文档库 最新最全的文档下载
当前位置:文档库 › 高等数学练习题附答案

高等数学练习题附答案

高等数学练习题附答案
高等数学练习题附答案

第一章 自测题

一、填空题(每小题3分,共18分)

1. ()

3lim

sin tan ln 12x x x

x →=-+ .

2. 1

x →= . 3.已知212lim 31

x x ax b

x →-++=+,其中为b a ,常数,则a = ,b = . 4. 若()2sin 2e 1

,0,0ax x x f x x

a x ?+-≠?

=??=?

在()+∞∞-,上连续,则a = . 5. 曲线2

1

()43

x f x x x -=

-+的水平渐近线是 ,铅直渐近线是 . 6. 曲线()

121e x

y x =-的斜渐近线方程为 .

二、单项选择题(每小题3分,共18分)

1. “对任意给定的()1,0∈ε,总存在整数N ,当N n ≥时,恒有ε2≤-a x n ”是数列{}n x 收敛于a 的 .

A. 充分条件但非必要条件

B. 必要条件但非充分条件

C. 充分必要条件

D. 既非充分也非必要条件

2. 设()2,0

2,0x x g x x x -≤?=?+>?,()2,0

,

x x f x x x ?<=?

-≥?则()g f x =???? . A. 22,02,0x x x x ?+

2,0

x x x x ?+

3. 下列各式中正确的是 .

A .01lim 1e x x x +

→??

-= ???

B.01lim 1e x

x x +→??+= ??? C.1lim 1e x x x →∞??-=- ??? D. -11lim 1e x

x x -→∞

??+= ???

4. 设0→x 时,tan e

1x

-与n x 是等价无穷小,则正整数n = .

A. 1

B. 2

C. 3

D. 4

5. 曲线2

2

1e 1e

x x y --+=

- .

A. 没有渐近线

B. 仅有水平渐近线

C. 仅有铅直渐近线

D. 既有水平渐近线又有铅直渐近线 6.下列函数在给定区间上无界的是 . A.

1sin ,(0,1]x x x ∈ B. 1

sin ,(0,)x x x ∈+∞ C. 11sin ,(0,1]x x x ∈ D. 1

sin ,(0,)x x x

∈+∞

三、求下列极限(每小题5分,共35分)

1.22x →

2.(

)

120

lim e

x x

x x -→+

3.(

)

1lim 123

n

n n

n →∞

++

4

.21sin

lim

x x

5. 设函数()()1,0≠>=a a a x f x ,求()()()2

1lim ln 12n f f f n n →∞????.

6.

1

4

2e sin lim

1e

x

x

x

x

x

??

+

?

+

?

?

+

??

7

lim

x+

四、确定下列极限中含有的参数(每小题5分,共10分)

1.

2

2

1

2

lim2

2

x

ax x b

x x

-+

=-

+-

2

.(lim1 x

x

→-∞

=

五、讨论函数

,0

()(0,0,1,1)

0,0

x x

a b

x

f x a b a b

x

x

?-

?

=>>≠≠

?

?=

?

在0

x=处的连续性,若

不连续,指出该间断点的类型.(本题6分)

六、设sin sin sin ()lim sin x t x

t x t f x x -→??

= ???

,求()f x 的间断点并判定类型. (本题7分)

七、设()f x 在[0,1]上连续,且(0)(1)f f =.证明:一定存在一点10,2ξ??

∈????,使得

1()2f f ξξ?

?=+ ??

?.(本题6分)

第二章 自测题

一、填空题(每小题3分,共18分)

1.设()f x 在0x 可导,且00()0,()1f x f x '==,则01lim h hf x h →∞

??

-

= ???

. 2.设2

1cos f x x ??=

???,则()f x '=

. 3.d x = . 4.设sin (e )x

y f =,其中()f x 可导,则d y = .

5.

设y =12y ??

'=

???

. 6.曲线1sin xy x y =+在点1,ππ??

???

的切线方程为 . 二、单项选择题(每小题3分,共15分)

1.下列函数中,在0x =处可导的是 .

A.||y x =

B.|sin |y x =

C.ln y x =

D.|cos |y x =

2.设()y f x =在0x 处可导,且0()2f x '=,则000

(2)()

lim

x f x x f x x x

→+--= .

A.6

B.6-

C.16

D.1

6

-

3.设函数()f x 在区间(,)δδ-有定义,若当(,)x δδ∈-时恒有2

|()|f x x ≤,则0x =是

()f x 的 .

A.间断点

B.连续而不可导的点

C.可导的点,且(0)0f '=

D.可导的点,且(0)0f '≠

4.设2sin ,0

(),0x x f x x x

,则在0x =处()f x 的导数 .

A.0

B.1

C.2

D.不存在

5.设函数()f u 可导,2

()y f x =当自变量x 在1x =-处取得增量0.1x =-时,相应的函数增量y 的线性主部为0.1,则(1)f '= .

A.1-

B.0.1

C.1

D.0.5

三、解答题(共67分)

1.求下列函数的导数(每小题4分,共16分)

(1)(

ln e x y =+

(2))

11y

?=??

(3)a

a

x

a x a

y x a a =++

(4)cos (sin )

x

y x =

2.求下列函数的微分(每小题4分,共12分) (1)2

ln sin y x x x =+ (2)2

1cot e x

y =

(3)y x

=

3.求下列函数的二阶导数(每小题5分,共10分) (1)2

cos ln y x x = (2)11x

y x

-=+

4.设e ,1

(),1

x x f x ax b x ?≤=?+>?在1x =可导,试求a 与b .(本题6分)

5.设sin ,0()ln(1),0

x x f x x x

()f x .(本题6分)

6.设函数()y y x =由方程2

2ln 1x xy y

-=所确定,求d y .(本题6分)

7.设()y y x =由参数方程ln tan cos 2sin t x a t y a t

???=+? ?????=?

,求22d d ,d d y y x x .(本题6分)

8.求曲线3

213122t x t y t t +?=????=+??

在1t =处的切线方程和法线方程.(本题5分)

第三章 自测题

一、填空题(每小题3分,共15分)

1.若0,0a b >>均为常数,则30

lim 2x x

x

x a b →?+?

=

???

. 2.20

11lim tan x x x x →??-=

???

. 3.3

arctan lim

ln(12)

x x x

x →-=+ . 4.曲线2

e x

y -=的凹区间 ,凸区间为 .

5.若()e x f x x =,则()

()n f

x 在点x = 处取得极小值.

二、单项选择题(每小题3分,共12分)

1.设,a b 为方程()0f x =的两根,()f x 在[,]a b 上连续,(,)a b 可导,则()f x '0=在

(,)a b .

A.只有一个实根

B.至少有一个实根

C.没有实根

D.至少有两个实根

2.设()f x 在0x 处连续,在0x 的某去心邻域可导,且0x x ≠时,0()()0x x f x '->,则0()f x 是 .

A.极小值

B.极大值

C.0x 为()f x 的驻点

D.0x 不是()f x 的极值点 3.设()f x 具有二阶连续导数,且(0)0f '=,0

()

lim

1||

x f x x →''=,则 . A.(0)f 是()f x 的极大值 B.(0)f 是()f x 的极小值

C .(0,(0))f 是曲线的拐点

D .(0)f 不是()f x 的极值,(0,(0))f 不是曲线的拐点 4.设()f x 连续,且(0)0f '>,则0δ?>,使 .

A.()f x 在(0,)δ单调增加.

B.()f x 在(,0)δ-单调减少.

C.(0,)x δ?∈,有()(0)f x f >

D.(,0)x δ?∈-,有()(0)f x f >.

三、解答题(共73分)

1.已知函数()f x 在[0,1]上连续,(0,1)可导,且(1)0f =,

证明在(0,1)至少存在一点ξ使得()

()tan f f ξξξ

'=-.(本题6分)

2.证明下列不等式(每小题9分,共18分) (1)当0a b <<时,ln b a b b a

b a a

--<<

.

(2)当02

x π

<<

时,

2

sin x x x π

<<.

3.求下列函数的极限(每小题8分,共24分)

(1)0

e e 2lim sin x x x x

x x

-→---

(2)21

sin 0

lim(cos )

x

x x →

(3)10

(1)e

lim

x

x x x

→+-

4.求下列函数的极值(每小题6分,共12分) (1)123

3

()(1)f x x x =-

(2)2,0

()1,0

x x x f x x x ?>=?+

5.求2ln x

y x

=的极值点、单调区间、凹凸区间和拐点.(本题6分)

6.证明方程

1

ln0

e

x x+=只有一个实根.(本题7分)

第一章自测题

一、填空题(每小题3分,共18分)

1. 2. 3. , 4.

5. 水平渐近线是,铅直渐近线是

6.

二、单项选择题(每小题3分,共18分)

1. C

2. D

3. D

4. A

5. D 6.C

三、求下列极限(每小题5分,共35分)

解:1.. 2.

.

3. ,

又.

4.. 5.

. 6.,

所以,原式.

7..

四、确定下列极限中含有的参数(每小题5分,共10分)

解:1.据题意设,则,令得,令得,故.

2.左边,右边故,则.

五、解:,故在

处不连续,所以为得第一类(可去)间断点.

六、解:,而

,故,都是的间断点,,故为的第一类(可去)间断点,

均为的第二类间断点.

七、证明:设,显然在上连续,

而,,

故由零点定理知:一定存在一点,使,即.

第二章自测题

一、填空题(每小题3分,共18分)

1. 2. 3. 4.

5. 6.或

二、单项选择题(每小题3分,共15分)

1. D

2. A

3. C

4. D

5. D

三、解答题(共67分)

解:1.(1) .

(2).

(3)

.

(4) 两边取对数得,两边求导数得

,.

2.求下列函数的微分(每小题4分,共12分)

(1) .

(2).

(3) .

3.求下列函数的二阶导数(每小题5分,共10分)

(1),

.

(2),.

4.首先在处连续,故,故,

其次,,

,由于在处可导,故,故,.

5.,,

故,由于在,时均可导,故.

6.方程可变形为,两边求微分得

,故.

7.,

.

8.,故.当时,.

故曲线在处的切线方程为,即,

法线方程为,即.

第三章自测题

一、填空题(每小题3分,共15分)

1. 2. 3. 4., 5.

二、单项选择题(每小题3分,共12分)

1.B 2.A

3.B,提示:由题意得,,当时,;即当时,,当时,,从而在取得极小值

4. C,提示:由定义,由极限的保号性得,当时,

,即

三、解答题(共73分)

证明:1.令,则在上连续,可导,且;由罗尔定理知,至少存在一点,使得,

故,即.

2.(1)令,则在区间上满足拉格朗日中值定理的条件.由拉格朗日中值定理得,至少存在一点,使得即,又,得到,从而.

(2)令,则,从而当时单调递增,即,故;令,则

,即当时单调递减,即,故;从而当时,.

解:3.(1).

(2).

(3)

.

4.⑴函数的定义域为;,令得驻点,不可导点

;当时,;当时,;当时,;当时,;故为极大值点,极大值为;为极小值点,极小值为.

⑵,令得驻点,为不可导点.

当时,;当时,;当时,;故为极大值点,极大值为;为极小值点,极小值为.

5.定义域为;,,令得驻点,令

得;列表得:

- - + + +

- + + + -

单增凸单减凸单减凹极小值点单增凹

拐点

6.证明:令,显然,;令得唯一驻点,且;故在上当时取得极小值;当时,,所以方程只有一个实根.

大学高等数学A1期末模拟题及答案

第 1 页 共 4 页 ……………………………………………装…… …… ……………………订…… …………………… 线………………… … … … … ……… … …… … ……… 此处不能书写 此处不能书写 此处不能书写 此处不能书写 此处不能书写 此 处不能书写 此处不能书写 高等数学A (1)综合测试3 一、选择填空题(18%) 1. d = _________d . 2. 2 1 1dx x +∞ ?=_____________. 3. 设 ()f x 是定义在[1,1]-上的连续奇函数, 则 12 1 (sin )x f x dx -? =________. 4. 设函数()21, 0,1 sin ,0 x x f x x x x ?+≥? =?

高数 下 期末考试试卷及答案

2017学年春季学期 《高等数学Ⅰ(二)》期末考试试卷(A ) 注意: 1、本试卷共 3 页; 2、考试时间110分钟; 3、姓名、学号必须写在指定地方 1.已知a 与b 都是非零向量,且满足-=+a b a b ,则必有( ). (A)-=0a b (B)+=0a b (C)0?=a b (D)?=0a b 2.极限2 2 22 00 1 lim()sin x y x y x y →→+=+( ). (A) 0 (B) 1 (C) 2 (D)不存在 3.下列函数中,d f f =?的是( ). (A )(,)f x y xy = (B )00(,),f x y x y c c =++为实数 (C )(,)f x y = (D )(,)e x y f x y += 4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ). (A )驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D )非驻点,非极值点 5.设平面区域2 2 :(1)(1)2D x y -+-≤,若1d 4D x y I σ+= ??,2D I σ=,3D I σ=,则有( ). (A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I << 6.设椭圆L : 13 42 2=+y x 的周长为l ,则22(34)d L x y s +=?( ). (A) l (B) l 3 (C) l 4 (D) l 12 7.设级数 ∑∞ =1 n n a 为交错级数,0()n a n →→+∞,则( ). (A)该级数收敛 (B)该级数发散 (C)该级数可能收敛也可能发散 (D)该级数绝对收敛 8.下列四个命题中,正确的命题是( ). (A )若级数 1n n a ∞ =∑发散,则级数 21n n a ∞ =∑也发散 (B )若级数 21 n n a ∞ =∑发散,则级数 1 n n a ∞=∑也发散 (C )若级数 21n n a ∞ =∑收敛,则级数 1 n n a ∞ =∑也收敛 (D )若级数 1 ||n n a ∞=∑收敛,则级数2 1 n n a ∞=∑也收敛 二、填空题(7个小题,每小题2分,共14分). 1.直线3426030x y z x y z a -+-=??+-+=? 与z 轴相交,则常数a 为 . 2.设(,)ln(),y f x y x x =+则(1,0)y f '=______ _____. 3.函数(,)f x y x y =+在(3,4)处沿增加最快的方向的方向导数为 . 三峡大学 试卷纸 教学班号 序号 学号 姓名 …………………….……答 题 不 要 超 过 密 封 线………….………………………………

高数一试题(卷)与答案解析

《 高等数学(一) 》复习资料 一、选择题 1. 若23lim 53 x x x k x →-+=-,则k =( ) A. 3- B.4- C.5- D.6- 2. 若21lim 21 x x k x →-=-,则k =( ) A. 1 B.2 C.3 D.4 3. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( ) A.22y x =+ B.22y x =-+ C.23y x =+ D.23y x =-+ 4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.1 32 y x =-+ 5. 211 lim sin x x x →-=( ) A.0 B.3 C.4 D.5 6.设函数0()(1)(2)x f x t t dt =+-?,则(3)f '=( ) A 1 B 2 C 3 D 4 7. 求函数43242y x x =-+的拐点有( )个。 A 1 B 2 C 4 D 0

8. 当x →∞时,下列函数中有极限的是( )。 A. sin x B. 1x e C. 21 1x x +- D. arctan x 9.已知'(3)=2f ,0(3)(3) lim 2h f h f h →--=( ) 。 A. 32 B. 3 2 - C. 1 D. -1 10. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。 A. 极小值 B. 极大值 C. 最小值 D. 最大值 11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( ) A.至少有两个零点 B. 有且只有一个零点 C. 没有零点 D. 零点个数不能确定 12. [()'()]f x xf x dx +=? ( ). A.()f x C + B. '()f x C + C. ()xf x C + D. 2()f x C + 13. 已知2 2 (ln )y f x =,则y '=( C ) 2222(ln )(ln )f x f x x '. 24(ln )f x x ' C. 224(ln )(ln )f x f x x ' D. 22 2(ln )() f x f x x ' 14. ()d f x ? =( B) A.'()f x C + B.()f x C.()f x ' D.()f x C + 15. 2ln x dx x =?( D ) A.2ln x x C + B. ln x C x + C.2ln x C + D.()2ln x C +

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

高等数学A(一)期末试题及答案

大学2013~2014学年第一学期课程考试试卷(A 卷) 课 程 考试时间 ………………注:请将答案全部答在答题纸上,直接答在试卷上无效。……………… 一、填空题(每小题2分,共10分) (1) =-∞→x x x )11(lim e 1 . (2) 设)tan(2x x y +=,则=dy dx x x x )(sec )21(22++ . (3) 曲线36223+++=x x x y 的拐点是 )6,1(- . (4) =-? 10211dx x 2π . (5) =?∞ +121dx x 1 . 二、选择题(每小题2分,共10分) (1) =∞→x x x 2sin lim (A) (A) 0. (B) 1. (C) 2. (D) 21. (2) 设x x x f tan )(=,则0=x 是函数)(x f 的(A) (A) 可去间断点. (B) 跳跃间断点. (C) 第二类间断点. (D) 连续点. (3) 当0→x 时,下列变量中与x 是等价无穷小的是(B) (A) x 3sin . (B) 1-x e . (C) x cos . (D) x +1. (4) 函数)(x f 在0x 点可导是它在该点连续的(C) (A) 充分必要条件. (B) 必要条件. (C) 充分条件. (D) 以上都不对. (5) 设)(x f 在),(∞+-∞内有连续的导数,则下列等式正确的是(D) (A) ?=')()(x f dx x f . (B) C x f dx x f dx d +=?)()(. (C) )0()())((0f x f dt t f x -='?. (D) )())((0x f dt t f x ='?. 三、计算下列极限、导数(每小题6分,共18分) (1) 213lim 21-++--→x x x x x .解: )13)(2()13)(13(lim 213lim 2121x x x x x x x x x x x x x x ++--+++-+--=-++--→→ 6 2)13)(2(1lim 2)13)(2)(1(22lim 11-=++-+-=++-+--=→→x x x x x x x x x x

高等数学[下册]期末考试试题和答案解析

高等数学A(下册)期末考试试题 一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上) 1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ?= .

2、设ln()z x xy =,则32 z x y ?=?? . 3、曲面2 2 9x y z ++=在点(1,2,4)处的切平面方程为 . 4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 . 5、设L 为连接(1,0)与(0,1)两点的直线段,则 ()L x y ds +=? . ※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分) 1、求曲线222 222 239 3x y z z x y ?++=??=+??在点0M (1,1,2)-处的切线及法平面方程. 2、求由曲面2222z x y =+及22 6z x y =--所围成的立体体积. 3、判定级数 1 1 (1)ln n n n n ∞ =+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2, z z x x y ?????. 5、计算曲面积分 ,dS z ∑ ??其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部. 三、(本题满分9分) 抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离 的最大值与最小值. (本题满分10分) 计算曲线积分 (sin )(cos )x x L e y m dx e y mx dy -+-? , 其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周2 2 (0)x y ax a +=>. 四、(本题满分10分) 求幂级数1 3n n n x n ∞ =?∑的收敛域及和函数.

高数上试题及答案

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()()2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

大学高数学习方法

一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近12年的数学学习生涯,仍然会有很多同学在初学大学数学时遇到很多困惑与疑问,尤其是作为数学系的学生,在面对 着“数学分析”之类的课程时,更可能会有一种摸不着头脑的感觉。那么,究竟应该如何在大学中学好高数呢? 学习数学首先就要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,这一点在刚开始进入大学学习数学时尤为重要。 在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重要性。而刚一进入大学,由于理论体系的截然不同,使得我们会在学习开始阶段遇到不小的麻烦,甚至会有不如意的结果出现(比如考试不及格),这时就一定得坚持住,能够知难而进,继续跟随老师学习。 很多同学在刚入学不久,就是一直感觉很晕。对于上课老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,“吉米多维奇”上的习题根本不敢去看,因为书上的课后习题都没几个会做的。这确实与高中的情形相差太大了,香港浸会大学的杨涛教授曾经在一次讲座中讲过:“在初学高数时感觉晕是很正常的,而且还得再晕几个月可能就好了。”所以关键是不要放弃,初学者必须要克服这个困难才能学好大学理论知识。除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为大学数学理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。 比如说,在“数学分析”一开始学习实数系的确界存在基本定理时,可能会有很多同学花很多时间来思考引入这个定理的目的是什么,但往往因为当时根本没什么基础,所以对于这个问题怎么想也想不通,甚至觉得这个定理没有什么实质的意义。直到后来学到了多元部分的数学分析,以及专业课“实变函数”时,才开始慢慢理解它的真正目的。这里之所以要说明是实数系有确界存在

高等数学A1期末考试试卷.

天津理工大学考试试卷 2009~2010学年度第一学期 《高等数学 AI》期末考试试卷 课程代码: 1590116 试卷编号: 1-A 命题日期: 2009年 12月 1日答题时限: 120 分钟考试形式:闭卷、笔试 得分统计表: 大题号总分一 二三四五核查人签名 阅卷教师 一、单项选择题(从4个备选答案中选择最适合的一项,每小题2分,共20分)得分 1、设 在 的某邻域内有定义,且,则 在() A、有极大值; B、有极小值; C、无极值; D、不能判定是否取得极值. 2、设,则在内,是( A、有界函数; B、单调函数; C、周期函数; D、偶函数.

3、由两条曲线和所围成的图形的面积为() A、 B、 C、 D、 4、设函数在上连续可导,且,则当 时() A. ; B. ; C. ; D. . 5、设,则在区间内适合 ( A、只有一个; B、不存在; C、有三个; D、有两个. 6、设空间曲面与yoz面相截,截线的方程为( A、; B、; C、; D、. 7、下列反常积分收敛的是() A、; B、; C、; D、; 8. 若,则为( A、; B、; C、; D、.

9、若则() A、; B、; C、; D、 . 10、直线与平面的关系是( A、平行,但直线不在平面上; B、直线在平面上; C、垂直相交; D、相交但不垂直. 二、填空题(每空3分,共30分) 得分 1、,且,则; 2、; 3、设连续,且=; 4、; 5、由定积分的几何意义知; 6、由曲线及直线所围成图形的面积是; 7、设,则;

8、设有点A(2 ,3,1),B(1,,2)和C(1,4,2),且,则 = ; 9、若在内连续,则; 10、函数的极小值是. 三、计算题(每小题7分,共28分) 1、已知函数由方程确定,求. 2、已知,求. 3、求由曲线及所围成的平面图形绕轴旋转所得的旋转体的体积. 4、求. 四、解下列各题(每小题8分,共16分) 得分 1、已知的一个原函数为,求. 2、求过点,且与直线垂直的平面方程. 五、证明题(本题6分)

高等数学1试卷(附答案)

一、填空题(共6小题,每小题3分,共18分) 1. 由曲线2cos r θ=所围成的图形的面积是 π 。 2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dx x = - 。 3. 函数2 sin y x =的带佩亚诺余项的四阶麦克劳林公式为2 44 1()3 x x o x -+。 4. 1 1 dx =? 。 5. 函数x x y cos 2+=在区间?? ? ???20π,上的最大值为 6 π +。 6. 222222lim 12n n n n n n n n →∞?? +++ ?+++? ? = 4 π。 二、选择题(共7小题,每小题3分,共21分) 1. 设21cos sin ,0 ()1,0x x x f x x x x ? +

暨南大学《高等数学I 》试卷A 考生姓名: 学号: 3. 1 +∞=? C 。 A .不存在 B .0 C .2π D .π 4. 设()f x 具有二阶连续导数,且(0)0f '=,0 lim ()1x f x →''=-,则下列叙述正确的是 A 。 A .(0)f 是()f x 的极大值 B .(0)f 是()f x 的极小值 C .(0)f 不是()f x 的极值 D .(0)f 是()f x 的最小值 5.曲线2x y d t π-=?的全长为 D 。 A .1 B .2 C .3 D .4 6. 当,a b 为何值时,点( 1, 3 )为曲线3 2 y ax bx =+的拐点? A 。 A .32a =- ,92b = B. 32a =,9 2b =- C .32a =- ,92b =- D. 32a =,92 b = 7. 曲线2x y x -=?的凸区间为 D 。 A.2(,)ln 2-∞- B.2(,)ln 2-+∞ C.2(,)ln 2+∞ D.2(,)ln 2 -∞ 三、计算题(共7小题,其中第1~5题每小题6分, 第6~7题每小题8分,共46分) 1. 2 1lim cos x x x →∞?? ?? ? 解:()2 1 cos lim , 1 t t t x t →==原式令 )0 0( cos ln lim 2 0型t t t e →= (3分) t t t t e cos 2sin lim ?-→= 12 e - = (6分)

关于高等数学方法与典型例题归纳

关于高等数学方法与典 型例题归纳 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其 自动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030+-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关 键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重 要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→

最新高数期末考试题.

往届高等数学期终考题汇编 2009-01-12 一.解答下列各题(6*10分): 1.求极限)1ln(lim 1 x x e x ++ →. 2.设?? ? ??++++=22222ln a x x a a x x y ,求y d . 3.设?????-=-=3 232t t y t t x ,求22d d x y . 4.判定级数()()0!1 2≥-∑∞ =λλλn n n n n e 的敛散性. 5.求反常积分() ?-10 d 1arcsin x x x x . 6.求?x x x d arctan . 7.?-π 03d sin sin x x x . 8.将?????≤≤<=ππ πx x x x f 2,02,)(在[]ππ,-上展为以π2为周期的付里叶级数,并指出收敛于()x f 的区间. 9.求微分方程0d )4(d 2=-+y x x x y 的解. 10.求曲线1=xy 与直线0,2,1===y x x 所围平面图形绕y 轴旋转一周所得旋转体的体积. 二.(8分)将()()54ln -=x x f 展开为2-x 的幂级数,并指出其收敛域. 三.(9分)在曲线()10sin 2≤≤=x x y 上取点() ()10,sin ,2≤≤a a a A ,过点A 作平行于ox 轴的直线L ,由直线L ,oy 轴及曲线()a x x y ≤≤=0sin 2所围成的图形记为1S ,由直线L ,直线1=x 及曲线 ()1sin 2≤≤=x a x y 所围成的图形面积记为2S ,问a 为何值时,21S S S +=取得最小值. 四.(9分)冷却定律指出,物体在空气中冷却的速度与物体和空气温度之差成正比,已知空气温度为30℃时,物体由100℃经15分钟冷却至70℃,问该物体冷却至40℃需要多少时间? 五.(8分)(学习《工科数学分析》的做(1),其余的做(2)) (1)证明级数∑∞ =-02n nx e x 在[),0+∞上一致收敛. (2)求幂级数()∑ ∞ =-----1 221 21212)1(n n n n x n 的收敛域及和函数. 六.(6分)设()[]b a C x f ,2∈,试证存在[]b a ,∈ξ,使()()()()?''-+ ??? ??+-=b a f a b b a f a b dx x f ξ324 1 2

高等数学(A)下期末试卷及答案

《高等数学A 》(下)期末试卷A 答案及评分标准 一、选择题(本大题分5小题,每题3分,共15分) 1、交换二次积分 ? ? x e dy y x f dx ln 0 1 ),(的积分次序为 ( c ) (A ) ? ? x e dx y x f dy ln 0 1 ),( (B ) ?? 1 ),(dx y x f dy e e y (C ) ? ? e e y dx y x f dy ),(10 (D ) ?? e x dx y x f dy 1 ln 0 ),( 2、锥面22y x z +=在柱面x y x 22 2≤+内的那部分面 积为 (D ) (A ) ? ? - θπ π ρρθcos 20 22 d d (B ) ? ? - θπ π ρ ρθcos 20 222 d d (C ) ? ? - θπ π ρρθcos 20 2 22 2d d (D ) ? ? - θπ π ρρθcos 20 22 2d d 3、若级数∑∞ =-1 )2(n n n x a 在2-=x 处收敛,则级数 ∑∞ =--1 1 )2(n n n x na 在5=x (B )

(A ) 条件收敛 (B ) 绝对收敛 (C ) 发散(D ) 收敛性不确定 4、下列级数中收敛的级数为 ( A ) (A ) ∑∞ =-1 )13(n n n n (B ) ∑∞ =+1 21n n n (C ) ∑∞ =+1 11 sin n n (D ) ∑∞ =1 3!n n n 5、若函数 )()2()(2 222x axy y i xy y x z f -+++-=在复平面上处处解析,则实常数a 的值 为 ( c ) (A ) 0 (B ) 1 (C ) 2 (D ) -2

(完整word版)大一高数练习题

1.填空题 1、当0→x 时,x cos 1-与2x 相比较是 同阶 无穷小。 2、=→2 203sin lim x x x 1/3 3、曲线(1cos ),sin x t t y t =-=在t π=处的切线斜率为 -1/2 4、当k 满足条件__x>2_________时,积分?+∞-1 1k x dx 收敛 5、曲线||x y =的极值点是 x=0 6 、设函数y =则dy = 2xdx 7、若()lim(1)x x t f t x →∞ =+,则=')(t f e t 8、?-=22 35sin cos π πxdx x 0 9、若?=t xdx t f 12ln )(,则=')(t f ln 2 t 10、微分方程0cos 2=-y dx x dy 的通解为siny=x 2__________ 1、当0→x 时,x cos 1-与22x 相比较是 无穷小. 2、设函数?????=≠=0001sin )(3x x x x x f 当当,则=')0(f . 3、设)4)(2)(3)(5()(--++=x x x x x f ,则方程0)(='x f 有 个实根. 4、当k 满足条件___________时,积分1 2k dx x +∞+?收敛. 5、设函数21x y -=,则dy = . 6、函数)2(-=x x y 的极值点是 . 7、=≠∞→)0(sin lim a x a x x . 8、若?=t x dx e t f 02 )(,则=')(t f .

9、?-=π πxdx x 32sin . 10、微分方程 0cos 2=-x dy y dx 的通解为___________. 一、 单项选择题(每小题2分,共10分) 1、函数x x y -=3ln 的定义域为(B ) A ),0(+∞ B ]3,(-∞ C )3,0( D ]3,0( 2、函数()f x 在0x 处)0()0(00+=-x f x f 是()f x 在0x 处连续的( B ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 无关条件 3、函数93)(+=x x f 在0=x 处(C ) A 不连续 ; B 可导; C 连续但不可导; D 无定义 4、下列式子中,正确的是(B ) A. ()()f x dx f x '=? B. 22()()d f x dx f x dx =? C. ()()f x dx f x =? D.?=)()(x f dx x f d 5、设()x f x e -=,则(ln )f x dx x =? _C______. A . 1C x + B. ln x C + C. 1C x -+ D. ln x C -+ 二、单项选择题(每小题2分,共10分) 1.函数241)(x x x f -+=的定义域为( C ). A .]2,2[-; B. )2,2(-; C. ]2,0()0,2[ -; D. ),2[+∞. 2、若)(x f 在0x 的邻域内有定义,且)0()0(00+=-x f x f ,则(B ). A )(x f 在0x 处有极限,但不连续; B )(x f 在0x 处有极限,但不一定连续;

高等数学上册复习要点及解题技巧

高等数学上册复习要点及解题技巧 第一章:1、极限(夹逼准则) 2、连续(学会用定义证明一个函数连续,判断间断点类型) 第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续 2、求导法则(背) 3、求导公式也可以是微分公式 第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则 3、泰勒公式拉格朗日中值定理 4、曲线凹凸性、极值(高中学过,不需要过多复习) 5、曲率公式曲率半径 第四章、第五章:积分 不定积分:1、两类换元法 2、分部积分法(注意加C ) 定积分: 1、定义 2、反常积分 第六章:定积分的应用 主要有几类:极坐标、求做功、求面积、求体积、求弧长 第七章:向量问题不会有很难 1、方向余弦 2、向量积 3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面 4、空间旋转面(柱面) 高数解题技巧 高数解题的四种思维定势 ●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 ●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。 ●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 ●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

线性代数解题的八种思维定势 ●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。 ●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 ●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。 ●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。 ●第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理 ●第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 ●第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。 ●第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。 概率解题的九种思维定势 ●第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式 ●第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式 ●第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发 生概率是用全概率公式计算。关键:寻找完备事件组 ●第四句话:若题设中给出随机变量X ~ N 则马上联想到标准化 ~ N(0,1)来处理有关问题。 ●第五句话:求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使 联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而的求法类似。 ●第六句话:欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联 想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的 区域的公共部分。 ●第七句话:涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作 (0-1)分解。即令

2015-2016-1《高等数学A1》期末总练习

2015 -2016-1 高等数学A1 期末总练习 一.计算题 1.求极限0sin lim (1cos )ln(1) x x x x x →---。 2.已知函数22(tan )tan[()],y f x f x =+且()f x 可导,求y '。 3.讨论函数1arctan ,00,0 x x y x x ?≠?=??=?在0x =处的连续性与可导性。 4 .已知22 ((4)x x y x e -+=+,求该函数图形在点()12,12的切线方程。 5.设方程y e xy e +=确定隐函数()y y x =,求()0y '和()0y ''。 6.求由参数方程33cos sin x a t y a t ?=?=?所确定的函数的一阶及二阶导数dy dx ,22d y dx 。 7、设( )ln(f x x =求函数()f x 当自变量x 由1改变到1.01的微分。 8 .求极限0x →。 9.求函数sin (1) x y x x =-的间断点并判别其类型。 10.设(2)x y f =,其中()f u 有二阶导数,求y '及y ''。 11.设函数()y f x =由方程y x x y =所确定,求dy 。 12. 求由参数方程sin 1cos x t t y t =-??=-?所确定的函数的一阶及二阶导数dy dx ,22d y dx 。 13.设()y f x =由方程cos e 1y x y +=所确定,求曲线()y f x =在点(0,0)处的 切线方程. 14.求数列的极限)(lim n n n n -+∞ →2。

15.求函数的极限22011lim sin x x x →??- ?? ?。 16.已知函数()1 tan x y x =,求y d 。 17.设函数)(x f y =由方程e 1sin()y x y ++= 所确定,求2020d d x y y x ==。 18.求曲线21arctan ,ln() x t y t =??=+?在参数 t = 1时所对应的点处的切线方程和法线方程。 19.设函数)(x f 在0=x 处可导,且,)(,)(a f f ='=000 求220e 1()lim () x x f x x →-。 20.求出函数()2()ln 1f x x =+的凹凸区间及拐点。 21.计算 22020lim arc x t x te dt tanx →? 。 22.计算 ()21dx x x +?。 23. 计算 10?。 24.计算反常积分22d ln x x x +∞ ?。 25.求摆线sin ,(02)1cos ,x t t t y t π=-?≤≤?=-? 一拱的全长。 26.求解方程200(1)21 3 x x x y x y y y =='''?+=??'==??;。 27. 设曲线2y x ax b =++与321y xy =+在点(11),处相切,求常数,a b 的值。 28.计算2sin 00(1)lim sin x t x e dt x x →--?。 29.计算41x dx x -? 。 30 .计算3 2 0?。 31.求微分方程2(2arccos )0xy x dx x dy -+=的通解。 32.求微分方程2335y y y x '''+-=-满足(0)0,(0)4y y '==的特解。 33.求极限102lim[sin (12)]x x x x x →++。 34.求arctan x xdx ?。

高等数学下册期末考试试题附标准答案75561

高等数学(下册)期末考试试题 考试日期:2012年 院(系)别 班级 学号姓名 成绩 一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上) 1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ?=-4. 2、设ln()z x xy =,则32 z x y ?=??-(1/y2). 3、曲面2 2 9x y z ++=在点(1,2,4)处的切平面方程为 2 (x-1)+4(y-2)+z-4=0. 4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于,在x π=处收敛于. 5、设L 为连接(1,0) 与(0,1)两点的直线段,则 ()L x y ds +=?√2. ※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分) 1、求曲线222 222 239 3x y z z x y ?++=??=+??在点0M (1,1,2)-处的切线及法平面方程. 2、求由曲面2222z x y =+及22 6z x y =--所围成的立体体积. 故所求的体积为V dv Ω =???22 2620 20 2(63)6d d dz d πρρθρπρρπ-==-=?? (7) 3、判定级数 1 1 (1) ln n n n n ∞ =+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z z x x y ?????.

相关文档