文档库 最新最全的文档下载
当前位置:文档库 › 三元物系活度系数计算公式

三元物系活度系数计算公式

三元物系活度系数计算公式
三元物系活度系数计算公式

三元物系活度系数计算公式

一、威尔逊公式

1、适用:互溶物系,特别是适用于极性和非极性混合物的活度系数计算

2、关系式

①????

??A ++A -+A +A ++A +=323221121

1332121

12213321211)ln(ln x x A x A x x x x A x x x γ ???

? ??++-+++332231131

1331221133x A x A x A A x A x x A x ②????

??A ++A -++A +++=313122112

233221

121123322112)ln(ln x A x x A x x A x x A x x A x γ ???

? ??++-+++332231132

2332211233x A x A x A A x x A x A x ③????

??A ++A -++A +++=313122113

332231

131133223113)ln(ln x A x x x A x A x x x A x A x γ ???

?

??++-+++23

3221123

3322311322A x x A x A x A x A x A x 其中:??

? ??Λ-=

RT V

V A L L

122

112exp

??

? ??Λ-=

RT V V A L

L 211

221exp

??? ??Λ-=

RT V V A L

L 133

1

13exp

??

?

??Λ-=

RT V V A L

L 311

331exp ?

?

? ??Λ-=

RT V V A L

L 233

223exp

??

? ??Λ-=

RT V V A L

L 322

3

32exp

--L

i V 物系液相摩尔体积,kmol m /3

; --R 热力学常数,8.314;

--T 热力学温度,K

--Λ威尔逊参数,λλ-=Λ12 λλ-=Λ21

12A 、--21A 端值常数

二、NRTL 公式

1、适用:液液部分互溶物系;

2、一般式

∑∑∑∑∑======?????

?

??

????

??????

?

?-+

=

C

j C k k kj C

k kj kj k ij C k k kj ij

j C k k

ki

C

j j

ji ji

i x G G x x G G

x x G

x G 1

111

1

1ln τττ

γ

)

exp(ji ji ji

a G

τ-= RT

g g jj ij ij /)(-=τ

RT g g

ii ji

ji

/)(-=τ

ji

ij τ

τ≠ ji

ij G

G ≠

1

==jj

ii G

G 1

==jj

ii

τ

τ

3、三元物系

+???

?

?

?++++-+++

++++=

3

31221111313132121211

1111133122111111

13

312211113

313122*********ln x G x G x G G x G x G x x G x G x G G x x G x G x G x G x G x G τττττττγ

???

? ??++++-+++

???

? ?

?++++-++333223113333332323213131133332231131333

32222112323232222212

1211233222211212

2x G x G x G G x G x G x x

G x G x G G x x G x G x G G x G x G x x G x G x G G x ττττττττ

+???

? ?

?++++-+++

++++=

3

31221111313132121211

1112133122111121

13

322221123

323222222112122ln x G x G x G G x G x G x x G x G x G G x x G x G x G x G x G x G τττττττγ

???

?

?

?++++-+++

???

? ??++++-++333223113333332323213131233332231132333

32222112323232222212

1212233222211222

2x G x G x G G x G x G x x

G x G x G G x x G x G x G G x G x G x x G x G x G G x ττττττττ

???

?

?

?++++-+++

++++=

3

31221111313132121211

1113133122111131

13

332231133

333322323113133ln x G x G x G G x G x G x x G x G x G G x x G x G x G x G x G x G τττττττγ

???

? ?

?++++-+++

???

? ??++++-+++

333223113333332323213131333332231133333

32222112323232222212

1213233222211232

2x G x G x G G x G x G x x

G x G x G G x x G x G x G G x G x G x x G x G x G G x ττττττττ

三元物系活度系数计算公式

三元物系活度系数计算公式 一、威尔逊公式 1、适用:互溶物系,特别是适用于极性和非极性混合物的活度系数计算 2、关系式 ①???? ??A ++A -+A +A ++A +=323221121 1332121 12213321211)ln(ln x x A x A x x x x A x x x γ ??? ? ??++-+++332231131 1331221133x A x A x A A x A x x A x ②???? ??A ++A -++A +++=313122112 233221 121123322112)ln(ln x A x x A x x A x x A x x A x γ ??? ? ??++-+++332231132 2332211233x A x A x A A x x A x A x ③???? ??A ++A -++A +++=313122113 332231 131133223113)ln(ln x A x x x A x A x x x A x A x γ ??? ? ??++-+++23 3221123 3322311322A x x A x A x A x A x A x 其中:?? ? ??Λ-= RT V V A L L 122 112exp ?? ? ??Λ-= RT V V A L L 211 221exp

??? ??Λ-= RT V V A L L 133 1 13exp ?? ? ??Λ-= RT V V A L L 311 331exp ? ? ? ??Λ-= RT V V A L L 233 223exp ?? ? ??Λ-= RT V V A L L 322 3 32exp --L i V 物系液相摩尔体积,kmol m /3 ; --R 热力学常数,8.314; --T 热力学温度,K ; --Λ威尔逊参数,λλ-=Λ12 λλ-=Λ21 12A 、--21A 端值常数 二、NRTL 公式 1、适用:液液部分互溶物系; 2、一般式 ∑ ∑∑∑∑∑======????? ? ?? ???? ?????? ? ?-+ = C j C k k kj C k kj kj k ij C k k kj ij j C k k ki C j j ji ji i x G G x x G G x x G x G 1 111 1 1ln τττ γ ) exp(ji ji ji a G τ-= RT g g jj ij ij /)(-=τ

相关性分析(相关系数)

相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于-1~1之间。相关系数不是等距度量值,而只是一个顺序数据。计算相关系数一般需大样本. 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。 相关系数的计算公式为<见参考资料>. 其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式<见参考资料>. 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式<见参考资料>. 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。 简单相关系数: 又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。 复相关系数: 又叫多重相关系数

如何用SPSS求相关系数

参见: [1] 衷克定数据统计分析与实践—SPSS for Windows[M].北京:高等教育出版社,2005.4:195— [2] 试验设计与SPSS应用[M].北京,化学工业出版社,王颉著,2006.10:141— 多元相关与偏相关 如何用SPSS求相关系数 1 用列联分析中,计算lamabda相关系数,在分析——描述分析——列联分析 2 首先看两个变量是否是正态分布,如果是,则在analyze-correlate-bivariate中选择 pearson相关系数,否则要选spearman相关系数或Kendall相关系数。如果显著相关,输出结果会有*号显示,只要sig的P值大于0.05就是显著相关。如果是负值则是负相关。 在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同 两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述. Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。 Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格; 计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。 计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman或kendall相关 Pearson 相关复选项积差相关计算连续变量或是等间距测度的变量间的相关分析Kendall 复选项等级相关计算分类变量间的秩相关,适用于合并等级资料 Spearman 复选项等级相关计算斯皮尔曼相关,适用于连续等级资料 注: 1若非等间距测度的连续变量因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关 2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用Spearman 或Kendall相关。 3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。对一般情况默认数据服从正态分布的,故用Pearson分析方法。 在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项:

附录相关系数r的计算公式的推导.doc

相 关 系 数 r AB 的 计 算 公 式 的 推 导 设 A i 、 B i 分别表示证券 A 、证券 B 历史上各年获得的收益率; A 、 B 分别表示证券 A 、证券 B 各 年获得的收益率的平均数; P i 表示证券 A 和证券 B 构成的投资组合各年获得的收益率,其他符号的含义 同上。 2 = 1A n 1 2 = 1B n 1 2 1 P = 1 n = 1 n 1 = 1 n 1 = 1 n 1 = 1 n 1 =A 2 A × =A 2 2 A A ( A i A) 2 (B i B) 2 (P i 1 P i ) 2 n 1 [( A A A i A B B i ) ( A A A i A B B i )]2 n [( A A A i A B B i ) (A A A A B B)] 2 [ A A ( A i A) A B (B i B)] 2 [ 2 ( A i ) 2 2 ( B i B ) 2 2 A A A B ( A i )( B )] A A A A B A B i ( A i A) 2 A B 2 × ( B i B) 2 2A A A B [( A i A)( B i B)] n 1 n 1 n 1 2 2 2A A A B [( A i A)( B i B)] A B B n 1 对照公式( 1)得: ( A i A) 2 (B i B) 2 = × n × r AB n 1 1 ∴ r AB = [( A i A)( B i B)] ( A i A)2 (B i B) 2 这就是相关系数 r AB 的计算公式。 投资组合风险分散化效应的内在特征 1. 两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式( 1)左右两端对 A A 求一阶导数,并注意到 A B =1—A A : 2 2 2 A B r AB ( P )′=2A A A -2(1 -A A ) B + 2 (1 - A A ) A B r AB -2A A 令 ( P 2 )′=0 并简化,得到使 P 2 取极小值的 A A : 2 B r AB A A = B A ( 3) 2 2 2 A B r AB A B 式中,0 ≤ A A ≤ 1, 否则公式( 3)无意义。

相关系数计算 理论简化

统计相关计算 互协方差矩阵描述两个随机信号()i x ξ和()j x ξ之间的相关程度。一般来说,互协方差函数越大,则两个随机信号的相关程度越强;反之,相关程度越弱。但是,这种使用互协方差的绝对大小度量两个随机向量的相关程度并不方便。 两个随机变量()x ξ和()y ξ之间的相关系数定义为: def xy xy x y c ρσσ= (1.1) 2x σ和2y σ分别是()x ξ和()y ξ的方差。对相关系数的定义公式,易知 01xy ρ≤≤ (1.2) 相关系数xy ρ给出了两个随机变量()x ξ和()y ξ之间的相似程度的度量:xy ρ越接近于零,随机变量()x ξ和()y ξ之间的相似程度越弱;反之,xy ρ越接近于1,则变量()x ξ和()y ξ之间的相似程度越大。特别地,相关系数的两个极端值0和1有重要的意义。 容易验证随机变量()x ξ和()y ξ之间只相差一个固定的幅值比例因子和一个固定的相位角,这两个随机变量完全相关(或相干)。 备注:在操作时一般选择无偏的情况 Matlab 编程 %% 统计的数据相关 clear ; %生成两组数据各50个 x=randint(1,50,[1 10]); y=randint(1,50,[1 10]); %% 做两个数据的统计相关性当n 很大的时候有偏估计和无偏估计是一致的

% 数据的互协方差 hxfcwp=cov(x,y,0); %数据的无偏协方差除以数据n-1 hxfcyp=cov(x,y,1); %数据的有偏协方差除以数据n % 数据的标准差 bzcwpx=var(x,0); %数据的无偏方差除以数据n-1 bzcwpy=var(y,0); %数据的无偏方差除以数据n-1 bzcypx=var(x,1); %数据的有偏方差除以数据n bzcypy=var(y,1); %数据的有偏方差除以数据n % 相关性计算 Awuxgx=hxfcwp/(sqrt(bzcwpx)*sqrt(bzcwpy));%无偏的相关性 Ayuxgx=hxfcyp/(sqrt(bzcypx)*sqrt(bzcypy));%有偏的相关性 % 无偏的相关性和有偏的相关性得到的是2*2矩阵非对角元素是他们的相关性%% 更简单的是直接matlab自带结果 Az=corrcoef(x,y); %matlab自带的求解器非对角元素是他们的相关性

近年电解质溶液活度的计算方法

近20年电解质溶液活度的计算方法 近20年电解质溶液活度的计算方法【摘要】讨论了近20年电解质溶液活度的计算方法。凡是涉及到溶液中的反应,以及和溶液有关的性质,都直接地和溶液的浓度有关,而对电解质溶液,于和理想溶液有偏差,所以在讨论电解质时,就不能用浓度这一慨念,而要活度,对于活度,关键在于对活度系数的计算。最近20年内对于电解质活度的计算方法有众多,但他们大多数都是建立在实验的基础之上,而的主要内容也是建立在前人的实验基础之上,其中包括非缔合式和缔合式电解质溶液活度系数的测定方法,平均球近似计算电解质活度系数和理想电解质溶液活度的计算。【关键词】电解质溶液、测定、理想溶液、活度、计算方法The ways to calculate electrolytic solution in recent 20

years Digest:This article discusses about the ways to calculate electrolytic solution in recent 20 years. All the reactions and solution properties which are related to solution have something to do with the concentration of solution directly. However, in terms of electrolytic solution, there is a deviation with the ideal one, so we measure it by activity in stead of concentration. While, on the part of activity, it is crucial to calculate its coefficient. There are plenty of measures to compute the activity of electrolytic solution, and most of them are on the basis of experiments, so is the case with this thesis. While it contains associate, nonassociated ,average and ideal measuring methods of the activity of electrolytic solution. Key words:Electrolytic solution、Measuring、Ideal solution、Activity、Computing methods 电解质的定义概念:在水溶液里

Pitzer活度系数模型研究与开发

龙源期刊网 https://www.wendangku.net/doc/1f9222300.html, Pitzer活度系数模型研究与开发 作者:韩莎莎郑俊强孙晓岩项曙光 来源:《当代化工》2020年第01期 Research and Development of Pitzer Activity Coefficient Model HAN;Sha-sha,ZHENG;Jun-qiang,SUN;Xiao-yan,XIANG;Shu-guang (Process Systems Engineering Institute, Qingdao University of Science and Technology,Shandong Qingdao 266042, China) 自然界、生命体和工业过程中普遍存在着电解质溶液,是化工行业中的重要组成部分,也是众多过程处理的对象,目前逐渐成为许多有机物和無机物反应的良好媒介,因此对电解质溶液的理论研究、电解质溶液的热力学性质的研究及电解质过程模拟研究具有重要的工业实用价值和理论意义。 其中在电解质溶液理论及含电解质溶液体系的热力学性质方面,Debye[1]、Meissner[2]、Bromley[3]、Chen[4]、陆小华[5]、左有祥[6,7]、Loehe[8]、李以圭[9]和杜艳萍[10]等都做出了很大的贡献。目前Pitzer是用于计算水电解质溶液体系(尤其是离子强度为6摩尔以下的强电解质体系)的活度系数等热力学性质较为准确的电解质活度系数模型,也是应用最为广泛的电解质溶液理论。最初1973年,Pitzer修正了D-H理论[1],得到了经典的半经验Pitzer模型[11],但适用的浓度较低。随后为了扩大浓度适用范围,用Margules方程修正了短程项,得到了Pitzer[12](1980年)模型。之后,Bromley[3](1973年)简化的Pitzer模型、Pitzer[13](1975年)添加的静电非对称混合项、Fürst和Renon[14](1982年)研究的多种参数对模型用于1-1型电解质固 液平衡的影响、李以圭[15,16](1986年)的Pitzer-Li方程、Simonson等[17](1986年)的Pitzer-Simonson方程、Kim等[18,19](1988年)回归的高浓度体系参数、Clegg等[20,21](1992年)的Clegg-Pitzer模型、李以圭等[22,23](1994和1997年)的Li-Mather模型、Pitzer[24](1999年)以及Chen等[25](2008年)都对Pitzer模型做了相应的修正和完善。因此,参照Fortran语言编程如Zemaitis[26]中实现含电解质体系的模拟计算过程,也可通过Visual C++编程语言开发Pitzer模型,实现被已有的支持CAPE-OPEN标准的大型通用化工模拟软件所调用,从而对工业中含电解质溶液过程进行设计、模拟、计算和优化,更好地解决较复杂的工程问题。 本文主要是根据Pitzer修正的水电解质溶液体系活度系数计算模型[13](1975年模型)进行开发并通过对一些应用实例的模拟计算并验证结果对该开发的Pitzer活度系数模型进行分析、讨论和评价。 1 ;Pitzer活度系数模型

线性相关系数的计算

Spss电脑实验-第六节(3)线性相关系数的计算 https://www.wendangku.net/doc/1f9222300.html,更新时间:2006-1-19 21:11:30 关注指数:7992 Ⅲ.线性相关系数的计算 1. 线性相关的概念 如果各统计指标是定量数据,要了解它们间的关系密切程度,可用线性相关分析。 例如:大家都知道的糖尿病病人,它靠胰岛素来治疗。现测量20 名糖尿病病人(以ID 来编号)血中的血糖值(y)、胰岛素值(x1)和生长激素值(x2)。我们即可分析 y、x1 和x2 间的两两/ 双变量间的线性关系。数据见下面的程序文件CorreRegre2.sps 的例*2。 2. 线性相关计算的所用命令 用SPSS Analyze 菜单中的子菜单Correlate,其中的Bivariate 对话框即可计算两两/ 双变量间的线性相关系数r 及其显著性。这是通常最常见、最常用的情况。 本例所用程序文件名为CorreRegre2.sps 中的例*2。(例*2 中还有用于偏相关系数与距离相关系数的计算命令,详后)。 ---------------------------------------------------------------- *2. Prof. Zhang Weng-Tong: SPSS 11, P.273-277:. DATA LIST FREE /ID y x1 x2. BEGIN DATA. 1 12.21 15.20 9.51 2 14.54 16.70 11.43 3 12.27 11.90 7.53 4 12.04 14.00 12.17 5 7.88 19.80 2.33 6 11.10 16.20 13.52 7 10.43 17.00 10.07 8 13.32 10.30 18.89 9 19.59 5.90 13.14 10 9.05 18.70 9.63 11 6.44 25.10 5.10 12 9.49 16.40 4.53 13 10.16 22.00 2.16 14 8.38 23.10 4.26 15 8.49 23.20 3.42 16 7.71 25.00 7.34 17 11.38 16.80 12.75 18 10.82 11.20 10.88 19 12.49 13.70 11.06 20 9.21 24.40 9.16 END DATA. CORRELATIONS /VARIABLES=y x1 x2 /PRINT=TWOTAIL NOSIG. NONPAR CORR /VARIABLES=y x1 x2 /PRINT=SPEARMAN TWOTAIL NOSIG.

近20年电解质溶液活度的计算方法

近20年电解质溶液活度的计算方法 【摘要】本文讨论了近20年电解质溶液活度的计算方法。凡是涉及到溶液中的反应,以及和溶液有关的性质,都直接地和溶液的浓度有关,而对电解质溶液,由于和理想溶液有偏差,所以在讨论电解质时,就不能用浓度这一慨念,而要活度,对于活度,关键在于对活度系数的计算。最近20年内对于电解质活度的计算方法有众多,但他们大多数都是建立在实验的基础之上,而本文的主要内容也是建立在前人的实验基础之上,其中包括非缔合式和缔合式电解质溶液活度系数的测定方法,平均球近似计算电解质活度系数和理想电解质溶液活度的计算。 【关键词】电解质溶液、测定、理想溶液、活度、计算方法 The ways to calculate electrolytic solution in recent 20 years Digest: This article discusses about the ways to calculate electrolytic solution in recent 20 years. All the reactions and solution properties which are related to solution have something to do with the concentration of solution directly. However, in terms of electrolytic solution, there is a deviation with the ideal one, so we measure it by activity in stead of concentration. While, on the part of activity, it is crucial to calculate its coefficient. There are plenty of measures to compute the activity of electrolytic solution, and most of them are on the basis of experiments, so is the case with this thesis. While it contains associate, nonassociated ,average and ideal measuring methods of the activity of electrolytic solution. Key words: Electrolytic solution、Measuring、Ideal solution、Activity、Computing methods

第三章:相关系数r 的计算公式的推导

设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。 2 A σ= 11 -n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ=11-n 2)1(∑∑-i i P n P =2)](1 )[(11i B i A i B i A B A A A n B A A A n +-+-∑∑ =2)]()[(1 1 B A A A B A A A n B A i B i A +-+-∑ =2)]()([1 1 B B A A A A n i B i A -+--∑ =)])((2)()([1 122 22B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2 A × 2 2 1 )(B i A n A A +--∑× 1 )] )([(21 )(2 ---+ --∑∑n B B A A A A n B B i i B A i =A 1 )])([(22 2 2 2---? ++∑n B B A A A A A i i B A B B A A σσ 对照公式(1)得: = 1 )(2 --∑n A A i × 1 )(2 --∑n B B i × r AB ∴ r AB = ∑∑∑-?---2 2 ) ()()] )([(B B A A B B A A i i i i 这就是相关系数r AB 的计算公式。 投资组合风险分散化效应的内在特征 1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2 P σ)′=2 A A 2 A σ-2 (1-A A )2 B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2 P σ)′= 0 并简化,得到使2 P σ取极小值的A A : AB B A i i r n B B A A σσ =---∑1 )])([(

活度系数计算

电解质溶液活度计算理论进展 【摘要】:由于溶液大多数不是理想溶液,需要用活度来代替浓度。活度系数 又是描述活度与浓度的差异程度,因此活度系数的计算对于反应过程相当的重要。近几年,随着活度系数理论模型的不断发展,活度系数的计算方法也在不断的提高、创新。本文在回顾电解质溶液热力学经典理论的基础上,对活度系数计算做了综述。 【关键词】:活度系数活度模型热力学模型活度计算 Electrolyte solution activity in recent years, progress in computational theory Abstract:Solution is not ideal because most of the solution need to replace the concentration of activity. Activity coefficient is described differences in degree of activity and concentration, so the calculation of activity coefficients for the reaction process was very important. In recent years, with the activity coefficient of the continuous development of theoretical models, the calculation of activity coefficients are also constantly improving and innovation. In this paper, recalling the classical theory of thermodynamics of electrolyte solution, based on calculations made on the activity coefficient is reviewed. Keywords: Activity coefficient, Activity Model, Thermodynamic model, Activity calculation 1、活度与活度系数 绝大多数的反应都有溶液(固溶体、冶金熔体及水溶液)参加,而这些溶液经常都不是理想溶液,在进行定量的热力学计算和分析,溶液中各组分的浓度必须代以活度。活度的概念首先由刘易斯(G.N.Lewis)于1907年提出,迅速被应用于电化学,以测定水溶液中电解质的活度系数。活度不能解决冶金熔体的结构问题。它能指出组分在真实溶液与理想溶液中热力学作用上的偏差,但不能提供造成偏差的原因。

常用相关分析方法及其计算

二、常用相关分析方法及其计算 在教育与心理研究实践中,常用的相关分析方法有积差相关法、等级相关法、质量相关法,分述如下。 (一)积差相关系数 1. 积差相关系数又称积矩相关系数,是英国统计学家皮尔逊(Pearson )提出的一种计算相关系数的方法,故也称皮尔逊相关。这是一种求直线相关的基本方法。 积差相关系数记作XY r ,其计算公式为 ∑∑∑===----= n i i n i i n i i i XY Y y X x Y y X x r 1 2 1 2 1 ) ()() )(( (2-20) 式中i x 、i y 、X 、Y 、n 的意义均同前所述。 若记X x x i -=,Y y y i -=,则(2-20)式成为 Y X XY S nS xy r ∑= (2-21) 式中n xy ∑称为协方差,n xy ∑的绝对值大小直观地反映了两列变量的一致性程 度。然而,由于X 变量与Y 变量具有不同测量单位,不能直接用它们的协方差 n xy ∑来表示两列变量的一致性,所以将各变量的离均差分别用各自的标准差 除,使之成为没有实际单位的标准分数,然后再求其协方差。即: ∑∑?= = )()(1Y X Y X XY S y S x n S nS xy r

Y X Z Z n ∑?= 1 (2-22) 这样,两列具有不同测两单位的变量的一致性就可以测量计算。 计算积差相关系数要求变量符合以下条件:(1)两列变量都是等距的或等比的测量数据;(2)两列变量所来自的总体必须是正态的或近似正态的对称单峰分布;(3)两列变量必须具备一一对应关系。 2. 积差相关系数的计算 利用公式 (2-20)计算相关系数,应先求两列变量各自的平均数与标准差,再求离中差的乘积之和。在统计实践中,为方便使用数据库的数据格式,并利于计算机计算,一般会将(2-20)式改写为利用原始数据直接计算XY r 的公式。即: ∑∑∑∑∑∑∑---= 2 22 2 ) () (i i i i i i i i XY y y n x x n y x y x n r (2-23) (二)等级相关 在教育与心理研究实践中,只要条件许可,人们都乐于使用积差相关系数来度量两列变量之间的相关程度,但有时我们得到的数据不能满足积差相关系数的计算条件,此时就应使用其他相关系数。 等级相关也是一种相关分析方法。当测量得到的数据不是等距或等比数据,而是具有等级顺序的测量数据,或者得到的数据是等距或等比的测量数据,但其所来自的总体分布不是正态的,出现上述两种情况中的任何一种,都不能计算积差相关系数。这时要求两列变量或多列变量的相关,就要用等级相关的方法。 1. 斯皮尔曼(Spearman)等级相关 斯皮尔曼等级相关系数用R r 表示,它适用于两列具有等级顺序的测量数据,或总体为非正态的等距、等比数据。

液相活度系数方程总结

液相活度系数方程总结 1、Wohl 模型 Wohl 模型是一个普通模型,可以概括Margules 方程(1895年)、Van Laar 方程(1910年)以及Scatchard-Hamer 方程(1953年)。 Whol 在1946年提出将超额自由焓E G 表示为有效容积分率的函数,并展开成为Mc Laurin 级数: +++=∑∑∑∑∑∑∑∑∑∑i j k l ijkl l k j i i j k ijk k j i i j ij j i i i i E a Z Z Z Z a Z Z Z a Z Z x q RT G (1-1) 式中:i Z ——混合物中i 组分的有效容积分率:1=? = ∑∑i i i i i i i i Z x q x q Z ; i x ——i 组分的摩尔分数; i q ——i 组分的有效摩尔体积; ij a ——i-j 两组分之间的交互作用参数,称为二尾标交互作用参数; ijk a ——i-j-k 三组分之间的交互作用参数,称为三尾标交互作用参数; ijkl a ——i-j-k-l 四组分之间的交互作用参数,称为四尾标交互作用参数; 略去四分子以上集团相互作用项,将式(1-1)用于二元系统时变为: () 1222 2111222112212211332a Z Z a Z Z a Z Z x q x q RT G E ++=+ (1-2) 令: ()12212132a a q A += ()11212232a a q B += 代入上式,根据() j n p T i E i n RT nG ,,ln ? ?? ?????=γ将式(1-2)对i n 进行偏微分,经整理得: ??? ?? ????? ??-+=A q q B Z A Z 2112 2 12ln γ (1-3a ) ??? ?? ????? ??-+=B q q A Z B Z 1222122ln γ (1-3b ) 式(1-3)中包括三个参数A 、B 与12q q ,其值必须用实验值来确定。 2、Scatchard-Hamer eq . 用纯组分的摩尔体积l V 1及l V 2代替有效摩尔体积1q 及2q ,则式(1-3a )和式(1-3b )就变为:

第三章附录:相关系数r 的计算公式的推导

相 关 系 数 r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符 号的含义同上。 2 A σ=1 1-n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ= 12)1(-i i P P 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2P σ)′=2 A A 2A σ-2 (1-A A )2B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2P σ)′= 0 并简化,得到使2 P σ取极小值的A A : A A =AB B A B A AB B A B r r σσσσσσσ22 22-+- … …………………………………(3) 式中, 0≤A A ≤1,否则公式(3)无意义。 由于使(2P σ)′=0的A A 值只有一个,所以据公式(3)计算出的A A 使2 P σ为最小值。

以上分析清楚地说明:对于证券A和证券B,只要它们的系数r AB 适当小(r AB 的“上限”的 计算,本文以下将进行分析),由证券A和证券B构成的投资组合中,当投资于风险较大的证券B 的资金比例不超过按公式(3)计算的(1—A A ),会比将全部资金投资于风险较小的证券A的方 差(风险)还要小;只要投资于证券B的资金在(1—A A )的比例范围内,随着投资于证券B的资 金比例逐渐增大,投资组合的方差(风险)会逐渐减少;当投资于证券B的资金比例等于(1—A A )时,投资组合的方差(风险)最小。这种结果有悖于人们的直觉,揭示了风险分散化效应的内在特征。按公式(3)计算出的证券A和证券B的投资比例构成的投资组合称为最小方差组合,它是证券A和证券B的各种投资组合中方差(亦即风险)最小的投资组合。

相关系数计算公式

相关系数计算公式 相关系数计算公式 Statistical correlation coefficient Due to the statistical correlation coefficient used more frequently, so here is the use of a few articles introduce these coefficients. The correlation coefficient: a study of two things (in the data we call the degree of correlation between the variables). If there are two variables: X, Y, correlation coefficient obtained by the meaning can be understood as follows: (1), when the correlation coefficient is 0, X and Y two variable relationship. (2), when the value of X increases (decreases), Y value increases (decreases), the two variables are positive correlation, correlation coefficient between 0 and 1. (3), when the value of X increases (decreases), the value of Y decreases (increases), two variables are negatively correlated, the correlation coefficient between -1.00 and 0. The absolute value of the correlation coefficient is bigger, stronger correlations, the correlation coefficient is close to 1 or -1, the higher degree of correlation, the correlation coefficient is close to 0 and the correlation is weak. The related strength normally through the following range of judgment variables: The correlation coefficient 0.8-1.0 strong correlation 0.6-0.8 strong correlation

活度计算

最近二十年内电解质溶液活度计算理论 摘要:纵观所有的化学反应过程,大多数的反应都是在水溶液中进行的。因此, 溶液中活度的计算占据着重要的作用,本文介绍了最近二十年的电解质溶液计算的理论及其进展。 关键字:二十年内,电解质溶液,活度计算,理论 In the recent twenty years activity calculation in electrolyte solution theory Wu hui Abstract : . Throughout all of the chemical reaction process, most of the reactions are performed in aqueous solution. Therefore, in the solution the calculation of activity plays an important role in the recent twenty years, this paper introduces the calculating theory and its progress in electrolyte solution Key word : In twenty years, electrolyte solution, calculation of activity, theory 引言: 电解质溶液广泛存在于自然界中,同时也是绝大多数过程处理的对象,现在电解质溶液越来越成为许多无机反应和有机反应的良好媒介。在化工、生物、冶金、地质、海洋及环保等领域中得以广泛应用。因而,电解质溶液及其相关理论不断得到发展及进步,其中活度计算取得了一定的进展并产生了一些新的理论模型,本文将作一些简要和初步的介绍。 1.以Pitzer 电解质溶液理论为基础的二个改进型方程 电解质溶液热力学经典理论的适用范围是十分有限的,特别是对于温差变化大或浓度较大的溶液来说,计算值与实验值的差别较大。20世纪70年代统计力学理论得到了迅速的发展,以Pitzer 方程为代表的电解质溶液理论逐渐占据了主导地位。Pitzer 从电解质水溶液的径向分布函数出发,提出了溶液的总过量自由能表达式,再导出了渗透系数与活度系数的计算公式。近十年来,以Pitzcr 电解质溶液理论为基础的改进型方程的提出,使得在较宽的浓度范围内溶液活度系数和溶液总自由能的计算结果和实验值符合得较好,该理论目前已成为世界上普遍承认的较为成熟的电解质溶液理论。 1.1 Pitzcr 电解质溶液理论基础 Pitzer 在1973午提出了计算电解质溶液渗透系数和溶液活度系数的方程[1,2] 渗透系数的表达式如下: φαν ννβ β ν ννφφMX X M I MX MX X M X M C m e m bI I A Z Z 2 3 2 )1()0(2 1 21 ) 2()(2112 1 ++++-=-- 由实验数据拟合的结果得到参数b 和α的具体数值。Pitzer 等已将25℃时二 百八十多种电解质水溶液的渗透系数数据进行了回归,得到了各个与β有关的数

常用相关分析方法及其计算

二、常用相关分析方法及其计算 在教育与心理研究实践中,常用的相关分析方法有积差相关法、等级相关法、质量相关法,分述如下。 (一)积差相关系数 1. 积差相关系数又称积矩相关系数,是英国统计学家皮尔逊(Pearson )提出的一种计算相关系数的方法,故也称皮尔逊相关。这是一种求直线相关的基本方法。 积差相关系数记作XY r ,其计算公式为 ∑∑∑===----=n i i n i i n i i i XY Y y X x Y y X x r 12121 )()())(((2-20) 式中i x 、i y 、X 、Y 、n 的意义均同前所述。 若记X x x i -=,Y y y i -=,则(2-20)式成为 Y X XY S nS xy r ∑=(2-21) 式中n xy ∑称为协方差,n xy ∑的绝对值大小直观地反映了两列变量的一致性程度。然而,由于X 变量与Y 变量具有不同测量单位,不能直接用它们的协方差n xy ∑来表示两列变量的一致性,所以将各变量的离均差分别用各自的标准差除,使之成为没有实际单位的标准分数,然后再求其协方差。即: Y X Z Z n ∑?=1(2-22) 这样,两列具有不同测两单位的变量的一致性就可以测量计算。 计算积差相关系数要求变量符合以下条件:(1)两列变量都是等距的或等比的测量数据;(2)两列变量所来自的总体必须是正态的或近似正态的对称单峰分布;(3)两列变量必须具备一一对应关系。 2. 积差相关系数的计算 利用公式(2-20)计算相关系数,应先求两列变量各自的平均数与标准差,再求离中差的乘积之和。在统计实践中,为方便使用数据库的数据格式,并利于计算机计算,一般会将(2-20)式改写为利用原始数据直接计算XY r 的公式。即:

相关文档