文档库 最新最全的文档下载
当前位置:文档库 › 激光扫描共聚焦显微镜精确测量有机包裹体气液比方法研究

激光扫描共聚焦显微镜精确测量有机包裹体气液比方法研究

激光扫描共聚焦显微镜精确测量有机包裹体气液比方法研究
激光扫描共聚焦显微镜精确测量有机包裹体气液比方法研究

激光扫描共聚焦显微镜精确测量有机包裹体气液比方法研究

王存武1.2 邹华耀2 刘建章1 姜丽娜2

(1中国地质大学资源学院石油系,湖北武汉 430074;2中国石油大学石油与天然气成藏机理教育部

重点实验室,北京102249)

摘要利用激光扫描共聚焦显微镜并结合三维重建软件可以精确获取有机包裹体的气液比。有机包裹体气泡部分采用透射光通道进行系列深度扫描,选取气泡直径最大处的扫描图象进行直径测量,并利用球体体积计算公式得到气泡体积,避免了由于油包裹体液相石油所发出的强烈荧光的遮挡造成的气泡体积偏小;将共聚焦扫描图象进行三维重建获取精确的有机包裹体总体积,与计算所得的气泡体积共同确定出有机包裹体的气液比。利用该方法对渤海湾盆地渤中凹陷BZ25-1-3井的一块流体包裹体样品的气液比进行了研究,测试的气液比为6.85%。精确获取有机包裹体的气液比不仅能为包裹体PVT性质的研究提供精确参数,还对流体包裹体微观性质的对比研究提供了借鉴,具有重要意义。

0 前言

近些年来,激光扫描共聚焦显微镜(Laser Confocal Scanning Microscope,简称LCSM)已广泛应用于细胞生物学、细胞生理学、神经生物学和神经生理学等几乎所有设计涉及细胞研究的现代医学和生物研究领域[1,2]。激光扫描共聚焦显微镜具有高灵敏度和能观察空间结构的独特优点,从而对被检样品从停留在表面、单层、静态局面的观察进展到立体、断层扫描、动态全面的观察,已成为生命科学研究领域的新一代强有力的研究工具[2]。

然而,激光扫描共聚焦显微镜在地质领域尤其是油气勘探领域中的应用才刚刚起步[3-7]。Aplin[8]最早报道了将激光扫描共聚焦显微镜用于精确获取烃类包裹体的气液比,并将获取的这一参数应用于流体包裹体古压力求取的研究,取得了较好的效果,使得古流体压力定量计算的精度有了较大飞跃。在此之后,Liu[9]、Thiéry[10]、Teinturier[11]等学者均运用激光扫描共聚焦显微镜精确获取了烃类包裹体的气液比,结合PVTsim软件获取了古流体压力,并将结果应用于油气运移和成藏方面的研究。但如何精确获取烃类包裹体的气液比仍然存在一些问题:烃类包裹体受激光照射时液体部分发出较强荧光,会使气泡部分被照亮,从而使测试的气液比偏小;由于有机包裹体形态的不规则性,利用圆台体积公式计算气液体积比时通常会产生系统误差。本文作者利用中国石油大学(北京)最新引进的Olympus FV1000型激光扫描共聚焦显微镜进行了一系列实验研究,提出了一种利用LCSM测试烃类包裹体气液比的新方法,极大提高了测量精度。

1原理

1.1激光扫描共聚焦显微镜工作原理

激光扫描共聚焦显微镜是以激光作为光源,通过激光孔及物镜的聚焦作用形成一个光点照射到样品上激发出荧光的一种光学显微镜。该系统主要包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜!检测器)、数字信号处理器、计算机以及图象输出设备(显示器!彩色打印机)等。物镜的质量决定了共聚焦光学切片及图像的质量,有自发荧光或可被荧光染料标记的样品被激光激发而发出荧光通过光学路经达到光电倍增管(PMT),PMT可以检测出发射光的波长及长度。其光学

系统采用照明点和探测点共轭这一特殊结构,使分辨率和成像的质量大大提高。激光光点通过一个特殊的双面反射镜的移动以完成扫描样品的过程,同时在光学路径中PMT前方安装了孔径可调的共聚焦点孔,可使任何非焦平面反射来的光线被阻挡在PMT之外,不能参与图像的形成,使得共聚焦图像比一般荧光显微镜的图像的清晰度大大提高,取得更好的图像效果[12]。

1.2 有机包裹体气液比测试原理

有机包裹体在受到紫外光、紫光、蓝光或激光照射时会在极短的时间内发射出比照射光波长更的光,这种光称为有机包裹体的荧光[13]。这是因为,当有机分子受到这些短波长的光照射时,有机分子中原来处于基态的电子受到激发而跃迁到较高的能级轨道上,跃迁后处于激发态的电子通过发射出相应的光量子释放能量回到基态,就发射出荧光。利用这一原理,将有机包裹体薄片置于激光扫描共聚焦显微镜下,确定出有机包裹体的顶底界后进行“Z”轴扫描,得到不同深度的系列切片。利用三维重建软件对这些切片进行三维重建,获取整个包裹体的体积,同时获取油包裹体中气泡部分的最大直径,并按球体计算出气泡体积,从而可以获取有机包裹体的气液比。

2 方法

本研究使用的是中国石油大学(北京)最新引进的OLYMPUS FV1000型共聚焦显微镜,主要由激光照射系统、扫描检测系统、全自动正置荧光显微镜系统、计算机系统及相关软件等组成。配有FV10扫描单元,具有三荧光通道,采用多线氩离子激光光源可以产生458nm、488nm和514nm波成的激光,功率为20mW,显微镜水平(x-y)分辨率约是0.2μm,垂向分辨率可达0.1μm。显微镜系统为OLYMPUS BX61型正置显微镜,配备60X高分辨率油镜(数值孔径为1.42)。

实验样品为渤海湾盆地渤中凹陷将流体包裹体双面剖光岩石薄片置于激光扫描共聚焦显微镜的

载物台上,在紫外光照射下寻找可用于测试的气液两相有机包裹体,之后将待测样品置于60X油镜下进行激光扫描图像的获取,由于液体部分发荧光而气体部分不发荧光从而使二者明显的区分开来。之后,在激光扫描显微镜计算机控制软件FV10-ASW1.5中,设置待扫描有机包裹体的顶底界(既向上移动电动平台时有机包裹体荧光消失时的深度为顶界,向下移动电动平台时荧光消失时的深度为底界),设置垂向采样间隔为0.1μm,采用深度扫描模式进行扫描,并使用透射光和荧光双通道扫描,获取垂向系列二维切片(如图所示)。将获取的系列二维图片在商业化图像处理软件IPP(Image-Pro Plus 5.1)中打开,利用该软件的三维重建功能进行三维图像的重建。

3 结果

图1展示了部分扫描图象,随着扫描深度的增加,流体包裹体图象经历了由小变大再变小的过程,气泡只在前32张图片中存在。由于气泡部分部发荧光,但如果烃类包裹体液相部分的荧光较强,就会部分掩盖气泡,使观测和计算的气液比偏小。因此,本研究首先在透射光通道的图象中确定气泡部分的直径(原则上是选择系列扫描图象中直径最大时的图象进行测量)。因为气泡部分在自然状态下是球形或十分接近的球形,故可根据球形体积计算公式进行计算,得到气泡体积。有机包裹体的总体积是IPP软件三维重建时自动计算得到的。

据此,我们可根据测量或计算得到的气泡体积和液相石油的体积计算气液比,结果如表1所示。

4 结论

通过激光扫描共聚焦显微镜进行有机包裹体气液比的精确测量,可以得到如下认识:

1、由于有机包裹体气泡部分常常受到液相部分较强的荧光的影响,用激光扫描图象直接恢复气

液比会使结果偏小,因此采用透射光通道扫描图象先进行气泡直径的测量,将其当做标准球体利用球体体积计算公式进行气泡体积的计算,使气液比结果更为可靠;

2、将有机包裹体扫描图象进行三维重建,可以得到精确的总体积数据,结合已计算的气泡体积

便可精确获取有机包裹体的气液比,其精度是目前最高的。

3、该方法测试的有机包裹体气液比时需选取个体较大、形态规则并且气泡部分较明显的包裹体。

参考文献

[1] 朱珊珊, 黄志江. 激光扫描共聚焦显微镜在生命科学研究中的应用. 国外医学. 2005, 26(2): 118~119

[2] 陈燕, 宋健, 汪浩等. 共聚焦扫描显微镜对厚样本光学断层及其三维重建. 解剖学杂志, 2005, 28(2): 188~192

[3] 王金星. 共聚焦显微扫描系统的新方法在地质科学研究中的应用. 地质论评, 2004, 50(2):

215~217

[4] 应凤祥, 杨式升, 张敏等. 激光扫描共聚焦显微镜研究储层孔隙结构. 沉积学报, 2002, 20(1): 75~79

[5] 孙先达, 索丽敏, 姜洪启等. 激光扫描共聚焦显微镜在石油地质上的应用. 电子显微学报,

23(4): 517~518

[6] 索丽敏, 孙先达, 张民志等. 激光共聚焦三维图像技术在油田中的应用. 仪器仪表学报, 2005, 26(8): 614~616

[7] 孙先达, 索丽敏, 张民志等. 激光共聚焦扫描显微检测技术在大庆探区储层分析研究中的新发展. 岩石学报, 2005, 21(5): 1479~1488

[8] Aplin A C, Macleod G, Larter S R, et al. Combined use of Confocal Laser Microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions[J]. Marine Petrolum Geo, 1999, 16: 97~110

[9] D.H. Liu, X.M. Xiao, J.K. Mi, et. al., Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software—a case study of Lower Ordovician carbonates from the Lunnan Low Uplift, Tarim Basin. Marine and Petroleum Geology, 2003(20): 29–43

[10] R. Thiéry, J. Pironon, F. Walgenwitz et al., Individual characterization of petroleum fluid inclusions (composition and P–T trapping conditions) by microthermometry and confocal laser scanning microscopy: inferences from applied thermodynamics of oils. Marine and Petroleum Geology 19 (2002) 847–859

[11] Teinturier, J. Pironon, F. Walgenwitz. Fluid inclusions and PVTX modelling: examples from the Garn Formation in well 6507/2-2, Haltenbanken, Mid-Norway. Marine and Petroleum Geology, 2002,19: 755–765

[12] 张旭, 俆维奇. 激光扫描共聚焦显微镜技术的发展及应用. 现代科学仪器, 2001, 2: 21~23

[13] 叶松, 张文淮, 张志坚. 有机包裹体荧光显微分析技术简介. 地质科技情报, 1998, 17(2): 76~80

三维激光扫描测量技术及其在测绘领域的应用

三维激光扫描测量技术及其在测绘领域的应用 徐晓雄刘松林李白 随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。20世纪90年代,随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格的逐步下降,它在测绘领域成为研究的热点,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一。

使用国产地面激光扫描仪扫描的输电线三维模型 三维激光扫描测量技术的特点 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、实时性强、精度高、主动性强、全数字特征等特点,可以极大地降低成本,节约时间,而且使用方便,其输出格式可直接与CAD、三维动画等工具软件接口。目前,生产三维激光扫描仪的公司有很多,它们各自的产品在测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描仪产品。

激光扫描测量系统的应用及发展

激光扫描测量系统的应用及发展 发表时间:2019-08-13T17:07:08.937Z 来源:《防护工程》2019年9期作者:张帆 [导读] 随着激光扫描测量系统在理论算法和硬件需求方面的不断完善与发展,势必在相关应用领域内引起新一轮的技术革新,不难看出其应用前景将十分广阔。 身份证号码:13040419910120**** 摘要:激光扫描仪作为一种新的空间数据获取手段,可高速、高精度获取物体表面点云的三维坐标值和实体纹理信息。从激光扫描测量系统的工作原理、激光扫描仪的分类、激光扫描测量系统的应用领域出发,阐述了激光扫描测量系统的应用现状,并指出该技术的未来发展趋势。 关键词:激光扫描测量:测量系统;应用发展 激光扫描测量系统通过后处理软件对采集的点云数据或者影像数据进行处理,进而转换成空间坐标系中的位置坐标或模型,并可以以多种不同的格式输出,以提供满足空间信息数据库建库的数据源和不同行业应用的需要。是集成了多种新技术的新型空间信息数据获取的手段与工具。激光扫描测量系统是继全站仪和GNSS之后,测绘领域又一次技术新突破。作为一种新的数据获取手段,以其非接触性、高效率、精确、高时效性和可获得大量测量目标物的三维坐标数据的优势广泛应用于各个研究领域,克服了传统测量技术的局限性,在国内外都有很好的发展和应用。 一、激光扫描测量系统概述 1.激光扫描测量技术原理 激光扫描仪的工作原理是通过发射红外线光束到旋转式镜头的中心,旋转检测环境周围的激光,一旦接触到物体,光束立刻被反射回扫描仪,由记录器记录并计算出激光发射点与物体的距离,最后再配合扫描的水平和垂直方向角,以获得每个点的X、Y、Z坐标。设测点到目标点的观测距离为S,精密时钟编码器同步测量获得每个激光脉冲的水平方向扫描角度观测值α和垂直方向扫描角度观测值θ。一般采用内部坐标系统,X轴在水平扫描面内,Y轴在垂直扫描面内与X轴垂直,Z轴与横向扫描面垂直。扫描过程中,在每个站点上都可以获取大量的点云测量数据,且每个点云的位置信息在扫描坐标中均以极坐标(α,ζ,d)的形式来存储。如果是用传统测量手段获取了控制点的大地坐标,则可以将将点云数据的扫描数据转换为大地坐标,然后应用到测绘领域的各项工程建设中。 2.激光扫描仪分类 现阶段扫描仪在扫描距离、扫描精度、点间距和数量、光斑点的大小等指标有所不同。按照系统运行平台,机载型激光扫描系统可以在短时间内采集大范围内详细的三维点云数据和影像信息。具有测量范围广、速度快的特点,但其测量精度相对较低,且造价昂贵。车载激光扫描系统主要用于城市的建设和维护。地面激光扫描系统是一种固定式扫描系统,精度可以达到变形监测精度的要求。现阶段,地面激光扫描系统在如矿区开采沉降、隧道变形等变形监测中已得到越来越广泛的应用[1]。便携式激光扫描系统是一种手持式激光测距系统,主要应用于测量物体的长度、面积、体积等。 二、激光扫描测量系统应用现状 近年来,随着电子信息技术的不断进步,激光扫描测量系统产业化应用方面的研究也在不断深入,其应用领域日益扩大,逐步从科学研究进入到人们的日常生活。 1.工程应用领域 大型土木工程测量:主要是在道路、桥梁、地下坑道等施工工程现场,对施工之前的地形图进行扫描,提高准确的数据支持,建立施工后目标三维图形,对施工进行质量上的把控,并进行相关数据的记录。复杂工业设备测量:工业设备一般管线林立,纵横交错,因此对工业设备进行规划、改造过程中,可以对激光扫描测量系统进行利用,生成高精度3d模型,为数据测量提供依据。地质应用:可以在地质方面的地质调查、编录、环境监测、安全监测以及裂缝研究中提供技术支持。变形监测:相较于常规变形监测技术,激光扫描测量系统可以得到精度均匀、密度高的数据,可以发现许多细节变化,数据中包含任意截取断面,能够对目标的整体稳定性分析。 2.文物保护领域 通过激光扫描测量仪的高精度、无缝隙测量实现对古建筑的高精度模拟存储、古建筑结构探测和古建筑修复性测量等。同时,还能够通过高精度测量对文物进行真伪鉴别,因此激光扫描测量仪是考古技术发展的重要突破。 3.空间信息技术领域 激光扫描技术与全球定位系统(GPS)、惯性导航系统(INS)、电荷耦合(CCD)等技术相结合,在大范围内高精度数字高程模型(DTM)的实时获取、城市三维模型重建、局部区域地理信息数据的获取等方面均表现出强劲的优势,成为测绘科学与技术的一个重要补充。 4.其他领域 激光扫描测量系统还有一些应用,在制造业中,基于激光扫描仪数据的快速原型法为产品模型设计开发提供了另一种思路,与虚拟制造技术(VirtualManufacturing)一起,被称为未来制造业的两大支柱技术。基于激光扫描测量系统重建的三维模型,可直接应用到国防、执行机关及政府机构等社会安全辨认上。在电脑游戏业方面,利用激光扫描仪获取数据构建三维场景。在电影特技制作方面,也有着广泛的应用[2]。激光扫描测量系统的介入促进了相关应用领域的发展,同时应用领域的大量需求也成为促进研究的动力。 三、激光扫描测量系统发展趋势 随着激光扫描测量系统、三维建模算法及技术的研究和计算机硬件环境的不断发展,结合其自身所具备的特点,激光扫描测量系统也将在以下方面取得较大的发展和应用。1)点云数据处理软件的多功能化和公用化,实现海量数据处理及实时数据共享。2)在硬件设备不变的情况下,测量方法和算法上提高精度,多种方法相结合。3)进一步扩大扫描范围,实现全圆球扫描,获得被测景物空间三维虚拟实体显示[3]。4)能够与其他测量设备(如IMU、GPS、全站仪等)进行联合测量,实现实时导航,定位、并扩大测程和提高精度。5)激光扫

Zeiss 激光扫描共聚焦显微镜 操作手册

Zeiss 激光扫描共聚焦显微镜操作手册 目录: 1 系统得组成 系统组成及光路示意图 实物照片说明 2 系统得使用 2、1 开机顺序 2、2 软件得快速使用说明 2、3 显微镜得触摸屏控制 2、4 关机顺序 3 系统得维护 1 系统得组成 激光扫描共聚焦显微镜系统主要由:电动荧光显微镜、扫描检测单元、激光器、电脑工作站及各相关附件组成。 系统组成及光路示意图: 电脑工作站 激光器 电动荧光显微镜扫描检测单元 实物照片说明: 电动荧光显微镜 扫描检测单元 CO2 培养系统控制器 激光器 电脑工作站 2 系统得使用 2、1 开机顺序 (1)打开稳压电源(绿色按钮) 等待2 分钟(电压稳定)后,再开其它开关 (2)主开关[ MAIN SWITCH ]“ON” 电脑系统[ SYSTEMS/PC ]“ON” 扫描硬件系统[ PONENTS ]“ON” (3)打开[ 电动显微镜开关] 打开[ 荧光灯开关] (注:具有5 档光强调节旋钮) (4)Ar 离子激光器主开关“ON” 顺时针旋转钥匙至“—” 预热等待约15分钟, 将激光器[ 扳钮] 由“Standby”扳至 “Laser run”状态,即可正常使用 (5)打开[ 电脑开关],进入操作系统

注:键盘上也具有[ 电脑开关] 2、2 软件得快速使用说明 (1)电脑开机进入操作系统界面后,双击桌面共聚焦软件ZEN 图标 (2)进入ZEN 界面,弹出对话框: “Start System”——初始化整个系统,用于激光扫描取图、 分析等。 “Image Processing”——不启动共聚焦扫描硬件,用于已 存图像数据得处理、分析。 (3)软件界面: 1 功能界面切换:扫描取图(Acquisition)、图像处理(Processing)、维护(Maintain) (注:Maintain仅供Zeiss专业工程师使用) 2 动作按钮; 3 工具组(多维扫描控制); 4 工具详细界面; 5 状态栏; 6 视窗切换按钮; 7 图像切换按钮;8 图像浏览/预扫描窗口;9 文档浏览/处理区域;10 视窗中图像处理模块 动作按钮: Single ——扫描单张图片、并在图像预览窗口显示。 Start ——开始扫描单张图片或一个实验流程(1组图片,如XYZ、XYT 等)。 Stop ——暂停/结束扫描。 New ——建立一个新图像扫描窗口/文档。 激光连接状况检查 眼睛观察/相机/共聚焦LSM 光路切换(ZEN软件界面右上角): Ocular ——通过观察筒用眼睛观察。(激光安全保护装置自动阻断激光、保护眼睛。) Camera ——光路切换至相机。 LSM ——共聚焦扫描成像光路。 显微镜设置: “Ocular”——> “Light Path”——> 点击物镜图标,选择物镜——> 样品聚焦。 透射光控制(Transmitted Light Control) 反射光光闸控制(Reflected Light Shutter) 荧光激发块选择(Reflector) 共聚焦LSM 扫描设置 点击“LSM”(ZEN软件界面右上角),系统切换至共聚焦扫描光路: 光路设置: Smart Setup ——自动预设光路 选取“荧光探针”、“颜色”、扫描方法, 应用“Apply”。 (注:Fastest 为最快速扫描,多条激光谱线同时扫 描。Best signal 为最佳信号扫描,多条激光谱线顺 序扫描。Best promise 为兼顾速度与信号得折

激光共聚焦扫描显微镜简介

激光共聚焦扫描显微镜简介 一、激光共聚焦显微镜的基本组成 激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。 激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。 1.1 显微镜光学系统 显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。 1.2 扫描装置 LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达5帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。 1.3 激光光源 LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光。 1.4 检测系统 LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。 二、激光共聚焦显微镜的特点以及在生物领域的应用 与传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性: 1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。 2、可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。 3、多维图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。

激光共聚焦显微镜的原理与应用范围

激光共聚焦显微镜的原理与应用范围 激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。把光学成像的分辨率提高了30%~40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代的研究工具。 1激光扫描共聚焦显微镜(LSCM)的原理 从基本原理上讲,共聚焦显微镜是一种现代化的光学显微镜,它对普通光镜从技术上作了以下几点改进: 1.1用激光做光源因为激光的单色性非常好,光源波束的波长相同,从根本上消除了色差。1.2采用共聚焦技术在物镜的焦平面上放置了一个当中带有小孔的挡板,将焦平面以外的杂散光挡住,消除了球差;并进一步消除了色差 1.3采用点扫描技术将样品分解成二维或三维空间上的无数点,用十分细小的激光束(点光源)逐点逐行扫描成像,再通过微机组合成一个整体平面的或立体的像。而传统的光镜是在场光源下一次成像的,标本上每一点的图像都会受到相邻点的衍射光和散射光的干扰。这两种图像的清晰度和精密度是无法相比的。 1.4用计算机采集和处理光信号,并利用光电倍增管放大信号图 在共聚焦显微镜中,计算机代替了人眼或照相机进行观察、摄像,得到的图像是数字化的,可以在电脑中进行处理,再一次提高图像的清晰度。而且利用了光电倍增管,可以将很微弱的信号放大,灵敏度大大提高。由于综合利用了以上技术。可以说LSCM是显微镜制作技术、光电技术、计算机技术的完美结合,是现代技术发展的必然产物。 2LSCM在生物医学研究中的应用 目前,一台配置完备的LSCM在功能上已经完全能够取代以往的任何一种光学显微镜,它相当于多种制作精良的常用光学显微镜的有机组合,如倒置光学显微镜、紫外线显微镜、荧光显微镜、暗视野显微镜、相差显微镜(PH)、微分干涉差显微镜(DIC)等,因此被称为万能显微镜,通过它所得到的精细图像可使其他的显微镜图像无比逊色。

地面三维激光扫描测量技术及其应用分析

地面三维激光扫描测量技术及其应用分析 宋宏1,2 (1.武汉大学测绘学院 武汉 430079;2.中煤航测遥感局 西安 710054) 摘 要:三维激光扫描技术是国际上近期发展的一项高新技术。目前许多发达国家已将这一先进技术用于空对地观测及工业测量系统,快速获取特定目标的主体模型,我国在863计划中也重点支持了这一研究方向。本文论述地面三维激光扫描技术的原理分类和应用现状,比较了相关技术方法之异同,评价了地面扫描仪优缺点,指出该技术面临的诸多挑战。 关键词:三维激光扫描技术 LIDAR激光雷达 地面激光扫描仪 近景摄影测量 三维建模 1 引言 激光扫描系统平台分为机载和地面两大类型。地面三维激光扫描系统,与激光测距技术点对点的距离测量不同,激光扫描技术的发展为人们在空间信息获取方面提供了全新的技术手段,使人们从传统的人工单点数据获取变为连续自动获取批量数据,提高了量测的精度与速度。 2 地面三维激光扫描技术的基本原理,仪器技术指标和分类 2.1 三维激光扫描仪测量原理 径向三维激光扫描仪是一种集成了多种高新技术的新型三维坐标测量仪器,采用非接触式高速激光测量方式,以点云形式获取地形及复杂物体表面的阵列式几何图形的三维数据。仪器要包括激光测距系统、扫描系统和支架系统,同时也集成CCD数字摄影和仪器内部校正等系统。典型的径向三维激光扫描仪有很多,如Optech ILRIS-36D、Leica HDS 3000、Mensi GX RD 200+等。 目前三维激光扫描仪主要采用TOF脉冲测距法(Time of Flight),是一种高速激光测时测距技术,采用脉冲测距法的三维激光点坐标计算方法,如式(1)所示。三维激光扫描仪通过脉冲测距法获得测距观测值S,精密时钟控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值θ。三维激光扫描测量一般使用仪器内部坐标系统,X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。由此可得三维光脚点P 坐标(X s,Ys,Zs)的计算公式: 图1三维激光扫描系统工作原理 图2 采用脉冲测距法的三维激光点坐标 2.2 地面扫描仪技术指标 1) 典型的地面三维激光扫描仪毫米级精度仪器见表1。 表1:中远距离的毫米级仪器装备主要技术指标 生产厂家 Optech Leica Mensi 产品 ILRIS-36D HDS3000 GX RD200+ 激光安全性 Class 1 1500nm Class 3 Class 3 532nm 距离精度 7mm@100m 单点4mm@50 单点7mm@100m 定位精度 8mm@100m 6mm@50 单点12mm@100m

LeicaSP8激光扫描共聚焦显微镜快速操作手册2013-5-13

Leica激光扫描共聚焦显微镜 快速操作手册 制作:徕卡显微系统(上海)贸易有限公司 2013年3月

目录: 1 系统的组成 系统组成 (3) 光路示意图 (4) 2 系统的使用 2.1 开机顺序 (5) 2.2 软件界面简介 (7) 2.3 在显微镜下观察样品 (8) 2.4 采集共聚焦图像 (9) 2.5 XYZ三维扫描(Z-Stack) (11) 2.6 时间序列扫描(Timeseries or xyt Scan) (15) 2.7 波长扫描(xyλScan) (16) 2.8 HyD检测器 (17) 2.9 图像的保存及输出 (18) 2.10 关机 (20) 3 系统的维护 (21)

Leica SP8 系统组成图

1可见波长激光或白激光15UVIS, HIVIS或VISIR的光路镀膜 2声光调制器(AOTF)16扫描视场旋转镜(Abbe-Konig 旋转)* 3红外激光(IR)* 17在NND位置上的反射光检测器(RLD)* 4电光调制器18物镜(可提供各种选择)* 5紫外激光* 19在NND位置上的透射光检测器(TLD)* 6 AOTF或直接调制器(DMOD)20正方型针孔 7STED 激光* 21Fluorifier盘* 8Setlight监控二极管22X1出口接口* 9AOBS, 及其他选配件23外置检测器* 10用于FRAP的光束增强镜* 24色散棱镜 11红外激光耦合25分开的荧光光谱 12与CS2紫外光路耦合的紫外激光26最多5个光电倍增管或4个HyD检测器 13STED激光耦合*选配组件 14全视野扫描镜及串行高速扫描镜选件

激光扫描共聚焦显微镜的原理和应用

激光扫描共聚焦显微镜的原理和应用 一、激光扫描共聚焦显微镜的原理 传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM)采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。 原理图 二、激光扫描共聚焦显微镜组成特点 LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地

进行。显微镜是LSCM的主要组件,它关系到系统的成像质量。通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。 三、激光扫描共聚焦显微镜的应用 (一)细胞的三维重建 普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。LSCM能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。通过角度旋转和细胞位置变化可产生三维动画效果。LSCM的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。(二)静态结构检测 1.细胞原位检测核酸 用于细胞核定位及其形态学观察、检测细胞内DNA的复制及断裂情况以及染色体定位观察。 2.原位检测蛋白质、抗体及其他分子 原位检测蛋白质、抗体及其他分子 免疫荧光标记技术 检测荧光蛋白 3.检测细胞凋亡 检测细胞凋亡不同时期细胞形态、细胞凋亡相关蛋白

激光扫描共聚焦显微镜的原理和应用-17954讲解

激光扫描共聚焦显微镜的原理和应用 Tina(2007-10-23 09:40:17 一、激光扫描共聚焦显微镜的原理 传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。 原理图

二、激光扫描共聚焦显微镜组成特点 LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。显微镜是LSCM的主要组件,它关系到系统的成像质量。通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。 三、激光扫描共聚焦显微镜的应用 一)细胞的三维重建

普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。LSCM 能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。通过角度旋转和细胞位置变化可产生三维动画效果。LSCM 的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。 二)静态结构检测:原位鉴定细胞或组织内生物大分子、观察细胞及亚细胞形态结构 1.细胞原位检测核酸 用于细胞核定位及其形态学观察、检测细胞内DNA的复制及断裂情况以及染色体定位观察。 2.原位检测蛋白质、抗体及其他分子 原位检测蛋白质、抗体及其他分子 免疫荧光标记技术 检测荧光蛋白 3.检测细胞凋亡

三维激光扫描测量系统

三维激光扫描测量系统 基本介绍 三维测量可定义为“一种具有可作三个方向移动的探测器,可在三个相互垂直的导轨上移动,此探测器以接触或非接触等方式传送讯号,三个轴的位移测量系统经数据处理器或计算机等计算出工件的各点坐标(X、Y、Z)及各项功能的测量”。三维测量的测量功能应包括尺寸精度、定位精度、几何精度及轮廓精度等。 2三维测量方式 1)将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,这项技术就是三坐标测量机的原理。三坐标测量机是测量和获得尺寸数据的最有效的方法之一,可以替代多种表面测量工具,减少复杂的测量任务所需的时间,为操作者提供关于生产过程状况的有用信息。 2)三维激光扫描仪是通过发射激光来扫描被测物,以获取被测物体表面的三维坐标。三维激光扫描技术又被称为实景复制技术,具有高效率、高精度的测量优势。有人说,三维激光扫描是继GPS技术以来测绘领域的又一次技术革命。三维激光扫描仪被广泛应用于结构测量、建筑测量、船舶制造、铁路以及工程的建设等领域,近些年来,三维激光扫描仪已经从固定朝移动方向发展,最具代表性的就是车载三维激光扫描仪和机载三维激光雷达。 3)[1] 拍照式三维扫描仪采用一种结合结构光技术、相位测量技术、计算机视觉技术的复合三维非接触式测量技术。这种测量原理,使得对物体进行照相测量成为可能。所谓拍照测量,就是类似于照相机对视野内的物体进行照相,不同的是照相机摄取的是物体的二维图象,而研制的测量仪获得的是物体的三维信息。 3应用领域 机械、汽车、航空、军工、家具、工具原型等测量高精度的几何零部件以及测量复杂形状的机械零部件。 三维测量技术的应用领域: 最近几年,三维激光扫描技术不断发展并日渐成熟,目前三维扫描设备也逐渐商业化,三维激光扫描仪的巨大优势就在于可以快速扫描被测物体,不需反射棱镜即可直接获得高精度的扫描点云数据。这样一来可以高效地对真实世界进行三维建模和虚拟重现。因此,其已经成为当前研究的热点之一,并在文物数字化保护、土木工程、工业测量、自然灾害调查、数字城市地形可视化、城乡规划等领域有广泛的应用。 (1)测绘工程领域:大坝和电站基础地形测量、公路测绘,铁路测绘,河道测绘,桥梁、建筑物地基等测绘、隧道的检测及变形监测、大坝的变形监测、隧道地下工程结构、测量矿山及体积计算。

三维激光扫描仪测量技术

三维激光扫描仪测量技术 近年来,BIM技术已成为工程建设领域各方关注的焦点。BIM模型是一个面向对象、参数化以及智能化的建筑数字化表示,其通过构筑信息模型建立起一条贯穿工程全寿命周期的网络,将设计方、施工方和业主对工程在不同阶段的不同需求连接成一个紧密相关的体系。但在室内装饰工程BIM应用方面,由于受现场结构工程实际尺寸影响较大,且精度要求极高,所以需要将现场尺寸获取与BIM模型建立相结合,才能将BIM技术真正应用到施工管理中。 三维扫描仪将施工现场土建结构构件的立体信息转换为计算机能直接处理的数字信号,再将BIM模型直接导入三维扫描仪配套的软件中进行与点云模型的三维比对,生成检测报告,用以指导调整土建模型,准确还原现场实际尺寸,让装饰模型的建立有更准确的参照,极大地提高装饰模型实用性,更好指导现场施工。 一、技术特点 三维扫描是集光、机、电和计算机技术于一体的高新技术,主要用于对物体空间外形和结构及色彩进行扫描,以获得物体表面的空间坐标。能实现非接触测量,测量结果能直接与CAD(计算机辅助设计)、CAM(计算机辅助制造)、CIMS(计算机集成制造)等系统多接口,具有速度快、精度高的优点。 三维扫描技术生成的点云模型与土建BIM模型进行对比,指导调整土建模型,从而还原现场实际尺寸,更好指导现场测量和材料下单工作,缩短了工期,提高了工效。三维扫描技术可用于造型复杂的分部分项工程,并能保证装饰效果和设计要求,可用于装饰工程全过程各个阶段的施工质量精度检验工作。 二、适用范围 三维扫描仪适用于室内工程、幕墙工程的施工,特别是有特殊造型的工程。 三、技术性能 三维激光扫描仪高速旋转的反光镜将激光发射器发射出的激光点向四周以97600点/秒的速度发射,由于光速极其快,光点在碰到障碍物后会立即返回到扫描仪,扫描仪可以通过计算发射和返回的时间差来确定每一个点的位置,并将所有点组合在一起,形成整个空间的

激光扫描共聚焦显微镜

激光扫描共聚焦显微镜 ZEISS 780操作规程 本设备属于精密设备,操作人员必须提前熟悉其适用范围、结构、性能及其具体操作方法,未经操作培训者不能进行上机操作。通过操作培训的人员必须严格按照仪器管理老师的培训要求及设备使用说明书指定的操作进行工作。 1.开机 提前进行镜检,确保样本无误;查看空调温度、抽湿机湿度和不间断电源工作情况。 1.1开三相稳压电源。注意:先开稳压电源后面的黑色扳手开关①,再按下稳压电源前面的绿色按钮②,如果出现报警声,请马上关闭稳压电源,并报告管理人员。 1.2两分钟以后依次打开电源控制板上的三个开关。先打开主开关MAIN SWITCH ③,再依次打开SYSTEMS/PC④和COMPONENTS⑤开关。注意:各个开关不要同时按下,开机时仪器会进行自检,每按下一个开关,请等待相应的部件自检完毕后再开下一个开关。 1.3打开电脑开关⑨,点击“LSM User”图标,进入桌面;当看到桌面右下角显示“注意安全”图标时,方可点击桌面中央的ZE N软件图标;然后点击“Start System”按钮开启软件。 注意:当桌面右下角始终不显示“注意安全”图标时,不可启动软件。这时把电脑主机左边那台仪器的盖子掀开,按一下“Reset”按钮,等待电脑桌面右下角出现“注意安全”图标。 1.4打开氩离子激光器(若不使用458nm或488nm或514nm激光线则不需要打开)。先打开氩离子激光器正面的开关ON⑥,再顺时针旋转钥匙⑦至“—”的方向,等待绿色指示灯亮起方可开启光路(大约5-10min)。 注意:Ar+激光器在启动后,需要1h左右的预热时间才能进入稳定状态。若闲置时间1h以上,可将激光器扳钮由“laser run”位置扳至“idle power”处⑧,保护激光器,延长使用寿命。

激光扫描共聚焦显微镜及其应用讲解

激光扫描共聚焦显微镜及其应用 激光扫描共聚焦显微镜(Laserscanningconfocalmicroscope,LSCM)是近代最先进的细胞生物医学分析仪器之一。它是在荧光显微镜成像的基础上加装激光扫描装置,使用紫外光或可见光激光荧光探针,利用计算机进行图像处理,不仅可观察固定的细胞、组织切片,还可对活细胞的结构、分子、离子进行实时动态地观察和检测。目前,激光扫描共聚焦显微技术已用于细胞形态定位、立体结构重组、动态变化过程等研究,并提供定量荧光测定、定量图像 激光扫描共聚焦显微镜(Laser scanning confocal microscope, LSCM)是近代最先进的细胞生物医学分析仪器之一。它是在荧光显微镜成像的基础上加装激光扫描装置,使用紫外光或可见光激光荧光探针,利用计算机进行图像处理,不仅可观察固定的细胞、组织切片,还可对活细胞的结构、分子、离子进行实时动态地观察和检测。目前,激光扫描共聚焦显微技术已用于细胞形态定位、立体结构重组、动态变化过程等研究,并提供定量荧光测定、定量图像分析等实用研究手段,结合其他相关生物技术,在形态学、生理学、免疫学、遗传学等分子细胞生物学领域得到广泛应用。 激光共聚焦显微镜的原理 激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。 主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及图象输出设备(显示器、彩色打印机)等。 通过激光扫描共聚焦显微镜,可以对观察样品进行断层扫描和成像。因此,可以无损伤的观察和分析细胞的三维空间结构。同时,通过激光扫描共聚焦显微镜也是活细胞的动态观察、多重免疫荧光标记和离子荧光标记观察的有力工具。 主要功能 1、图像处理功能 2、细胞生物学功能应用范围:(1)定量荧光测定;(2)定量共焦图像分析;(3)光学切片及三维重组;(4)动态观察;(5)荧光漂白恢复研究;(6)质膜流动性研究;(7)蛋白质相互作用研究;(8)激光显微外科及“光陷阱”研究;(9)光活化技术研究。 (编辑:文静)

激光扫描

《光电检测课程设计》 题目名称 学生姓名 专业 学号 指导教师 光电工程学院 年月

目录 摘要------------------------------------------------------------- - 1 -第一章绪论 --------------------------------------------------------- - 2 - 1.1 引言 -------------------------------------------------------- - 2 - 1.2 研究意义 ---------------------------------------------------- - 2 - 1.3 国内外现状 -------------------------------------------------- - 2 - 1.4 不同方法对比分析 -------------------------------------------- - 3 - 1.4.1 传统式测量方法: -------------------------------------- - 3 - 1.4.2光电式测量方法----------------------------------------- - 3 - 第二章系统总体设计------------------------------------------------- - 4 - 2.1 系统的总体设计 ---------------------------------------------- - 4 - 2.2 光学部分系统简介 -------------------------------------------- - 5 - 2.3机械系统结构简介--------------------------------------------- - 5 - 2.4电子学系统结构简介------------------------------------------- - 5 - 第三章光学系统设计------------------------------------------------- - 7 - 3.1 光源的选择 -------------------------------------------------- - 7 - 3.2 光学系统设计 ------------------------------------------------ - 7 - 3.2.1 光路设计 ---------------------------------------------- - 7 - 3.2.2多面体棱镜设计----------------------------------------- - 8 - 3.3 汇聚透镜设计 ------------------------------------------------ - 8 - 第四章电子学系统设计----------------------------------------------- - 9 - 4.1 光电接受器件 ------------------------------------------------ - 9 - 4.2 步进电机驱动 ------------------------------------------------ - 9 - 4.3 部分芯片选型和简介 ------------------------------------------ - 9 - 第五章数学模型建立与误差分析-------------------------------------- - 12 - 5.1 数学模型建立 ----------------------------------------------- - 12 - 5.4 激光扫描圆度误差系统总误差 --------------------------------- - 15 - 第六章总结 -------------------------------------------------------- - 15 - 参考文献 ----------------------------------------------------------- - 16 -

三维激光扫描分类及工作操作规范

一、地面激光扫描系统 1、概述 地面激光扫描仪系统类似于传统测量中的全站仪,它由一个激光扫描仪和一个内置或外置的数码相机,以及软件控制系统组成。二者的不同之处在于激光扫描仪采集的不是离散的单点三维坐标,而是一系列的“点云”数据。这些点云数据可以直接用来进行三维建模,而数码相机的功能就是提供对应模型的纹理信息。 2、工作原理 三维激光扫描仪发射器发出一个激光脉冲信号,经物体表面漫反射后,沿几乎相同的路径反向传回到接收器,可以计算日标点P与扫描仪距离S,控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值β。三维激光扫描测量一般为仪器自定义坐标系。X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。获得P的坐标。进而转 换成绝对坐标系中的三维空间位置坐标或三维模型。 3、作业流程 整个系统由地面三维激光扫描仪、数码相机、后处理软件、电源以及附属设备构成,它采用非接触式高速激光测量方式,获取地形或者复杂物体的几何图形数据和影像数据。最终由后处理软件对采集的点云数据和影像数据进行处理转换成绝对坐标系中的空间位置坐标或模型,以多种不同的格式输出,满足空间信息数据库的数据源和不同应用的需要。 (1)、数据获取 利用软件平台控制三维激光扫描仪对特定的实体和反射参照点进行扫描,尽可能多的获取实体相关信息。三维激光扫描仪最终获取的是空间实体的几何位置信息,点云的发射密度值,以及内置或外置相机获取的影像信息。这些原始数据一并存储在特定的工程文件中。其中选择的反射参照点都具有高反射特性,它的布设可以根据不同的应用目的和需要选择不同的数量和型号,通常两幅重叠扫描中应有四到五个反射参照点。 (2)、数据处理 1)数据预处理 数据获取完毕之后的第一步就是对获取的点云数据和影像数据进行预处理,应用过滤算法剔除原始点云中的错误点和含有粗差的点。对点云数据进行识别分类,对扫描获取的图像进行几何纠正。 2)数据拼接匹配 一个完整的实体用一幅扫描往往是不能完整的反映实体信息的,这需要我们在不同的位置对它进行多幅扫描,这样就会引起多幅扫描结果之间的拼接匹配问题。在扫描过程中,扫描仪的方向和位置都是随机、未知的,要实现两幅或多幅扫描的拼接,常规方法式是利用选择公共参照点的办法来

激光扫描共聚焦显微镜在生命科学中的应用

激光扫描共聚焦显微镜在生命科学中的应用 实验目的与要求 1. 掌握激光扫描共聚焦显微镜的成像基本原理及其在生命科学中的应用。 一、激光扫描共聚焦显微镜的成像基本原理 1.普通荧光显微镜的不足 使用荧光物质标记细胞中的特定成分或结构,不仅图像与对比度增强,而且由于许多荧光显微镜的光源使用短波长的紫外光,大大提高了分辩率(δ=0.61 λ/ NA )。但当所观察的荧光标本稍厚时,普通荧光显微镜不仅接收焦平面上的光量,而且来自焦平面上方或下方的散射荧光也被物镜接收,这些来自焦平面以外的荧光使观察到的图像反差和分辨率大大降低(即焦平面以外的荧光结构模糊、发虚,原因是大多数生物学标本是层次区别的重叠结构)。 Laser Scanning Confocal Microscope 2. 共聚焦扫描显微镜的成像原理 采用点光源照射标本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜收集,并沿原照射光路回送到由双向色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。两者的几何尺寸一致,约100-200nm;相对于焦平面上的光点,两者是共轭的,即光点通过一系列的透镜,最终可同时聚焦于照明针孔和探测针孔。这样,来自焦平面的光,可以会聚在探测孔范围之内,而来自焦平面上方或下方的散射光都被挡在探测孔之外而不能成像。以激光逐点扫描样品,探测针孔后的光电倍增管也逐点获得对应光点的共聚焦图像,转为数字信号传输至计算机,最终在屏幕上聚合成清晰的整个焦平面的共聚焦图像。 Confocal Principle

每一幅焦平面图像实际上是标本的光学横切面,这个光学横短面总是有一定厚度的,又称为光学薄片。由于焦点处的光强远大于非焦点处的光强,而且非焦平面光被针孔滤去,因此共聚焦系统的景深近似为零,沿Z轴方向的扫描可以实现光学断层扫描,形成待观察样品聚焦光斑处二维的光学切片。把X-Y平面(焦平面)扫描与Z轴(光轴)扫描相结合,通过累加连续层次的二维图像,经过专门的计算机软件处理,可以获得样品的三维图像。 LSCM的基本特点 观察方式:以荧光为主 光源:激光(紫外、可见光、近红外) 照明方式:点照明、逐点扫描 成像方式:共聚焦、逐点成像 输出:实时观测,数字化图像,可以进行图像处理和定量分析多重染色样品的观察 3. 共聚焦扫描显微镜在生命科学研究中的应用 细胞结构、蛋白质(如受体、抗原、抗体、酶、细胞 骨架蛋白等基因表达产物)、DNA、RNA等 细胞膜流动性(荧光光漂白恢复技术) 细胞内氧自由基活性 细胞内钙离子浓度变化 膜电位

相关文档
相关文档 最新文档