文档库 最新最全的文档下载
当前位置:文档库 › 各大常用排序方法

各大常用排序方法

各大常用排序方法
各大常用排序方法

//1. 希尔排序, 时间复杂度:O(nlogn)~ O(n^2)

// 另称:缩小增量排序(Diminishing Increment Sort)

void ShellSort(int v[],int n)

{

int gap, i, j, temp;

for(gap=n/2; gap>0; gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */

{

for(i=gap; i

{

for(j=i-gap; (j>=0) && (v[j]>v[j+gap]); j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换 */

{

temp = v[j];

v[j] = v[j+gap];

v[j+gap] = temp;

}

}

}

}

//2. 二分插入,

void HalfInsertSort(int a[], int len)

{

int i, j, temp;

int low, high, mid;

for (i=1; i

{

temp = a[i];/* 保存但前元素 */

low = 0;

high = i-1;

while (low <= high) /* 在a[low...high]中折半查找有序插入的位置 */

{

mid = (low + high) / 2; /* 找到中间元素 */

if (a[mid] > temp) /* 如果中间元素比但前元素大,当前元素要插入到中间元素的左侧 */

{

high = mid-1;

}

else /* 如果中间元素比当前元素小,但前元素要插入到中间元素的右侧 */

{

low = mid+1;

}

} /* 找到当前元素的位置,在low和high之间 */

for (j=i-1; j>high; j--)/* 元素后移 */

{

a[j+1] = a[j];

}

a[high+1] = temp; /* 插入 */

}

}

//3. 插入排序

//3.1 直接插入排序, 时间复杂度:O(n^2)

void StraightInsertionSort(int input[],int len)

{

int i, j, temp;

for (i=1; i

{

temp = input[i]; /* 操作当前元素,先保存在其它变量中 */

for (j=i-1; j>=0 && input[j]>temp; j--) /* 从当前元素的上一个元素开始查找合适的位置 */

{

input[j+1] = input[j]; /* 一边找一边移动元素 */

input[j] = temp;

}

}

}

//3.2 带哨兵的直接排序, 时间复杂度:O(n^2)

/*

* 带哨兵的直接插入排序,数组的第一个元素不用于存储有效数据

* 将input[0]作为哨兵,可以避免判定input[j]中,数组是否越界

* 因为在j--的过程中,当j减小到0时,变成了input[0]与input[0]

* 自身进行比较,很明显这个时候说明位置i之前的数字都比input[i]小

* 位置i上的数字不需要移动,直接进入下一轮的插入比较。

*/

void InsertionSortWithPiquet(int input[],int len)

{

int i, j;

for (i=2; i

{

input[0] = input[i];

for (j=i-1; input[j]>input[0]; j--)

{

input[j+1] = input[j];

input[j] = input[0]; /* input[j]一直都是排序的元素中最大的那一个 */ }

}

}

//3.3 折半插入排序, 时间复杂度:O(n^2)

void BinaryInsertionSort(int input[], int len){

int i, j, low, mid, high;

for(i=2; i

input[0] = input[i]; //将input[i]暂存到input[0]

low = 1;

high = i-1;

while(low < high){ //在input[]中折半查找有序插入的位置mid = (low + high)/2; //折半

if(input[i] < input[mid]){ //插入点在低半区

high = mid-1;

}else{ //插入点在高半区

low = mid+1;

}

}

for(j=i-1; j>=high+1; j--){

input[j+1] = input[j]; //记录后移

}

input[high+1] = input[0]; //插入

}

}

//与直接插入排序相比: 减少了关键字间的比较次数

//3.4 2-路插入排序

//3.5 表插入排序

//4. 冒泡排序法, 时间复杂度:O(n^2)

void BubbleSort(int a[],int n)

{

int i,j,k;

for(j=0;j

{

for(i=0;i

{

if(a[i]>a[i+1]) /* 把值比较大的元素沉到底 */

{

k=a[i];

a[i]=a[i+1];

a[i+1]=k;

}

}

}

}

//5. 归并排序

//6. 选择排序

//6.1 简单选择排序, 时间复杂度:O(n^2)

/*算法原理:首先以一个元素为基准,从一个方向开始扫描,

* 比如从左至右扫描,以A[0]为基准。接下来从A[0]...A[9]

* 中找出最小的元素,将其与A[0]交换。然后将基准位置右

* 移一位,重复上面的动作,比如,以A[1]为基准,找出

* A[1]~A[9]中最小的,将其与A[1]交换。一直进行到基准位

* 置移到数组最后一个元素时排序结束(此时基准左边所有元素

* 均递增有序,而基准为最后一个元素,故完成排序)。

*/

void SimpleSelectSort(int A[],int len)

{

int i, j, temp;

for(i=0; i

{

for(j=i+1; j<=len; j++) /* 从j往前的数据都是排好的,所以从j开始往下找剩下的元素中最小的 */

{

if(A[i] > A[j]) /* 把剩下元素中最小的那个放到A[i]中 */

{

temp = A[i];

A[i] = A[j];

A[j] = temp;

}

}

}

}

//6.2 树形选择排序,时间复杂度:O(nlogn)

//6.3 堆排序,时间复杂度:O(nlogn)

/**************************************************************

* 堆的定义 n 个元素的序列 {k1,k2,...,kn}当且仅当满足下列关系时,

* 称为堆:

* ki<=k2i ki<=k2i+1 (i=1,2,...,n/2)

* 或

* ki>=k2i ki>=k2i+1 (i=1,2,...,n/2)

* 堆排序思路:

* 建立在树形选择排序基础上;

* 将待排序列建成堆(初始堆生成)后,序列的第一个元素(堆顶元素)就一定是序列中的最大元素; * 将其与序列的最后一个元素交换,将序列长度减一;

* 再将序列建成堆(堆调整)后,堆顶元素仍是序列中的最大元素,再次将其与序列最后一个元素交换并缩短序列长度;

* 反复此过程,直至序列长度为一,所得序列即为排序后结果。

**************************************************************/

void HeapAdjust(int data[], int s, int m)

{

int j, rc;

rc = data[s];

for(j=2*s; j<=m; j*=2)

{

if( j

j++;

}

if(rc > data[j]){ //如果父节点已经比值较大的那个孩子节点大,则结束此次循

break;

}

data[s] = data[j]; //否则将值较大的那个孩子节点赋值给父节点

s = j; //锁定值较大的那个孩子节点的位置

}

data[s] = rc; //将原来父节点的值赋给原来值较大的那个孩子节点

}

void HeapSort(int data[],int len)

{

int i, temp;

for(i=len/2; i>0; i--) //从最后一个非终端节点(n/2)开始循环"筛选",最后建成一个最大堆

{

HeapAdjust(data, i, len);

}

for(i=len; i>0; i--)

{

temp = data[1]; //把根节点的值(堆中最大的)放到后面

data[1] = data[i];

data[i] = temp;

HeapAdjust(data, 1, i-1); //在剩下的节点中重新开始恢复最大堆

}

}

//7. 快速排序

//7.1 递归形式的快速排序,时间复杂度:O(nlogn)

/* 快速排序(quick sort)。在这种方法中,

* n 个元素被分成三段(组):左段left,

* 右段right和中段middle。中段

* 仅包含一个元素。左段中各元素都小于等

* 于中段元素,右段中各元素都大于等于中

* 段元素。因此left和right中的元

* 素可以独立排序,并且不必对left和

* right的排序结果进行合并。

* 使用快速排序方法对a[0:n-1]排序

* 从a[0:n-1]中选择一个元素作为middle,

* 该元素为支点把余下的元素分割为两段left

* 和right,使得left中的元素都小于

* 等于支点,而right 中的元素都大于等于支点

* 递归地使用快速排序方法对left 进行排序

* 递归地使用快速排序方法对right 进行排序

* 所得结果为left+middle+right

*/

void QuickSort(int data[], int low, int high)

{

int mid;

if(low < high) {

mid = Partition(data, low, high);

QuickSort(data, low, mid-1); /* 递归调用 */

QuickSort(data, mid+1, high);

}

}

/* 要注意看清楚下面的数据之间是如何替换的,

* 首先选一个中间值,就是第一个元素data[low],

* 然后从该元素的最右侧开始找到比它小的元素,把

* 该元素复制到它中间值原来的位置(data[low]=data[high]),

* 然后从该元素的最左侧开始找到比它大的元素,把

* 该元素复制到上边刚刚找到的那个元素的位置(data[high]=data[low]),

* 最后将这个刚空出来的位置装入中间值(data[low]=data[0]),

* 这样一来比mid大的都会跑到mid的右侧,小于mid的会在左侧,

* 最后一行,返回的low是中间元素的位置,左右分别递归就可以排好序了。

*/

int Partition(int data[],int low,int high)

{

int pivot;

data[0] = data[low];

pivot = data[low];

while(low < high)

{

while( (low < high) && (data[high] >= pivot) )

{

high--;

}

data[low] = data[high]; /* 从high的位置开始往low的方向找,找到比data[low]小的元素,存到data[low]中 */

while((low < high) && (data[low] < pivot)) /* 新得到的data[low]肯定小于原来的data[low]即mid */

{

low++;

}

data[high] = data[low]; /* 从low的位置开始往high的方向找,找到比data[high]大的元素,存在data[high]中 */

}

data[low] = data[0]; /* 把low的新位置存上原来的data[low]的数据*/

return low; /* 递归时,把它做为右侧元素的low */

}

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

Python学习笔记:八大排序算法!

一、插入排序 介绍 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据。 算法适用于少量数据的排序,时间复杂度为O(n^2)。 插入排算法是稳定的排序方法。 步骤 ①从第一个元素开始,该元素可以认为已经被排序 ②取出下一个元素,在已经排序的元素序列中从后向前扫描 ③如果该元素(已排序)大于新元素,将该元素移到下一位置 ④重复步骤3,直到找到已排序的元素小于或者等于新元素的位置 ⑤将新元素插入到该位置中 ⑥重复步骤2 排序演示

算法实现 二、冒泡排序 介绍 冒泡排序(Bubble Sort)是一种简单的排序算法,时间复杂度为O(n^2)。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。原理 循环遍历列表,每次循环找出循环最大的元素排在后面; 需要使用嵌套循环实现:外层循环控制总循环次数,内层循环负责每轮的循环比较。 步骤 ①比较相邻的元素。如果第一个比第二个大,就交换他们两个。 ②对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。 ③针对所有的元素重复以上的步骤,除了最后一个。 ④持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

算法实现: 三、快速排序 介绍 快速排序(Quicksort)是对冒泡排序的一种改进,借用了分治的思想,由C. A. R. Hoare在1962年提出。 基本思想 快速排序的基本思想是:挖坑填数+ 分治法。 首先选出一个轴值(pivot,也有叫基准的),通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 实现步骤

数据结构 各种排序算法

数据结构各种排序算法总结 2009-08-19 11:09 计算机排序与人进行排序的不同:计算机程序不能象人一样通览所有的数据,只能根据计算机的"比较"原理,在同一时间内对两个队员进行比较,这是算法的一种"短视"。 1. 冒泡排序 BubbleSort 最简单的一个 public void bubbleSort() { int out, in; for(out=nElems-1; out>0; out--) // outer loop (backward) for(in=0; in a[in+1] ) // out of order? swap(in, in+1); // swap them } // end bubbleSort() 效率:O(N2) 2. 选择排序 selectSort public void selectionSort() { int out, in, min; for(out=0; out

swap(out, min); // swap them } // end for(out) } // end selectionSort() 效率:O(N2) 3. 插入排序 insertSort 在插入排序中,一组数据在某个时刻实局部有序的,为在冒泡和选择排序中实完全有序的。 public void insertionSort() { int in, out; for(out=1; out0 && a[in-1] >= temp) // until one is smaller, { a[in] = a[in-1]; // shift item to right --in; // go left one position } a[in] = temp; // insert marked item } // end for } // end insertionSort() 效率:比冒泡排序快一倍,比选择排序略快,但也是O(N2) 如果数据基本有序,几乎需要O(N)的时间

五种排序算法的分析与比较

五种排序算法的分析与比较 广东医学院医学信息专业郭慧玲 摘要:排序算法是计算机程序设计广泛使用的解决问题的方法,研究排序算法具有重要的理论意义和广泛的应用价值。文章通过描述冒泡、选择、插入、归并和快速5种排序算法,总结了它们的时间复杂度、空间复杂度和稳定性。通过实验验证了5种排序算法在随机、正序和逆序3种情况下的性能,指出排序算法的适用原则,以供在不同条件下选择适合的排序算法借鉴。 关键词:冒泡排序;选择排序;插入排序;归并排序;快速排序。 排序是计算机科学中基本的研究课题之一,其目的是方便记录的查找、插入和删除。随着计算机的发展与应用领域的越来越广,基于计算机硬件的速度和存储空间的有限性,如何提高计算机速度并节省存储空间一直成为软件设计人员的努力方向。其中,排序算法已成为程序设计人员考虑的因素之一[1],排序算法选择得当与否直接影响程序的执行效率和内外存储空间的占用量,甚至影响整个软件的综合性能。排序操作[2,3],就是将一组数据记录的任意序列,重新排列成一个按关键字有序的序列。而所谓排序的稳定性[4]是指如果在排序的序列中,存在前后相同的两个元素,排序前和排序后他们的相对位臵不发生变化。 1 算法与特性 1.1冒泡排序 1.1.1冒泡排序的基本思想

冒泡排序的基本思想是[5,6]:首先将第1个记录的关键字和第2个记录的关键字进行比较,若为逆序,则将2个记录交换,然后比较第2个和第3个记录的关键字,依次类推,直至n-1个记录和第n个记录的关键字进行过比较为止。然后再按照上述过程进行下一次排序,直至整个序列有序为止。 1.1.2冒泡排序的特性 容易判断冒泡排序是稳定的。可以分析出它的效率,在最好情况下,只需通过n-1次比较,不需要移动关键字,即时间复杂度为O(n)(即正序);在最坏情况下是初始序列为逆序,则需要进行n-1次排序,需进行n(n-1)/2次比较,因此在最坏情况下时间复杂度为O(n2),附加存储空间为O(1)。 1.2选择排序 1.2.1选择排序的基本思想 选择排序的基本思想是[5,6]:每一次从待排序的记录中选出关键字最小的记录,顺序放在已排好序的文件的最后,直到全部记录排序完毕.常用的选择排序方法有直接选择排序和堆排序,考虑到简单和易理解,这里讨论直接选择排序。直接选择排序的基本思想是n个记录的文件的直接排序可经过n-1次直接选择排序得到有序结果。 1.2.2选择排序的特性 容易得出选择排序是不稳定的。在直接选择排序过程中所需进行记录移动的操作次数最少为0,最大值为3(n-1)。然而,无论记录的初始排序如何,所需进行的关键字间的比较次数相同,均为n(n-1)/2,时间

数据结构各种排序方法的综合比较

数据结构各种排序方法的综合比较 结论: 排序方法平均时间最坏时间辅助存储 简单排序O(n2) O(n2) O(1) 快速排序O(nlogn)O(n2)O(logn) 堆排序O(nlogn)O(nlogn)O(1) 归并排序O(nlogn)O(nlogn)O(n) 基数排序O(d(n+rd))O(d(n+rd))O(rd) PS:直接插入排序、冒泡排序为简单排序,希尔排序、堆排序、快速排序为不稳定排序 一、时间性能 按平均的时间性能来分,有三类排序方法: 时间复杂度为O(nlogn)的方法有:快速排序、堆排序和归并排序,其中以快速排序为最好;时间复杂度为O(n2)的有:直接插入排序、起泡排序和简单选择排序,其中以直接插入为 最好,特别是对那些对关键字近似有序的记录序列尤为如此; 时间复杂度为O(n)的排序方法只有,基数排序。 当待排记录序列按关键字顺序有序时,直接插入排序和起泡排序能达到O(n)的时间复杂度;而对于快速排序而言,这是最不好的情况,此时的时间性能蜕化为O(n2),因此是应该尽量避免的情况。简单选择排序、堆排序和归并排序的时间性能不随记录序列中关键字的分布而改变。 二、空间性能 指的是排序过程中所需的辅助空间大小。 1. 所有的简单排序方法(包括:直接插入、起泡和简单选择)和堆排序的空间复杂度为O(1); 2. 快速排序为O(logn),为栈所需的辅助空间; 3. 归并排序所需辅助空间最多,其空间复杂度为O(n ); 4.链式基数排序需附设队列首尾指针,则空间复杂度为O(rd)。 三、排序方法的稳定性能 1. 稳定的排序方法指的是,对于两个关键字相等的记录,它们在序列中的相对位置,在排序之前和经过排序之后,没有改变。 2. 当对多关键字的记录序列进行LSD方法排序时,必须采用稳定的排序方法。 3. 对于不稳定的排序方法,只要能举出一个实例说明即可。 4. 快速排序和堆排序是不稳定的排序方法

数据结构-各类排序算法总结

数据结构-各类排序算法总结 原文转自: https://www.wendangku.net/doc/1c18682729.html,/zjf280441589/article/details/38387103各类排序算法总结 一. 排序的基本概念 排序(Sorting)是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素 某个项值有序的序列。 有n 个记录的序列{R1,R2,…,Rn},其相应关键字的序列是{K1,K2,…,Kn},相应的下标序列为1,2,…,n。通过排序,要求找出当前下标序列1,2,…,n 的一种排列p1,p2,…,pn,使得相应关键字满足如下的非递减(或非递增)关系,即:Kp1≤Kp2≤…≤Kpn,这样就得到一个按关键字有序的记录序列{Rp1,Rp2,…,Rpn}。 作为排序依据的数据项称为“排序码”,也即数据元素的关键码。若关键码是主关键码,则对于任意待排序序列,经排序后得到的结果是唯一的;若关键码是次关键码,排序结果可

能不唯一。实现排序的基本操作有两个: (1)“比较”序列中两个关键字的大小; (2)“移动”记录。 若对任意的数据元素序列,使用某个排序方法,对它按关键码进行排序:若相同关键码元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;而不能保持一致的排序方法则称为不稳定的。 二.插入类排序 1.直接插入排序直接插入排序是最简单的插入类排序。仅有一个记录的表总是有序的,因此,对n 个记录的表,可从第二个记录开始直到第n 个记录,逐个向有序表中进行插入操作,从而得到n个记录按关键码有序的表。它是利用顺序查找实现“在R[1..i-1]中查找R[i]的插入位置”的插入排序。

排序算法时间复杂度比较

排序算法比较 主要容: 1)利用随机函数产生10000个随机整数,对这些数进行多种方法排序。 2)至少采用4种方法实现上述问题求解(可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序),并把排序后的结功能果保存在不同的文件里。 3)给出该排序算法统计每一种排序方法的性能(以运行程序所花费的时间为准进行对比),找出其中两种较快的方法。 程序的主要功能: 1.随机数在排序函数作用下进行排序 2.程序给出随机数排序所用的时间。 算法及时间复杂度 (一)各个排序是算法思想: (1)直接插入排序:将一个记录插入到已排好的有序表中,从而得到一个新的,记录数增加1的有序表。 (2)冒泡排序:首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序,则将两个记录交换,然后比较第二个记录和第三个记录的关键字。依此类推,直到第N-1和第N个记录的

关键字进行过比较为止。上述为第一趟排序,其结果使得关键字的最大纪录被安排到最后一个记录的位置上。然后进行第二趟起泡排序,对前N-1个记录进行同样操作。一共要进行N-1趟起泡排序。 (3)快速排序:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,已达到整个序列有序。 (4)选择排序:通过N-I次关键字间的比较,从N-I+1个记录中选出关键字最小的记录,并和第I(1<=I<=N)个记录交换。 时间复杂度分析

10000个数据的时间比较: 程序源代码: /********************************************************************************************** package test; public class SortArray { private static final int Min = 1;//生成随机数最小值 private static final int Max = 10000;//生成随机数最大值 private static final int Length = 10000;//生成随机数组长度(测试的朋友建议不要超过40000,不然你要等很久,如果你电脑配置绝对高的情况下你可以再加个0试试) public static void main(String[] args) { System.out.println("数组长度:"+Length+", Min:"+Min+", Max:"+Max); long begin; long end; int arr[] = getArray(Length);

c语言各种排序法详细讲解

一插入排序 1.1 直接插入排序 基本思想:每次将一个待排序额记录按其关键码的大小插入到一个已经排好序的有序序列中,直到全部记录排好序。 图解:

1.//直接顺序排序 2.void InsertSort(int r[], int n) 3.{ 4.for (int i=2; i

代码实现: [cpp]view plain copy 1.//希尔排序 2.void ShellSort(int r[], int n) 3.{ 4.int i; 5.int d; 6.int j; 7.for (d=n/2; d>=1; d=d/2) //以增量为d进行直接插入排序 8. { 9.for (i=d+1; i0 && r[0]

实验 各种排序方法的比较

实验六各种排序方法的比较 一、实验目的 1.通过实验掌握排序的基本概念,对排序的稳定性及排序的时间复杂性有深刻的认识。 2.掌握各种排序方法的基本思想和算法实现。 3.能够灵活地选用某种排序方法解决问题。 二、实验要求 1.认真阅读和掌握本实验的参考程序。 2.保存程序的运行结果,并结合程序进行分析。 三、实验内容 编写一个程序,对所给的数据(程序中给出或通过键盘初始化均可)进行排序,要求尽可能多的选择不同的排序算法,并显示排序前和排序后的结果。 #include #include #define TRUE 1 #define FALSE 0 #define N 10 int a[10] = { 9,27,45,87,17,23,25,92,8,75 }; typedef struct { int key; int info; }RecordNode; typedef struct Sort { int n; //记录个数 RecordNode *record; }SortObject; /*直接插入排序*/ void insertSort(SortObject *pvector) { int i, j; RecordNode temp; for (i = 1; i < pvector->n; i++) { temp = pvector->record[i]; j = i - 1;

while ((temp.key < pvector->record[j].key) && (j >= 0)) { pvector->record[j + 1] = pvector->record[j]; j--; } if (j != (i - 1)) pvector->record[j + 1] = temp; } } /*二分法插入排序*/ void binSort(SortObject * pvector) { int i, j, left, mid, right; RecordNode temp; for (i = 1; i < pvector->n; i++) { temp = pvector->record[i]; left = 0; right = i - 1; while (left <= right) { mid = (left + right) / 2; if (temp.keyrecord[mid].key) right = mid - 1; else left = mid + 1; } for (j = i - 1; j >= left; j--) pvector->record[j + 1] = pvector->record[j]; if (left != i) pvector->record[left] = temp; } } struct Node; typedef struct Node ListNode; struct Node { int key; ListNode *next; }; typedef ListNode * LinkList; void listSort(LinkList * plist) { ListNode *now, *pre, *p, *q, *head; head = *plist; pre = head->next; if (pre == NULL) return;

各大常用排序方法

//1. 希尔排序, 时间复杂度:O(nlogn)~ O(n^2) // 另称:缩小增量排序(Diminishing Increment Sort) void ShellSort(int v[],int n) { int gap, i, j, temp; for(gap=n/2; gap>0; gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */ { for(i=gap; i=0) && (v[j]>v[j+gap]); j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换 */ { temp = v[j]; v[j] = v[j+gap]; v[j+gap] = temp; } } } } //2. 二分插入, void HalfInsertSort(int a[], int len) { int i, j, temp; int low, high, mid; for (i=1; i temp) /* 如果中间元素比但前元素大,当前元素要插入到中间元素的左侧 */ { high = mid-1;

} else /* 如果中间元素比当前元素小,但前元素要插入到中间元素的右侧 */ { low = mid+1; } } /* 找到当前元素的位置,在low和high之间 */ for (j=i-1; j>high; j--)/* 元素后移 */ { a[j+1] = a[j]; } a[high+1] = temp; /* 插入 */ } } //3. 插入排序 //3.1 直接插入排序, 时间复杂度:O(n^2) void StraightInsertionSort(int input[],int len) { int i, j, temp; for (i=1; i=0 && input[j]>temp; j--) /* 从当前元素的上一个元素开始查找合适的位置 */ { input[j+1] = input[j]; /* 一边找一边移动元素 */ input[j] = temp; } } } //3.2 带哨兵的直接排序, 时间复杂度:O(n^2) /* * 带哨兵的直接插入排序,数组的第一个元素不用于存储有效数据 * 将input[0]作为哨兵,可以避免判定input[j]中,数组是否越界 * 因为在j--的过程中,当j减小到0时,变成了input[0]与input[0] * 自身进行比较,很明显这个时候说明位置i之前的数字都比input[i]小

五种排序的算法(包括主函数调用)

#include #define MAX 100 void Quicksort(int d[],int min,int max); void Shellsort(int r[],int n); void Bubblesort(int r[],int n); void StraInsSort(int R[],int n); void Selectsort(int r[],int n); //*************************主函数********************** void main() { int s,ch,n,x,i; int a[MAX]; int p; printf("请输入待排序列中数据的个数:"); scanf("%d",&n); printf("请输入排序前序列:"); for(s=1;s<=n;s++) scanf("%d",&a[s]); { printf("0 is exit,other is continue:"); scanf("%d",&x); while(x) { for(p=1;p<=5;p++) { for(i=1;i<20;i++) printf("%c ",p);printf("\n"); printf("please input your choice(1-5):"); printf("\n1.直接插入排序\t2.希尔排序\t3.冒泡排序\n4.快速排序\t5.直接选择排序\t6.堆排序\n"); for(i=1;i<20;i++) printf("%c ",p); printf("\n"); printf("请选择:"); scanf("%d",&ch); switch(ch) { case 1: printf("\n直接插入排序\n"); StraInsSort(a,n); break;

各种排序实验报告

【一】需求分析 课程题目是排序算法的实现,课程设计一共要设计八种排序算法。这八种算法共包括:堆排序,归并排序,希尔排序,冒泡排序,快速排序,基数排序,折半插入排序,直接插入排序。 为了运行时的方便,将八种排序方法进行编号,其中1为堆排序,2为归并排序,3为希尔排序,4为冒泡排序,5为快速排序,6为基数排序,7为折半插入排序8为直接插入排序。 【二】概要设计 1.堆排序 ⑴算法思想:堆排序只需要一个记录大小的辅助空间,每个待排序的记录仅占有一个存储空间。将序列所存储的元素A[N]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的元素均不大于(或不小于)其左右孩子(若存在)结点的元素。算法的平均时间复杂度为O(N log N)。 ⑵程序实现及核心代码的注释: for(j=2*i+1; j<=m; j=j*2+1) { if(j=su[j]) break; su[i]=su[j]; i=j; } su[i]=temp; } void dpx() //堆排序 { int i,temp; cout<<"排序之前的数组为:"<=0; i--) { head(i,N); } for(i=N-1; i>0; i--) {

temp=su[i]; su[i]=su[0]; su[0]=temp; head(0,i-1); } cout<<"排序之后的数组为:"<

C C++笔试面试题目汇总3——各种排序算法

C/C++笔试面试题目汇总3——各种排序算法 原文:https://www.wendangku.net/doc/1c18682729.html,/u/1222/showart_318070.html 排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法对算法本身的速度要求很高。而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将给出详细的说明。对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。 我将按照算法的复杂度,从简单到难来分析算法。 第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有使用word,所以无法打出上标和下标)。 第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种算法因为涉及树与堆的概念,所以这里不于讨论。 第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。 第四部分是我送给大家的一个餐后的甜点——一个基于模板的通用快速排序。由于是模板函数可以对任何数据类型排序(抱歉,里面使用了一些论坛专家的呢称)。 一、简单排序算法 由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。 1.冒泡法:(Gilbert:点这里有视频) 这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡: #include void BubbleSort(int* pData,int Count) { int iTemp; for(int i=1;i=i;j--) { if(pData[j]

(word完整版)排列组合方法大全,推荐文档

排列组合方法归纳大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有3 4A 由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少 不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进 行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少

小学语文排序题方法技巧汇总排序

专题——句子 句子之排序 1、考点 定义:排序类题就是把一组顺序错乱的句子按照正确的顺序重新排列,解这类题的关键是要找出这组句子的行文顺序,再把它们重新排列。 2、例题分析 例题1:将下列句子排列正确。 ()科学家对此进行研究。 ()正常人的眼睛能感知这个世界的五彩缤纷,识别红、橙、黄、绿、青、蓝、紫,以及它们之间的各种过渡色,总共约六十多种。 ()如牛、羊、马等,几乎不会分辨颜色,反映到它们眼里的只有黑、白、灰三种颜色,很单调。 ()那么,动物的感色能力又如何呢? ()研究证实,大多数哺乳动物是色盲。 试题分析: 此题着重考察学生的语言组织能力。对于众多的句子如何确定第一句是解此题的关键。接着找出几个句子之间的联系点,这也是至关重要的一个因素。 解题思路: 首先,要通读所有的句子,整体感知这段文字,初步明确这段文字主要写的是什么,围绕什么来写的。在这段文字中,首先写的是人的眼睛对色彩的感知,而后过渡到动物。中间一句设问句是很好的承接,接下来是科学家投入了研究,最后是研究的结果,并以此举例说明。所有的句子试填好后,要将句子按正确的排列顺序通读一遍,最后检查序号是否正确。 参考答案:3 1 5 2 4。 例题2 : 将①-④句填在横线上,顺序恰当的一项是()。 沿池环水四周,新筑一道长600多米的环池路,还有那修复完美的明代遗迹“临流亭”,

四周环水,兀立池中,游客观望,流连忘返。 ①形态各异的飞禽雕塑,浮游水面 ②水上画舫往返,笑声朗朗 ③路面铺设的鹅卵石,在碧波辉映下,色彩鲜艳,晶莹闪烁 ④路边垂柳依依,清风送爽 ③④②① B、④②③① C、③④①② D、④③①② 解题指导: 这是一道在所给的语段中选择恰当的选项填空题。考查的是思维的连贯与严密。解答此类题目,要瞻前顾后,从空缺处的前文或后文找出句与句之间内在的联系,通过上下文要通畅连贯或句式要前后一致等方面来确定正确的选项。 此题空缺处前文是写“环池路”,与之文气连贯的当然是选项中③句,接着介绍“路面”,接着就为第④句介绍“路边”,然后由“沿池环水四周”的“路边”,自然引出第②句,介绍“水上”,最后第①句交待水上的“飞禽雕塑”,则“雕塑”又与后句的“临流亭”同属建筑,自然衔接。所以正确答案为“A”。参考答案:A 例题3 : ()这时,我们才发现社区里的工作人员虽然很多,但是在一些死角里还会看见灰尘。 ()到了社区,同学们都冻得发抖,但又不敢松懈。 ( )虽然很冷,但我们每个人额头上都有豆大的汗珠。 ()有的同学在擦窗户,有的同学在扫水泥地面,有的同学在捡石头,有的同学在除草,还有同学在推小车送垃圾,我也和一些同学捡石块。 ()由于风太大的缘故,扫起来了许多的尘土,把大家呛得直打喷气,但大家都不觉得苦,继续埋头苦干。 ()我们各自分工之后,都开始行动起来了。 ( ) 同学们把自己的活干完之后又去帮忙干别的事了。 解题思路: 乱句排文的练习可以帮助学生训练思维,此题是按事件发展顺序排列,先是事件的起因,再是事件的过程,最后是结果。 题目答案:2 1 7 4 5 3 6

五种排序算法分析

深圳大学实验报告 课程名称:算法分析与复杂性理论 实验项目名称:实验一排序算法性能分析 学院:计算机与软件学院 专业:软件工程 指导教师:杨烜 报告人:赖辉学号:班级:软工学术型实验时间:2015-10-15 实验报告提交时间:2015-11-24 教务部制

一.实验目的 1.掌握选择排序、冒泡排序、合并排序、快速排序、插入排序算法原理 2.掌握不同排序算法时间效率的经验分析方法,验证理论分析与经验分析的一致性。二.实验步骤与结果 实验总体思路: 根据实验要求,需要用while循环控制用户选择相应算法(选择通过switch实现)或者选择输入0跳出while循环,退出程序。Switch中选择相应的算法后需要通过一个for(int j=0;j<5;j++)循环更改数组大小MAX的值(MAX *= 10),从而控制输入不同问题规模的耗时。再通过一个for(int i=0;i<20;i++)循环控制20组随机数组。为了使得程序输出更加直观,部分数据后面没有输出。相应结果和过程如下所示(代码和结果如下图所示)。 各排序算法的实现及实验结果: 1、随机数产生 代码1: srand((unsigned)time(NULL)); For i=0 to 19 randNum(MAX,array); 当问题规模较小时,生成随机函数randNum()在for循环下运行时间短,每次产生的随机数组都是一样的,将srand((unsigned)time(NULL))语句放在for循环外面,就产生了20组不同的随机数组。

图1、产生20组随机数组 2、选择排序 代码2: for i=0 to n-2 min=i for j= i+1 to n-1 if ele[min]>ele[j] min=j swap(ele[i],ele[min]) //交换元素 图2、选择排序在不同数据规模下排序所消耗的时间3、冒泡排序 代码3: for i= 0 to n-1 for j=0 to n-1-i if a[j]>a[j+1] swap(a[j],a[j+1]) //交换

数据结构各种排序算法总结

数据结构各种排序算法总结 计算机排序与人进行排序的不同:计算机程序不能象人一样通览所有的数据,只能根据计算机的"比较"原理,在同一时间内对两个队员进行比较,这是算法的一种"短视"。 1. 冒泡排序BubbleSort 最简单的一个 public void bubbleSort() { int out, in; for(out=nElems-1; out>0; out--) // outer loop (backward) for(in=0; in a[in+1] ) // out of order? swap(in, in+1); // swap them } // end bubbleSort() 效率:O(N2) 2. 选择排序selectSort public void selectionSort() { int out, in, min; for(out=0; out

3. 插入排序insertSort 在插入排序中,一组数据在某个时刻实局部有序的,为在冒泡和选择排序中实完全有序的。public void insertionSort() { int in, out; for(out=1; out0 && a[in-1] >= temp) // until one is smaller, { a[in] = a[in-1]; // shift item to right --in; // go left one position } a[in] = temp; // insert marked item } // end for } // end insertionSort() 效率:比冒泡排序快一倍,比选择排序略快,但也是O(N2) 如果数据基本有序,几乎需要O(N)的时间 4. 归并排序mergeSort 利用递归,不断的分割数组,然后归并有序数组 效率为O(N*logN),缺点是需要在存储器中有一个大小等于被排序的数据项数目的数组。public void mergeSort() // called by main() { // provides workspace long[] workSpace = new long[nElems]; recMergeSort(workSpace, 0, nElems-1); } //-----------------------------------------------------------

相关文档
相关文档 最新文档