh。

程序的卸载

在仪器主页面中运行:6 工具\3上载系统文件\1应用程序(如左图),选择F4删除,在程序列表中选择断面测量,删除后即可完成程序的安全卸载。

2.2 数据准备

利用后处理软件编辑各种设计数据,然后将其拷贝到CF卡的Data目录下。

2.机载软件

ProfileSurvey 2

ProfileSurvey

3

2.3 启动程序

开机后选择“程序”,进入“应用程序”菜单,选择“断面测量”即可启动该程序,进入“开始”面

板界面,在此选择或新建作业、编码表、配置集等。

ProfileSurvey

4

2.4 设站定向

在“开始”面板中,按“F3”进入“测站设置”界面,具体操作请参看TPS1200 用户手册

设站定向完毕后,自动返回开始面板界面。 2.5 线路设计

在“开始”面板中,按“F1”进入“线路设计”界面,在此选择各种设计数据(线路设计.HLN,线路

设计.VLN,断面设计.TLN)。

线路选择完毕后,按“F1”进入断面测量的“菜单”界面,可以按

F4,检核线路数据。

线路设计文件中不得包含汉字,反算里程

修正选择为“否”,随机检测中反算出的里程将不考虑竖曲线影响,否则,将考虑竖曲线影响的修正; 2.6 放样测量

2.6.1 断面测量

ProfileSurvey

5

在“菜单”界面下,选择“1 断面测量”即可启

动该模块,进入“断面测量”界面。

图形显示不居中或查看不完全时,可以按Shift键,再选择匹配(F3)显示全图。

断面里程:待测断面所对应的里程;

设站后默认待测断面为测站里程断面,也可以通过修改断面里程,进行非测站里程的断面测量。

搜索范围:以断面里程为中心,沿线路方向的长度; 测量限差:实测点对应里程与断面里程差值的限差; 测点间距:用来控制断面点的采集密度;

断面点号:根据测点间距计算出的断面上的点号;

里程偏差:实测点对应里程与断面里程之间的差值; 北坐标X:实测点在线路坐标系中的X坐标值;

东坐标Y:实测点在线路坐标系中的Y坐标值;

高程:实测点在线路坐标系中的高程值;

测存(F1)进行断面测量并记录;

测距(F2)对断面进行测量,在屏幕上显示测量结果;记录(F3)记录断面测量结果;

计算(F4)对当前测量断面进行超欠挖分析,计算结果以将在弹出消息框中显示,如下图所示; 开始(F5)

自动测量并记录断面测量结果;

2.6.2 断面放样

在“菜单”界面下,选择“2 断面放样”即可启

动该模块,进入“断面放样”界面。

ProfileSurvey 6

ProfileSurvey

7

操作步骤:

1、 在“设置”页面下,瞄准掌子面,按“F1”测得掌

子面的概略里程; 2、 设置其它各项限差;

3、 切换到“放样”页面下,选择待放样点,按测量(F1)

进行手动放样,按搜索(F3)

进行自动放样;

搜索:仅适用于带马达驱动的仪器。

ProfileSurvey

8

字段说明:

放样里程:将望远镜瞄向掌子面,按测量(F1)键,

程序自动计算当前掌子面的概略里程;该值不能为空,并且不允许手工输入; 该值的准确性直接影响放样的速度;

纵向范围:放样时的搜索范围为掌子面里程±纵向范

围,该值最大不能超过测站到掌子面距离;

径向限差:实际放样点在断面径向方向(超欠挖方向)

上的最大容许误差;

间距限差:实际放样点在相邻两炮孔连线方向上的误

差限差;

Z.K.间距:相邻两个炮孔之间的距离,该间距最小不

能小于0.1m;

K.D.里程:炮孔底端对应的里程,该值用来计算钻孔

的深度;

Z.K.倾角:钻孔方向与道路中线前进方向的夹角,该

值用来计算钻孔的深度;

待放样点:这里的选项由设计断面和Z.K.间距决定;

例如:“A-B 0”表示设计断面中线段A-B 上的起点,“A-B 1”表示设计断面中线段A-B 上的第二个点(间距为Z.K.间距);

当前里程:实际放样点对应的里程;

径向偏差:实际放样点在断面径向方向(超欠挖方向)

上的误差;负值表示欠挖,正值表示超挖;

间距偏差:实际放样点在相邻两炮孔连线方向上的误

差;负值表示偏向前一个炮孔,正值表示偏向后一个炮孔;

Z.K.长度:当前炮孔的理论深度;

ProfileSurvey

9

水平角偏差:实测点与理论放样点之间的水平角差值; 垂直角偏差:实测点与理论放样点之间的垂直角差值; 北坐标X:当前测量点在线路坐标系中的X 坐标值; 东坐标Y:当前测量点在线路坐标系中的Y 坐标值; 高程:当前测量点在线路坐标系中的高程值;

手动放样:

1、 选择待放样点;

2、 根据水平角偏差和垂直角偏差转动望远镜;

3、 按测量(F1)键,计算当前点的偏差;

4、 重复步骤2、3,直至满足精度要求。 自动放样:

选择待放样点,按搜索(F3)键,仪器自动寻找

待放样点,满足精度后,程序自动提示。

放样时可以通过导航键选择待放样点或下

一点(F2)选择下一个点。

2.6.3随机检测

在“菜单”界面下,选择“3随机检测”即可启动

该模块,进入“随机检测”界面。

字段说明:

对应里程:被检测点对应的实际里程; 水平垂距:被检测点到中线的垂直距离; 标高垂距:被检测点到所在断面设计高程的垂直距离; Cut/Fill:被检测点的超欠挖量,正值表示该点超挖,

负值表示该点欠挖;

水平分量:超欠挖量在水平方向上的分量; 垂直分量:超欠挖量在竖直方向上的分量;

ProfileSurvey

10

北坐标X:当前测量点在线路坐标系中的X 坐标值; 东坐标Y:当前测量点在线路坐标系中的Y 坐标值; 高程:当前测量点在线路坐标系中的高程值; 按键说明:

ALL(F1)测量并记录存被检测点;

测距(F2)测量被检测点,并将结果显示在屏幕上; 记录(F3)记录测量的检测结果; 换页(F6)

显示切换界面;

上述各图形界面中,红色线代表设计断面;

倒三角表示断面坐标系的原点;仪器表示测站;小圆

圈代表测量点,数值为正表示超挖,反之表示欠挖; 2.7 输出数据

在“菜单”界面下,选择“4数据导出”即可启动

该模块,进入“数据导出”界面。

继续(F1)将测量数据输出到CF 卡;

结束(F6)退出输出数据界面;

供后处理软件直接调用;“随机检测”数据导出后文

件的扩展名为“.TXT”,包括点号、对应里程、超欠

挖量、中线垂距、纵向偏差、三维坐标等。

2.8 分析计算

在“菜单”界面下,选择“5分析计算”即可启动

该模块,进入“分析计算”界面。

在进行分析计算时,使用设计断面为“线路设计”

界面中所选取的设计断面。 字段说明:

数据文件:浏览并选择CF卡Data目录中的断面测量

文件;

实测断面:选择数据文件中的断面数据;

超挖面积:显示计算出来的超挖面积值;

欠挖面积:显示计算出来的欠挖面积值

理论面积:显示设计断面面积;

实际面积:显示实测断面面积;

水平偏移:当前测量点在线路坐标系中的X坐标值;

ProfileSurvey11

ProfileSurvey

12

垂直偏移:当前测量点在线路坐标系中的Y 坐标值; 高程:当前测量点在线路坐标系中的高程值; 按键说明:

ALL(F1)测量并记录存被检测点;

测距(F2)测量被检测点,并将结果显示在屏幕上; 记录(F3)记录测量的检测结果; 换页(F6)显示切换界面; 2.9 图形指导

在“菜单”界面下,选择“6 图形指导”即可启动该模块,进入“图形指导”界面。

该模块的功能主要用于完成断面扫描测量时,需要查看超欠挖位置较大点位时,仪器的自动定位功能

(仅限于有马达驱动仪器);

字段说明:

数据文件:浏览并选择CF 卡Data 目录中的断面测量文件;

实测断面:选择数据文件中的断面数据; 点 号:断面文件中测量断面点的点号; Xd:所选点在断面坐标系中的X 坐标值; Yd:所选点在断面坐标系中的Y 坐标值; X:所选点在线路坐标系中的X 坐标值; Y:所选点在线路坐标系中的Y 坐标值;

H:

所选点在线路坐标系中的高程值;

上面图形显示断面点超欠挖剖面示意图,下面数字代表:点名/断面总点数|超欠挖值|查看点点号;

2.10 单独放样

在“菜单”界面下,选择“7 单独放样”即可启动该模块,进入“单独放样”界面。

该模块的功能主要用于放样已知其相对于线路中线横向偏移及标高偏移值的单独点放样。输入完对应里程及偏移信息后,首先按F4 计算出单独点的坐标然

后再进行放样;

字段说明:

对应里程:输入要放样点对应的里程;

中线偏移:输入待放样点相对应线路中线偏移量,偏移量左负右正;

标高偏移:输入待放样点相对应线路中线高程偏移量,高于对应里程点为正,否证为负;

ProfileSurvey13

ProfileSurvey

14

棱镜高:输入棱镜高;

方向角:显示放样时,方位角差值; 后退:待放样点在望远镜方向距离差值;

左移:待放样点在望远镜正交方向距离差值; 挖/填:测量点与待放样点高程差值; X:所选点在线路坐标系中的X 坐标值; Y:所选点在线路坐标系中的Y 坐标值; H:所选点在线路坐标系中的高程值; 按键说明:

ALL(F1)测量并记录存待放样点;

测距(F2)测量待放样点,并将结果显示在屏幕上; 记录(F3)记录放样测量结果; 计算(F4)记录待放样点的坐标;

定向(F5)自动照准待放样点方向(仅适用于带马达驱动仪器); 2.10 相对放样

在“菜单”界面下,选择“7 相对放样”即可启

动该模块,进入“相对放样”界面。

字段说明:

对应里程:输入要放样点对应的里程;

中线偏移:输入待放样点相对应线路中线偏移量,偏移量左负右正;

长度:输入相对应偏移中心点的长度值; 宽度:输入相对应偏移中心点的宽度值;

ProfileSurvey

15

上面示意图即是计算结果点与对应里程位置关系图;

ProfileSurvey

16

3.1 程序的安装与卸载

安装

运行安装光盘中的Setup.exe 文件,按照以下步

骤完成安装。

ProfileSurvey

17

点击“完成”后完成安装。 卸载

在程序中的徕卡隧道断面后处理程序路径下,点击“Uninstall

徕卡隧道断面后处理软件”弹出:

点击“确定”,完成卸载。

3.2 编辑设计数据 3.2.1平曲线设计

平曲线设计是用来确定道路中线位置的一组数据。

打开曲线数据:读入已有设计平曲线数据。

保存曲线数据:将当前输入的平曲线数据保存输出至指定文件。

平曲线名称:用来输入平曲线的名称。

地铁综合监控系统施工

地铁综合监控系统施工方法及总结 1综合监控系统概况 综合监控系统的主要功能包括对机电设备的实时集中监控功能和各系统之间协调联动功能两大部分。一方面,通过综合监控系统,可实现对电力设备、火灾报警信息及其设备、车站环控设备、区间环控设备、环境参数、屏蔽门设备、防淹门设备、电扶梯设备、照明设备、门禁设备、自动售检票设备、广播和闭路电视设备、乘客信息显示系统的播出信息和时钟信息等进行实时集中监视和控制的基本功能;另一方面,通过综合监控系统,还可实现晚间非运营情况下、日间正常运营情况下、紧急突发情况下和重要设备故障情况下各相关系统设备之间协调互动等高级功能。2综合监控系统施工环节及方 法2.1前期现场调查 地铁施工工期紧张、专业较多。各专业为了保证施工工期,不可避免的存在交叉施工作业。对于我们设备安装专业来说,与土建总包单位的配合施工在整个施工过程中是比较重要的一个环节。我们设备安装专业与土建总包专业从工程的开始直至结束,一直贯穿其中。 在施工开展前期,我们设备安装专业需做好现场调查。施工现场调查的情况,对未来施工的顺利开展和工期的确保将起到决定性的因素。所以我们在前期现场调查的时候需要与各土建标段及相关设备安装单位建立有效的联系方式。 对于综合监控专业来说,我们前期现场调查的时候主要要注意以下几个问题: (1)土建总包专业二次结构墙砌筑及孔洞预留情况; (2)土建总包专业设备房间地面找平及墙面抹灰情况; (3)土建总包专业房间内装修50cm线或者1m线画线情况; (4)土建总包专业设备房间临时门窗安装情况; (5)土建总包专业吊装孔预留情况及封堵时间。 以上5项在现场调查期间,我们需要与土建总包单位的相关负责人了解清楚。建立现场情况调查表,逐项与相关人员核实并做记录。并及时沟通更新。确保一手资料的准确性。 2.2基础底座的制作及固定 2.2.1基础底座的制作 (1)准备 工作 综合监控设备房间属于弱电设备间,为防止静电对弱电设备产生危害,房间内会安装防静电地板。在土建总包单位施工期间,每个站的土建总包单位的装修层的高度均有差距。所以我们综合监控设备的底座的高度也是不同的。在制作基

Pix4UAV处理无人机数据操作流程

Pix4UAV软件处理无人机数据操作流程 一、Pix4UAV处理无人机数据包括以下几个步骤: 1、数据整理 2、启动软件 3、新建工程 4、数据处理 5、成果数据查看 6、数据后处理 二、具体操作步骤如下: 1数据整理 1)影像数据和POS数据的文件名及其存放的路径都不要出现中文。原始数据的存储 路径和成果数据的最好不在同一盘(若只有一个可以存放数据的盘,则两者最好 不要在同一路径下,都放在根目录即可),否则有可能影响速度。 2)POS的格式可为*.txt、*.dat或者*.csv中的任意一种,内容中不能出现任何中 文字符。POS数据包含的内容依次为:影像名称纬度经度绝对航高Κφω, (若无IMU,则无需Κ、φ、ω,POS数据包含的内容依次为:影像名称纬度经 度绝对航高)。 图1 POS数据样例(有IMU数据) 图2 POS数据样例(无IMU数据) 3)影像格式最好是JPG的,如果是TIFF的要转成JPG的,可节省时间。 2启动软件,显示如下界面。

3新建工程 1)点击Project菜单,从列表中选择New Project。 2)弹出如下对话框,定义工程存放路径和工程名称。 点击Browse按钮,弹出如下对话框,定义工程存放的路径。

工程路径和工程名定义完成后,界面显示如下。 3)点击Next按钮,弹出加载影像数据的界面。

点击按钮,找到影像数据存放的路径并选中待处理的影像加载,加载数据完成后,显示界面如下。 4)点击next按钮,显示如下界面。定义坐标系、相机参数,并导入POS数据。

①坐标系设定。若默认的坐标系正确,则无需更改。若不正确,则点击Images coordinate system选项卡中的按钮,弹出如下的定义坐标系界面。 可以通过点击来选择投影和坐标系;也可以通过导入通用的prj文件来定义坐标系。 ②相机模型设定。相机模型的核查、修改或自定义。在Camera model选项卡中点击按钮。

Agisoft photoscan在无人机航空摄影影像数据处理中的应用

Agisoftphotoscan在无人机航空摄影影像数据处理中的应用 摘要:根据航空摄影测量数据处理的实践与经验,对利用Agisoftphotoscan软件进行无人机获取的影像数据进行处理,生成数字地表模型(DSM)和正射影像图(DOM)进行了探讨。 Abstract:According to the practice and experience of the management of aerial photography and survey data processing,this paper discussed the application of Agisoftphotoscan in UAV image data processing and the production of digital surface model (DSM)and digital orthophoto map (DOM). 关键词:Agisoftphotoscan;影像数据;建模;处理 Key words:Agisoftphotoscan;image data;modeling;dispose 0 引言 随着航空摄影测量技术的飞速发展,利用低空无人飞机进行航空摄影获取遥感数据已成为现实。但由于无人机飞行姿态不稳定,所获取的影像存在旋片角大、畸变严重等现象。由于以上特点,利用传统的航空摄影测量数据处理软件处理无人机航摄数据时,工作量大,工作周期长。Agisoftphotoscan软件是AGISOFT公司出品的3D扫描系统,在影像的快速拼接,DEM、DOM快速生成方面具有自己的优势。本文以青海省格尔木市夏日哈木镍钴矿区的无人机影像数据为资料,利用photoscan作为数据处理工具,就影像自动快速拼接、正射影像图(DOM)及三维地表模型(DSM)的生成方法进行了探讨与研究。 1原始数据的特点及来源 利用无人机航空摄影获取影像数据,速度快,效率高,但无人机航测不同于传统的大飞机航测,因为它体积小,重量轻,姿态稳定性方面不如大飞机,在飞行过程中伴随自驾仪对其姿态的不断调整,有时会产生较大的旋片角。而且由于所搭载的相机毕竟不如专业大飞机航测所用的相机,其影像畸变也较为严重。不过随着科学技术的不断发展及处理无人机航测影像软件的技术不断改进,以上问题已经得到解决和验证。 本测区影像数据就是通过无人机航空摄影测量技术所获取的,其分辨率按设计要求为0.2米,设计航高为1100米,实施航飞共计四个架次,布设40条航线,总航程445.83公里,测区范围总面积达120平方公里(图1),获取原始照片数据2185张(图2)。 2数据处理软件Agisoftphotoscan的分析介绍 Agisoftphotoscan是俄罗斯Agisoft公司研发的3D扫描软件,这是一款基于影像自动生成高质量三维模型的软件,它根据多视图三维重建技术,可以对任意照片进行处理,小到考古摆件,大到大量航片数据处理,软件仅通过导入具有一定重叠率的数码影像,便可实现高质量的正射影像生成及三维模型重建,整个工作流程无论是影像定向还是三维模型重建过程都是完全自动化。 我们将PhotoScan引入无人机航空摄影测量数据处理应用当中,结合夏日哈木矿区无人机航飞数据,实现了航测成果中DOM和DSM产品的生产。 实践结果得出它可以创建高分辨率的带有真实地理参考的正射影像(使用控制点可达5cm精度)以及高质量带有详细彩色纹理的数字地表模型,并可以将成果转换到大地坐标或者工程坐标系中。 3数据生产流程 3.1原始数据预处理及作业设备。根据无人机的用途及种类的不同,无人机所获取的POS数据其文件格式也各有不同,这里首先要将POS数据格式做一定的修改,让其能顺利导入软件PhotoScan当中去。 3.2导入影像。本测区面积较大,获取的影像数量较多,PhotoScan在处理这种大数据

地铁综合监控系统方案

地铁综合监控系统方案 概述 地铁商用通信工程综合监控系统,是一套以地铁专用数字传输系统为信息传输通道,以计算机网络技术、高精度A/D转换、嵌入式系统开发、基于PC的GUI软件开发等技术为基础的一套专用、独立系统。 通过这套系统可以实现对地铁民用无线射频分配系统中各车站民用通信机房的POI 下行信号 机房的温湿度、区间的干线放大器工作状态、电源以及门禁等参数进行实时遥测,并在无线射频分配系统发生故障时自动报警。为地铁民用无线射频分配系统可靠应用提供了管理手段。 系统在设计时已充分考虑到了地铁民用无线射频分配系统兼容3G的扩容问题,预留了网管软 件及各站通讯编码单元内嵌入式软件的升级能力。 系统采用的硬件设备均为成熟产品,提高监控的可靠性,由于监控单元模块化,端口的标准 化,为今后系统的扩展提供了方便;软件以现今最为流行的Win dows操作系统为基础进行的开发, 操作界面友好,便于操作和维护。 系统需求 1.监控系统建设方式 地铁各个地下商用通信机房均为无人值守机房,因此,对于设备的日常管理及维护,必须有一套完整、功能强大的网管系统来管理监视各个站设备的日常工作情况;对于系统故障,能够及时的发出相应的告警,提醒相关人员进行处理;同时具备数据库功能,能够储存设备的各种状态、如正常状态、报警状态和故障信息等;同时预留远期接入多条线路进行集中网管监控的条件。 2.网络结构及系统组成 监控系统采用一级组网。一级组网方式如下:

方案要求建立一套综合监控系统,对机房内外所有需要监控的设备、机房环境等进行全面监测,为保证商用通信系统正常运行提供保障。 3 .系统监测控制对象 4 ?监控系统技术条件及功能要求 1)监控系统技术条件 监控系统设置信息监测中心,并在各个地下车站设置监测前端设备。系统应具有开放性、标准化、安全性、先进性、系统应采用先进的、开放的、成熟的软硬平台,具有技术先进、功能实用、安全性好等特点。 2)监控系统功能要求 (1)信息监测中心能显示监控对象,包括POI、各个站间的隧道放大器、电源和机房的状态和告警信息,通过菜单或者其它方式选择显示指定监控对象的工作状态等资料,完成监控 数据报表的处理和存储。 (2)监测中心应具有处理功能,监控数目和内容应根据维护管理的实际需要确定,并能对 生成的各种报表进行存储和打印。

最常用生物软件大全介绍讲解

一、基因芯片: 1、基因芯片综合分析软件。 ArrayVision 7.0 一种功能强大的商业版基因芯片分析软件,不仅可以进行图像分析,还可以进行数据处理,方便protocol的管理功能强大,商业版正式版:6900美元。 Arraypro 4.0 Media Cybernetics公司的产品,该公司的gelpro, imagepro一直以精确成为同类产品中的佼佼者,相信arraypro也不会差。 phoretix™ Array Nonlinear Dynamics公司的基因片综 合分析软件。 J-express 挪威Bergen大学编写,是一个用JAVA语言写的应用程序,界面清晰漂亮,用来分析微矩阵(microarray)实验获得的基因表达数据,需要下载安装JAVA运行环境JRE1.2后(5.1M)后,才能运行。 2、基因芯片阅读图像分析软件 ScanAlyze 2.44 ,斯坦福的基因芯片基因芯片阅读软件,进行微矩阵荧光图像分析,包括半自动定义格栅与像素点分析。输出为分隔的文本格式,可很容易地转化为任何数据库。

3、基因芯片数据分析软件 Cluster 斯坦福的对大量微矩阵数据组进行各种簇(Cluster)分析与其它各种处理的软件。 SAM Significance Analysis of Microarrays 的缩写,微矩阵显著性分析软件,EXCEL软件的插件,由Stanford大学编制。4.基因芯片聚类图形显示 TreeView 1.5 斯坦福开发的用来显示Cluster软件分析的图形化结果。现已和Cluster成为了基因芯片处理的标准软件。 FreeView 是基于JAVA语言的系统树生成软件,接收Cluster生成的数据,比Treeview增强了某些功能。 5.基因芯片引物设计 Array Designer 2.00 DNA微矩阵(microarray)软件,批量设计DNA和寡核苷酸引物工具 二、RNA二级结构。 RNA Structure 3.5 RNA Sturcture 根据最小自由能原理,将Zuker的根据RNA

最新(地铁隧道)XXXX站-XXXX站区间监测方案教案资料

XX市及轨道交通XX号线 监控量测方案 编制: 审核: 批准: XX集团XX项目部 年月

目录 一、监测方案编制依据 (2) 二、工程概况 (2) 三、监测的目的和意义 (3) 四、信息化施工组织 (3) 五、施工监测设计 (4) 5.1、地表沉降监测 (4) 5.2、地表建筑物(构造物)沉降、位移、倾斜、裂缝监测 (6) 5.3、管线变形监测 (8) 5.4、隧道内管片沉降、收敛监测 (9) 5.5、东风渠、七里河交叉口过河监测 (9) 六、警戒值的确定及监测频率 (9) 七、人员设置及仪器配备 (10) 八、监测质量保证 (11) 九、监测成果报告 (11)

XX市及轨道交通XX号线体育中心站~博学路站隧道工程 监控量测方案 一、监测方案编制依据 1、XX市轨道交通XX号线XX标段设计图纸; 2、《地铁工程监控量测技术规程》DBI 1/490-2007 5、《地铁设计规范》GB50157-2003 6、《地下铁道、轻轨交通工程测量规范》GB50308-1999 7、《地下铁道工程施工及验收规范》GB50299-2003 8、《工程测量规范》(GB50026-2007) 9、《建筑基坑工程监测技术规范》GB50497-2009 10、《XX市轨道交通工程监控量测管理办法》; 二、工程概况 本工程为XX市轨道交通XX线一期工程土建施工第XX标段,包括一个车站(XX站)和两个区间段,区间段即XX站——XX站盾构区间段,XX站——XX段区间段(其间包括盾构区间、明挖区间)。 第XX合同段全长XXXX米,其中XXXX站长XXXX米,盾构区间长XXXX米,盾构段双线总长XXXX米,明挖区间长XXXX米。 XXXX站——XXXX站盾构区间段起止里程为,西起左线CK32+487.74(右CK32+487.74),东至CK34+698.25(CK34+698.25);XXXX站——车辆出入线段区间段,西起RCK0+056.152东至RCK2+962.0 ;XXXX站的起止里程为CK34+698.25至RCK0+056.152 。 其中XXXX站至XXXX区间工程区间长度约为XXXX米,联络通道三处,其中中间联络通道带有通风井。三处联络通道离始发井距离分别约为:490米、1309米、1869米。 线路平面包含两段圆曲线,曲率半径分别为350米和450米。竖曲线由21.4‰-2‰等坡度组成的V字型。 隧道盾构施工选用德国Herrenknecht公司生产的复合盾构机作为隧道掘进设备。该设

无人机大数据后处理软件

无人机航测软件配置方案 一、无人机航测数据特点: 影像像幅小,影像数量多;受限于无人机姿态稳定性,影像旋偏角大;非量测性相机焦距短,影像投影差变形大,并且影像畸变差较大;POS精度低;以上均对后期处理软件具有很高的要求。 二、针对无人机航测数据特点在数据处理中需要解决的几个关键问题: 1).影像同名点匹配问题,尤其是弱纹理地区,如沙漠、林地、山地、水田等区域 2).空三成果精度保证问题 3).空三成果与采集软件的匹配问题 4).软件操作简单易用,自动化程度高

二、国内外无人机数据处理软件对比进口

国产: 四、推荐软件介绍 4.1结论依据:通过分析市面上的无人机后处理软件的特点,结合市场用户的试用情况及经验积累如南宁勘察测绘地理信息院,遵义水利水电勘测设计研究院(湄潭县高台水库1:1000地形图测量项目,中桥水库1:1000地形图测量项目),中国电建成都勘察设计研究院有限公司,中国电建西北勘测设计研究院有限公司,软件选型上采用多种软件组合的方式,数据预处理采用美国Trimble公司UASMaster软件,采用UASMaster软件做完同名点匹配后采用德国Inpho公司Inpho软件MATCH-AT功能进行空三加密,空三加密后的成果导入航天远景公司Mtrix系列或四维公司JX4系列测图系统进行测图,这是实现高效高精度成果的最佳方式也是经过大量生产验证过经验方案。 4.2 UASMaster软件介绍

该软件在非摄影测量人员接近黑匣子的简单工作流与摄影测量专家的工作流之间架起了桥梁,填补了他们之间的空缺。UASMaster包含先进的技术,这种技术经过定制,能从UAS的数据特性中给出高质量的结果。它很容易集成到Inpho软件的摄影测量工作流和第三方工作流中。 UASMaster具有开放市场的理念,几乎能处理来自任何UAS硬件供应商的数据。它可以处理固定翼无人机和直升无人机系统所获得的数据。甚至对于处理飞艇和其它类型无人机系统所采集的数据,也证明该软件是成功的。 主要特点 集成到单一产品中的完整的摄影测量工作流程 快速黑盒子处理或者通过预设的质量优化与性能优化的多步骤处理 处理任何类型无人机系统数据 多种相机支持(支持高达5100万像素的相机) 无需专门的摄影测量知识或经验,即可获得完美的成果 性能概述 工作流 全自动的地理参考、相机标定、点云匹配和正摄影像镶嵌 通过子区域选择,对地理参考、点云和正摄镶嵌进行编辑与再处理 最佳精度的摄影测量级成果

地铁盾构隧道工程收敛观测应用研究

地矿测绘2008,24(2):23—24 S岍eyiIlg蛐dM印pilIg0fQdogy锄dMiner8lm:鲫鹏∞ ?23? CN53一1124/TDISSN1007—9394 地铁盾构隧道工程收敛观测应用研究+ 杨丽,李玉宝 (东南大学北极测绘研究院,江苏南京210008) 摘要:大力发展地下铁路建设是解决城市交通问题的方向,盾构法是开挖和建造地铁隧道的先进技术,收敛监测是盾构隧道工程建造安全监测的有效方法。基于此,对盾构工程的主要特点以及安全观测方法进行分析,最后结合实例,对收敛观测的应用和精度问题进行了探讨。 关键词:地铁;盾构;隧道;收敛仪;收敛监测 中图分类号:P258;u45文献标识码:B文章编号:1007—9394(2008)02—0023一02 ResearchontheApplicationofConVergentObserVationon SubwayShield-DriVerTunneling YANG“.UYu?bao (眈班饥I缸砒旷s忧叫昭口以胁即i昭,SD眦k∞t叻妇瑙咖,№,咖蟛肋,舻“210008,铂i加) Abst瑚嚯=t:Itisthedirectionthatconstmctingsubwayoncitiesistosolvetlleproblemoftra佑c.ShieldingmethodisadV肌cedtechnologyonsubwayw汕shield?drivertunneling;conveEgencemonitoringisgoodmethodonshield一曲ver tunneIing.Basedonthis,tllemaincharacteristicands小observationmethodoftunnelshieIden百neering areanalyzed. Theapplicationandp弛cisionofconVergentobservationmethodarestudiedcombinedwiththeactualex砌ple.Keywo“Is:subway;tunnelshield;tunnel;conVergentmeter;conVe玛entmonitoring O引言 当今城市的交通问题是制约城市发展的瓶颈。国内外城市建设的经验证明,大力发展地下铁路建设是解决城市尤其是大城市发展的有效措施之一。地铁建设可根据实际的工程地质等情况采用不同的建造方法,其中盾构法就是适应于软土工程地质开挖地下隧道的先进方法。在盾构工程的实施过程中,代替现场衬砌隧道内壁的预制管片安装结构的稳定性、也就是建成隧道的稳定性,是判断工程质量和安全的重要的指标。隧道径向变化或者说直径的变化的测量工作,称为收敛观测或收敛监测。这种变化是点对点的相对变化。 本文结合南京地铁二号线某标段盾构工程的实例,对收敛观测的应用和精度等问题进行了探讨。 l盾构工程的主要特点 盾构法是相对于矿山法适应于软土地质和无岩层地质工程条件的地下工程的开挖方法。盾构方法的实施主要依靠盾构机来实现。盾构机的主要部件由切刀、车身、控制系统、动力系统、通风系统、压力系统、矿渣排除系统、材料运输系统、管片安装系统等组成。 当盾构机在待开挖隧道的一端安装开始进发,在控制系统内就事先输入整条隧道起点、终点、缓和曲线、圆曲线、混合曲线的主点的三维坐标,在盾构机以后的有效的通视范围内固定自 ?收稿日期:2008—02一18动跟踪坐标扫描全站仪,全站仪的测站位置三维坐标精确测定并由机器记忆。全站仪实时地将坐标传输到工作面上的控制系统,以自动地调节切刀的方向和车身的姿态,使盾构机严格地沿着设计的隧道的中轴线前进。在挖掘过程中,排出渣土都自动地集中到排渣出口装或待装运输车。当挖掘到一段距离后,就应及时安装预制的管片。 就南京地铁二号线来说,管片由6片预制立体块组成,相邻各块由锚杆连接,各块之间并由粘有橡胶皮的凹凸(相当于卯榫)槽密合,6管片组成一个内径为5m的圆环。再由压力系统调节管片和周围土体之间的压力。从宏观上看隧道就像是在水中的一个圆筒的瓶子,中间的形成通道。在建设过程中,各管片之问以及隧道整体和周围土体之间的力学平衡和稳定是至关重要的。 由于工程地质和水文情况的复杂性,盾构法开挖隧道的安全监测需提供地表上、下及周围空间建筑工程的几何特征信息,结合测量、地理、岩土、建筑、力学、自动化等专门的知识来分析、判断、解释、预测工程的现状和发展。 2盾构工程的安全监测方法 针对盾构工程的特点,关于如何进行安全监测、更合理地捕捉变形信息,圈内人士都做了大量的工作,曾采用了很多的方法,如:全站仪测量几何圆度、激光扫描法测量剖面、加之拱顶或拱地底沉降观测以及地面沉降等。但除了拱顶或拱地底沉降观 万方数据

无人机航片处理软件

一、ERDAS LPS(Leica Photogrammetry Suite) 是徕卡公司推出的遥感及摄影测量系统。主要为处理地球空间影像提供了精密和面向生产的摄影测量工具。LPS可以处理来自多种航天、航空传感器的多种格式影像,包括黑/白、彩色和最高至16bits的多光谱等各类数字影像。 ss 二、DPGRID新一代数字摄影测量网格 数字摄影测量网格(Digital Thotogrammetry Grid--DPGrid)是由中国工程院院士、武汉大学教授张祖勋提出。DPGrid数字摄影测量网格系统打破传统的摄影测量流程,集生产、质量检测、管理为一体,合理地安排人、机的工作,充分应用当前先进的数字影像匹配、高性能并行计算、海量存储与网络通讯等技术,实现航空航天遥感数据的自动快速处理和空间信息的快速获取,其性能远远高于当前的数字摄影测量工作站,能够满足三维空间信息快速采集与更新的需要,实现为国民经济各部门与社会各方面提供具有很强现势性的三维空间信息。 2007年7月12日,该产品通过国家鉴定,鉴定结论:“该系统研究思想新颖、研究成果先进,将为数字摄影测量的新一轮跨越式发展、为建立大规模的摄影测量数据处理中心和三线阵卫星影像的快速处理奠定基础。该系统整体上达到国际先进水平,其中数字摄影测量网格DPGrid并行处理技术、影像匹配技术和网络全无缝测图技术达到国际领先水平”。新一代航空航天数字摄影测量处理平台DPGrid,填补了我国数字摄影测量数据处理技术的空白,标志着我国数字摄影测量技术整体上达到国际先进水平。 具有自主版权的高性能新一代航空航天数字摄影测量处理平台DPGrid,可以推广应用于国家基础测绘、城市基础地理信息动态更新、国土资源调查、生态环境监测、灾害监测、海洋资源、农业监测、快速响应等各个领域,大幅度地提高航空航天遥感影像数据处理的效率,缩短地图更新周期,提高空间信息获取的实时性,特别是对大型的自然灾害的快速评估、应急反映的方面,对于我国的社会经济发展以及军事安全等都具有重要的意义。

卫星云图系统介绍

静止气象卫星云图接收综合处理系统 LNA QQ:2907208176 风云二号气象卫星云图,FY-2卫星探测云图,卫星云图接收机,卫星云图放大器

目录 第一章系统概述 (3) 第二章系统总体介绍 (3) 第一节系统功能组成 (3) 第二节系统组成结构 (4) 第三节一次典型天气过程系统功能介绍 (5) 第三章系统主要功能介绍 (13) 第一节精细化云图显示 (13) 1 红外一云图 (13) 2 可见光云图 (15) 第二节基础功能 (18) 1 云图色彩 (18) 2 云图缩放 (22) 3 单点定位 (25) 4 距离测算 (25) 5 面积测算 (26) 6 多星云图 (26) 第三节数据叠加功能 (27) 1 多种地图主题 (27) 2 不同的GIS元素 (28) 3 常规气象资料 (28) 4 雷达资料 (30) 第四节云图应用处理 (31) 1 立体云图 (31) 2 晴空检测、云地分离 (33) 3 降水分析与预测 (35) 4 MCS对流云团跟踪预测 (35) 5 等温线分析 (37) 6 台风定位与跟踪 (39) 7 雾检测 (39) 第五节云图接收系统其他系统功能 (39) 第六节云图Web发布系统介绍 (40) 第四节云图设备清单 (44) 第一节云图设备清单 (44)

第一章系统概述 《综合静止卫星云图接收处理系统》是多年卫星云图开发与实践经验,结合本公司在气象、水利、部队等其他行业各种静止、遥感卫星处理方面的经验;基于本公司雄厚的技术积累,研发的新一代基于GIS应用静止卫星云图接收以及应用处理系统。 本系统具有以下一些新特性: 真正的GIS支持:目前绝大多数卫星云图系统并没有采用GIS系统处理,本系统结合本卫星云图地理信息系统引擎,综合支持Google地图、ArcGIS以及MapInfo等多种格式电子地图数据,使得本云图系统具有更直观,实用性更强。 实时并行处理:目前绝大多数卫星云图系统需要对卫星资料进行预处理,从而使得在实际使用过程中,只能看到预处理过后的几种云图,也只能对预先设置好的一定范围内的云图进行查看等处理。本公司研发了实时的云图投影、云图缩放、云地分离、云分类检测、对流云团跟踪预测预警、三维云图、等温线分析、降水分析与预测等各种基于多CPU的并行算法,通过结合NCEP的每天6个时次的等压面资料,可以做到实时对各种静止气象卫星云图资料进行全范围的应用处理。 多星云图并存处理:本系统可以同时处理不同种类多颗静止气象卫星的云图资料,包括中国风云二系列、日本MTSAT系统等气象卫星云图资料。比如对于对流云团跟踪,由于本系统采用实时并行的对流云团跟踪算法,所以可以综合处理各种静止气象卫星云图资料。由于可以对于多颗卫星资料同时处理,因此就能得到更多时次云图资料,从而使得跟踪预测更加准确。 第二章系统总体介绍 第一节系统功能组成 系统功能模块组成见下图:

地铁隧道收敛变形监测

隧道周边收敛量测 一、实验目的 1.了解微地震监测技术目的。 2.了解速度传感器及加速度传感器的工作原理。 3.了解数据采集的基本原理。 4.掌握微地震监测软件的使用方法。 二、以煤科学研究总院的数显收敛计为例说明 1.性能 量测基线长度:0. 5 m~ 10 m 及0. 5 m~ 15 m; 最小读数:0.01 mm; 量测精度:0.06 mm; 数显值稳定度:24h不大于0.01 mm。 2.仪器构造及工作原理 2.1主要结构 微地震监测系统主要由(1)三分量加速度传感器、(2)三分量速度传感器、(3)电缆、(4)链接传感器26芯插头线、(5)HZ-MS12通道微地震监测仪、(6)USB2.0电缆、(7)电源转换器、 (8)干电池及电池盒、(9)断线钳、(10)十字螺丝刀、(11)万用表、(12)XP操作系统电脑一台、(13)榔头等组成,见图9.1。

图9.1 收敛计结构与工作示意图 2.2基本工作原理 数据采集是微地震监测的基础,对硬件设备要求较高。由于微地震的特性所致,必须用高采样率、宽频带、连续记录、宽动态范围(96dB )进行微地震信号采集。应用时,数据采集系统置于被监控的设备处,通过传感器对设备的电压或者电流信号进行采样、保持,并送入检测仪中变成数字信号,然后将该信号送到FIFO 中。 3.使用方法 1)首先在测点处牢固的埋设预埋件;预埋件长度根据需要加工,连接件与预埋件的连接,应使销钉孔方向铅直。 2)检查予埋测点有无损坏、松动并将测点灰尘擦净。 3)打开收敛计钢尺摇把,拉出尺头挂钩放入测点孔内,将收敛计拉至另一测点,并将尺架挂钩挂入测点孔内,选择合适的尺孔,将尺孔销插入与联尺架固定。 4)调整调节螺母,仔细观察,使塑料窗口上的刻线对在张力窗口内标尺上的两条白线之间(每次应一致)。 5)记下钢尺在联尺架端时的基线长度与数显读数。为提高量测精度,每次基线应重复测三次取平均值。当三次读数极差大于 0.05mm 时,应重新测试。 6)测试过程中,若数显读数已超过 25mm ,则应将钢尺收拢(换尺孔) 25mm 重新测试,两组平均值相减,即为两尺孔的实际间距,以消除钢尺冲孔距离不精确造成的测量误差。 7)记录数据、时间、温度、尺孔位置和测点编号。 8)一条基线测完后,应及时逆时针转动调节螺母,摘下收敛计,打开尺卡收拢钢带尺,为下一次使用作好准备。 4.数据的记录与修正 记录数据有三项内容,包括数显读数;钢卷尺使用长度及测点附近气温。一般情况下读数取三次平均值,三次读数的偏差应小于 0.05mm 。 基线两点间收敛值S 按下式计算: )()(00n n L D L D S +-+= 式中:0D -首次数显读数,(mm ); -首次钢尺长度,(mm ); -第n 次数显读数,(mm ); -第n 次钢尺长度,(mm )。 如第n 次测量与首次测量的环境温度相差较大时,要进行温度修正。公式如下: n n n n L T T L L )('0--=α 式中:'n L -温度修正后钢尺长度,(mm );

常用统计软件介绍

常用统计软件介绍

常用统计软件介绍 《概率论与数理统计》是一门实践性很强的课程。但是,目前在国内,大多侧重基本方法的介绍,而忽视了统计实验的教学。这样既不利于提高学生创新精神和实践能力,也使得这门课程的教学显得枯燥无味。为此,我们介绍一些常用的统计软件,以使学生对统计软件有初步的认识,为以后应用统计方法解决实际问题奠定初步的基础。 一、统计软件的种类 1.SAS 是目前国际上最为流行的一种大型统计分析系统,被誉为统计分析的标准软件。尽管价格不菲,SAS已被广泛应用于政府行政管理,科研,教育,生产和金融等不同领域,并且发挥着愈来愈重要的作用。目前SAS已在全球100多个国家和地区拥有29000多个客户群,直接用户超过300万人。在我国,国家信息中心,国家统计局,卫生部,中国科学院等都是SAS系统的大用户。尽管现在已经尽量“傻瓜化”,但是仍然需要一定的训练才可以使用。因此,该统计软件主要适合于统计工作者和科研工作者使用。 2.SPSS SPSS作为仅次于SAS的统计软件工具包,在社会科学领域有着广泛的应用。SPSS是世界上最早的统计分析软件,由美国斯坦福大学的三位研究生于20世纪60年代末研制。由于SPSS容易操作,输出漂亮,功能齐全,价格合理,所以很快地应用于自然科学、技术科学、社会科学的各个领域,世界上许多有影响的报刊杂志纷纷就SPSS 的自动统计绘图、数据的深入分析、使用方便、功能齐全等方面给予了高度的评价与称赞。迄今SPSS软件已有30余年的成长历史。全球

约有25万家产品用户,它们分布于通讯、医疗、银行、证券、保险、制造、商业、市场研究、科研教育等多个领域和行业,是世界上应用最广泛的专业统计软件。在国际学术界有条不成文的规定,即在国际学术交流中,凡是用SPSS软件完成的计算和统计分析,可以不必说明算法,由此可见其影响之大和信誉之高。因此,对于非统计工作者是很好的选择。 3.Excel 它严格说来并不是统计软件,但作为数据表格软件,必然有一定统计计算功能。而且凡是有Microsoft Office的计算机,基本上都装有Excel。但要注意,有时在装 Office时没有装数据分析的功能,那就必须装了才行。当然,画图功能是都具备的。对于简单分析,Excel 还算方便,但随着问题的深入,Excel就不那么“傻瓜”,需要使用函数,甚至根本没有相应的方法了。多数专门一些的统计推断问题还需要其他专门的统计软件来处理。 4.S-plus 这是统计学家喜爱的软件。不仅由于其功能齐全,而且由于其强大的编程功能,使得研究人员可以编制自己的程序来实现自己的理论和方法。它也在进行“傻瓜化”,以争取顾客。但仍然以编程方便为顾客所青睐。 5.Minitab 这个软件是很方便的功能强大而又齐全的软件,也已经“傻瓜化”,在我国用的不如SPSS与SAS那么普遍。

新型地铁(轻轨) 迷流在线监测系统介绍

新型地铁(轻轨) 迷流在线监测系统 介绍 1.概述 我国随着各大城市经济建设的迅速发展和人民物质生活的不断提高,城市交通成为当前亟待解决的重大问题,许多城市通过修建地铁和轻轨来解决日益突出的交通问题。地铁和轻轨通过牵引供电系统向动车组提供 动力,但由于地下潮湿,城市地下管网密集,供电电流会通过地下金属管网流动,从而导致钢筋、管道的锈蚀,造成一定的危害,因此各城市地铁在修建过程中,一方面通过采取措施防止迷流的扩散,另一方面通过配置迷流监测系统进行监测,防止迷流对地下管线和基础钢筋的腐蚀影响。 2.现有迷流监测系统介绍 现有杂散电流监测系统一般由参比电极、参比电极接线盒、整体道床测量端子、隧道测量端子、杂散电流测量用电缆、微机综合测试装置及信号测试端子箱构成。

参比电极的作用是作为杂散电流极化电压 测量的基准点。一般有 CuSO4、Zn、MuO3 等几种,CuSO4 为液态参考电极,测量精度高,但适用寿命相对较短,维护不方便;Zn 为 金属参考电极,寿命长,但测量精度较低,在精确测量系统不便采用;MuO3 参考电极为胶状参考电极,具有电压稳定、耐极化性能好、使用寿命长、内阻小的特点,符合阴极保护工程中对参比电极的要求。目前作为各迷流监测工程首选材料。 监测系统采用小分区监测方式,即按车站 分区,每个车站内安装一台杂散电流测试端子箱,将该车站及车站两端附近区段的测试端子及参比电极端子经参比电极接线盒,由统一的测量电缆引入至车站变电所控制室 或检修室内的测试端子箱,通过移动式微机综合测试装置与变电所内测试箱连接来对 各车站的测试点的测试端子电位进行测量、数据处理和报表打印。使用的综合测试装置用来通过与变电所内测试端子箱相连,对各测试点杂散电流测试端子与参考电极间电 压进行测量的设备,综合测试装置一般包括:

针对部分气象要素的气象预报三维辅助系统设计

针对部分气象要素的气象预报三维辅助系统设计 【摘要】随着三维可视化技术的日益成熟,该技术已被广泛应用于各行各业,但由于气象行业对数据的特殊应用方式等多种原因,致使气象数据及预报结果的显示目前仍主要以二维方式为主,兼顾极少部分的简单三维显示。针对上述情况,本文从实际应用出发,拟以可扩展的方式针对部分气象要素充分结合预报员的实际应用方式,建立气象预报三维辅助系统,实现基于真实高程或数字遥感影像的风场,温度场三维显示及云要素的三维显示。 【关键字】三维气象 The design of 3D weather forecast auxiliary system by part of meteorological elements [Abstract]With the 3D visualization technology is boomed, this technique has been widely used in all walks of life, But because of the special way of the meteorological data use, the mode of meteorological data and weather forecast result display is still mainly base on the technique of two-dimensional, and there is little of 3D mode. In view of the above situation, this article relies on the practical application, creates a 3D weather forecast auxiliary system by part of meteorological elements which can draw the wind field, temperature field and cloud by three-dimensional display based on the actual altitude or digital remote sensing images, and can be extended easily. [Key word]3D / three-dimensional meteorological weather 0引言 科学计算可视化技术凭借计算机的巨大处理能力及计算机图像、图形学基本算法以及可视化算法,把巨大数量的数据转换为静态或动态图像或图形呈现在人们的面前,并允许通过交互手段控制数据的抽取和画面的显示,使隐含于数据之中不可见的现象成为可见,为人们分析、理解数据、形成概念和找出规律提供了强有力的手段。 科学计算可视化将科学数据转变为图像,在气象方面的应用十分广泛和重要。借助人的形象视觉思维能力,帮助人们在杂乱无章的数据中发现其中的规律,为科学发现、工程开发等提供依据。数值天气预报产生的数据量越来越大,而预报人员希望快速、准确、逼真地可视化大规模数据,同时还要求交互地探索和分析。现有的可视化算法和软件系统从处理规模、计算速度等方面很难达到有效的处理大规模数据,因此,针对数值天气预报的科学计算可视化研究面临大规模数据带来的挑战。科学计算可视化的实质是运用计算机图形学和图像处理技术,将科学计算过程中产生的数据及计算结果转换为图像,在屏幕上显示出来并进行交互

地铁、隧道施工监测方案

施工监测方案 第一节 监测方案设计和测点布设原则 18.1.1 监测组织机构 18.1.2 设计原则 1、本工程项目监测方案以安全检测为目的,根据不同的工程项目如(明挖、暗挖、盾构)确定监护对象(建筑物、管线、隧道等),针对监测对象安全稳定的主要指标进行方案设计。 2、本工程项目监测点的布置能够全面地反映监测对象的工作状态。 3、采用先进的仪器、设备和监测技术,如计算机技术、遥测技术等。 项目经理 项目总工 监测测量班 班 长 张孙 良生 李 毛纺 王 暖堂 梁 竹敏 李 强 蒋 明辉

4、各监测项目能相互校验,以利数值计算,故障分析和状态研究。 5、方案在满足监测性能和精度的前提下,可适当降低检测频率,减少检测元件,以节约监测费用。 18.1.3 测点布设原则 1、观测点类型和数量的确定应结合工程性质、地质条件、设计要求、施工特点等因素综合考虑。 2、为验证设计数据而设的测点布置在设计中最不利位置和断面,为结合施工而设的测点布置在相同工况下的最先施工部位,其目的是及时反馈信息、指导施工。 3、表面变形测点的位置既要考虑反映监测对象的变形特征,又要便于来用仪器进行观察,还要有利于测点的保护。 4、除埋测点不能影响和妨碍结构的正常受力,不能削弱结构的变形刚度和强度。 5、在实施多项内容测试时,各类测点的布置在时间和空间上应有机结合,力求使一监测部位能同时反映不同的物理变化量,找出内在的联系和变化规律。 6、深层测点应在施工前30 天布置好,以便监测工作开始时,监测元件进入稳定的工作状态。 7、测点在施工过程中遭到破坏时,应尽快在原来位置或尽量靠近原来位置补设测点,保证该点观测数据的连续性。 18.1.4 主要监测仪器 在本标中,若我局中标将采用由中国地震局第一地形变监测中心研制的“隧道形变自动化监测系统”用于本标监测控制。 该自动化监测系统是对整个被监测区域进行多点同时快速扫描式测量,测试的频率可根据实际情况来设定,因此所取得的每一瞬时观测值更真实、更可靠的反映当时被测目标的变形状态。 1、BOY—1 型臂式倾斜仪 该仪器具有传感器体积小,安装简单灵活,既能分散单个观测,又能多臂组合成隧道变形监测系统。该仪器可用来监测隧道纵向倾斜(沉降)、环缝变形错位及隧道收敛变形等。 主要技术指标 灵敏度:0.005mm—0.01mm(1—2 角秒) 测量范围:±5°或±10°(臂的最大倾斜度)

无人机图像处理软件测试报告

无人机数据快拼软件 测试报告 zjj

一、无人机软件概述 随着用户对大比例尺、高分辨率数据的需求,越来越多的无人机制造公司和无人机数据处理软件被应用于各行业中。 无人机体形便捷、可实现多种场地起飞和快速转换,成本低、云下拍摄大比例尺、高分辨率影像数据。但无人机电池电量过小,飞行时间过短,着落不稳,不适合获取大面积影像数据。 无人机数据处理系统主要分为测绘模块和快拼模块,测绘模块可人工干预,实现对控制点的筛选、修改和删除等编辑功能,获取的数据精度更准确一些。软件包括INFO、航天远景、适普、苍穹、泰坦;快拼模块无需人工干预,自动化流程程度较高,一键式作业完成数据准备、参数设定、空中三角测量、数据生成等多个步骤。软件包括PIX4D、PHOTOSCAN、EASYUAV、航天远景OKMATRIX。 无人机数据主要包括相机数据、POS数据和相机参数(可选),POS数据的参数包括经度、纬度、高程、翻滚角(ROLLING \OMEGA)、俯仰角(PITCHING\PHI)、航向角(COURSE \KAPPA)。不同的软件对数据的要求不一样。在各个软件测试前,需要对POS数据进行检查、修改等操作,以建立正确的工程文件。 应水土保持行业对数据质量的需求(误差在1米以内)。采用测绘模块的数据处理流程可以满足精度需求,但需要规范的流程化作业和精细的人工干预操作。快拼模块的精度往往取决于POS系统(定位仪(经纬度和高程)和IMU陀螺仪(飞行姿态))精度,处理后精度通过空三连接点平均精度进行查看。绝对精度根据需要,后续可添加控制点匹配步骤。 报告以水保行业的需求为出发点,从快拼软件的数据处理流程、系统需求、数据性能精度、数据图面质量、距离面积量测、以及软件价格等几个方面进行比对分析与测试,为水保行业的广泛应用做前期调研。 1、无人机图像处理软件数据处理流程 目前无人机图像处理软件的数据处理流程如下图所示: 测绘模块数据处理流程如下图所示

相关文档
相关文档 最新文档