文档库 最新最全的文档下载
当前位置:文档库 › 年高考第一轮复习数学圆的方程

年高考第一轮复习数学圆的方程

年高考第一轮复习数学圆的方程
年高考第一轮复习数学圆的方程

7.5 圆的方程

●知识梳理 1.圆的方程

(1)圆的标准方程 圆心为(a ,b ),半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2. 说明:方程中有三个参量a 、b 、r ,因此三个独立条件可以确定一个圆. (2)圆的一般方程

二次方程x 2+y 2+Dx +Ey +F =0.(*) 将(*)式配方得

(x +2D )2+(y +2

E )2=4422

F E D -+.

当D 2+E 2-4F >0时,方程(*)表示圆心(-

2D ,-2

E

),半径r =

21F E D 422-+的圆,把方程x 2+y 2+Dx +Ey +F =0

(D 2+E 2-4F >0)叫做圆的一般方程.

说明:(1)圆的一般方程体现了圆方程的代数特点: a.x 2、y 2项系数相等且不为零. b.没有xy 项.

(2)当D 2+E 2-4F =0时,方程(*)表示点(-2D ,-2

E ),当D 2+E 2-4

F <0时,方程(*)不表示任何图形.

(3)据条件列出关于D 、E 、F 的三元一次方程组,可确定圆的一般方程. (3)圆的参数方程 ①圆心在O (0,0),半径为r 的圆的参数方程为 x =r cos θ,

y =r sin θ ②圆心在O 1(a ,b ),半径为r 的圆的参数方程为 x =a +r cos θ,

y =b +r sin θ 说明:在①中消去θ得x 2+y 2=r 2,在②中消去θ得(x -a )2+(y -b )2=r 2,把这两个方程相对于它们各自的参数方程又叫做普通方程.

2.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件

若上述二元二次方程表示圆,则有A =C ≠0,B =0,这仅是二元二次方程表示圆的必要条件,不充分.

在A =C ≠0,B =0时,二元二次方程化为x 2+y 2+A D x +A E y +A

F

=0, 仅当(

A D )2+(A E )2-4·A

F

>0,即D 2+E 2-4AF >0时表示圆. 故Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是:①A =C ≠0,②B =0,③D 2+E 2-4AF >0.

●点击双基

1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是 A.-1

1 C.-

7

1

0,得7t 2-6t -1<0,

即-7

1

(θ为参数)

. ① (θ为参数)

. ②

答案:C

2.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是 A.|a |<1 B.a <13

1 C.|a |<

51 D .|a |<13

1 解析:点P 在圆(x -1)2+y 2=1内部 ?(5a +1-1)2+(12a )2<1

? |a |<13

1

.

答案:D

3.已知圆的方程为(x -a )2+(y -b )2=r 2(r >0),下列结论错误的是 A.当a 2+b 2=r 2时,圆必过原点 B.当a =r 时,圆与y 轴相切 C.当b =r 时,圆与x 轴相切 D .当b

解析:已知圆的圆心坐标为(a ,b ),半径为r ,当b

答案:D

4.(2005年北京海淀区期末练习)将圆x 2+y 2=1按向量a 平移得到圆(x +1)2+(y -2)2=1,则a 的坐标为____________.

解析:由向量平移公式即得a =(-1,2). 答案:(-1,2)

5.已知P (1,2)为圆x 2+y 2=9内一定点,过P 作两条互相垂直的任意弦交圆于点B 、C ,则BC 中点M 的轨迹方程为____________.

解析:Rt △OMC 中,|MP |=2

1

|BC |(直角三角形斜边上的中线是斜边的一半).

x

y O B

M

C

P

故所求轨迹方程为x 2+y 2-x -2y -2=0. 答案:x 2+y 2-x -2y -2=0 ●典例剖析

【例1】 (2003年春季北京)设A (-c ,0)、B (c ,0)(c >0)为两定点,动点P 到A 点的距离与到B 点的距离的比为定值a (a >0),求P 点的轨迹.

剖析:给曲线建立方程是解析几何的两个主要问题之一,其基本方法就是把几何条件代数化;主要问题之二是根据方程研究曲线的形状、性质,即用代数的方法研究几何问题.

解:设动点P 的坐标为(x ,y ),由|||

|PB PA =a (a >0)得2222)()(y

c x y c x +-++=a ,化简,得

(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.

当a =1时,方程化为x =0.

当a ≠1时,方程化为(x -1122-+a a c )2+y 2=(1

22-a ac

)2.

所以当a =1时,点P 的轨迹为y 轴;

当a ≠1时,点P 的轨迹是以点(1122-+a a c ,0)为圆心,|1

22-a ac

|为半径的圆.

评述:本题主要考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力,对代数式

的运算化简能力有较高要求.同时也考查了分类讨论这一数学思想.

【例2】 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程. 剖析: 利用圆的性质:半弦、半径和弦心距构成的直角三角形.

解:因圆与y 轴相切,且圆心在直线x -3y =0上,故设圆方程为(x -3b )2+(y -b )2=9b 2. 又因为直线y =x 截圆得弦长为27, 则有(

2

|

3|b b -)2+(7)2=9b 2,

解得b =±1.故所求圆方程为

(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.

评述:在解决求圆的方程这类问题时,应当注意以下几点:(1)确定圆方程首先明确是标准方程还是一般方程;(2)根据几何关系(如本例的相切、弦长等)建立方程求得a 、b 、r 或D 、E 、F ;(3)待定系数法的应用,解答中要尽量减少未知量的个数.

【例3】 已知⊙O 的半径为3,直线l 与⊙O 相切,一动圆与l 相切,并与⊙O 相交的公共弦恰为⊙O 的直径,求动圆圆心的轨迹方程.

剖析:问题中的几何性质十分突出,切线、直径、垂直、圆心,如何利用这些几何性质呢? 解:取过O 点且与l 平行的直线为x 轴,过O 点且垂直于l 的直线为y 轴,建立直角坐标系. 设动圆圆心为M (x ,y ),

⊙O 与⊙M 的公共弦为AB ,⊙M 与l 切于点C ,则|MA |=|MC |.

A

B C

M

O x y

l

∵AB 为⊙O 的直径, ∴MO 垂直平分AB 于O .

由勾股定理得|MA |2=|MO |2+|AO |2=x 2+y 2+9,而|MC |=|y +3|, ∴922++y x =|y +3|.

化简得x 2=6y ,这就是动圆圆心的轨迹方程.

评述:求轨迹的步骤是“建系,设点,找关系式,除瑕点”. ●闯关训练 夯实基础

1.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于x +y =0成轴对称图形,则 A.D +E =0B. B.D +F =0 C.E +F =0 D. D +E +F =0 解析:曲线关于x +y =0成轴对称图形,即圆心在x +y =0上. 答案:A

2.(2004年全国Ⅱ,8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有 A.1条 B.2条 C.3条 D .4条

解析:分别以A 、B 为圆心,以1、2为半径作圆,两圆的公切线有两条,即为所求. 答案:B

3.(2005年黄冈市调研题)圆x 2+y 2+x -6y +3=0上两点P 、Q 关于直线kx -y +4=0对称,则k =____________.

解析:圆心(-

2

1

,3)在直线上,代入kx -y +4=0,得k =2. 答案:2

4.(2004年全国卷Ⅲ,16)设P 为圆x 2+y 2=1上的动点,则点P 到直线3x -4y -10=0的 距离的最小值为____________.

解析:圆心(0,0)到直线3x -4y -10=0的距离d =

5

|

10|-=2. 再由d -r =2-1=1,知最小距离为1. 答案:1

5.(2005年启东市调研题)设O 为坐标原点,曲线x 2+y 2+2x -6y +1=0上有两点P 、Q ,满足关于直线x +my +4=0对称,又满足OP ·OQ =0.

(1)求m 的值;

(2)求直线PQ 的方程. 解:(1)曲线方程为(x +1)2+(y -3)2=9表示圆心为(-1,3),半径为3的圆. ∵点P 、Q 在圆上且关于直线x +my +4=0对称, ∴圆心(-1,3)在直线上.代入得m =-1. (2)∵直线PQ 与直线y =x +4垂直, ∴设P (x 1,y 1)、Q (x 2,y 2),PQ 方程为y =-x +b .

将直线y =-x +b 代入圆方程,得2x 2+2(4-b )x +b 2-6b +1=0.

Δ=4(4-b )2-4×2×(b 2-6b +1)>0,得2-32

1

62+-b b .

y 1·y 2=b 2

-b (x 1+x 2)+x 1·x 2=2

162+-b b +4b .

∵·=0,∴x 1x 2+y 1y 2=0, 即b 2-6b +1+4b =0.

解得b =1∈(2-32,2+32). ∴所求的直线方程为y =-x +1.

6.已知实数x 、y 满足x 2+y 2+2x -23y =0,求x +y 的最小值.

解:原方程为(x +1)2+(y -3)2=4表示一个圆的方程,可设其参数方程为 x =-1+2cos θ,

y =3+2sin θ 22sin (θ+

4π),当θ=4

π5,即x =-1-2,y =3-2时,x +y 的最小值为3-1-22. 培养能力

7.已知实数x 、y 满足方程x 2+y 2-4x +1=0.求

(1)

x

y

的最大值和最小值; (2)y -x 的最小值;

(3)x 2+y 2的最大值和最小值.

解:(1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.

(θ为参数,0≤θ<2π),则x +y =3-1+2(sin θ+cos θ)=3-+1

全国高考数学直线与圆的方程试题汇编

全国高考数学直线与圆的方程试题汇编 一、选择题: 1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为 ( D ) A .1 B .3 C .2 D .5 2.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的 ( C ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90?,再向右平移1个单位,所得到的直线 为 ( A ) A .1133 y x =- + B .1 13 y x =- + C .33y x =- D .1 13 y x = + 解析:本题有新意,审题是关键.旋转90?则与原直线垂直,故旋转后斜率为13 -.再右移1得 1 (1)3 y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换. 4.(全国I 卷理科10)若直线 1x y a b +=通过点(cos sin )M αα,,则 ( B ) A .2 2 1a b +≤ B .22 1a b +≥ C .22111a b +≤ D . 2 211 1a b +≥ 5.(重庆理科7)若过两点P 1(-1,2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为 ( A ) A .- 13 B .- 15 C . 15 D . 13 (重庆文科4)若点P 分有向线段AB 所成的比为- 1 3,则点B 分有向线段PA 所成的比是( A ) A .- 32 B .- 12 C .12 D .3 6.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线2 2 (2)1x y -+=有公共点,则直线l 的斜率 的取值范畴为 ( C ) A .[ B .( C .[ D .( 7.(辽宁文、理科3)圆2 2 1x y +=与直线2y kx =+没有.. 公共点的充要条件是 ( C )

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++= =AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高一数学 高中数学圆的方程专题(四个课时)

高一数学 高中数学圆的方程专题(四个课时) 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2227)14()2(=-+-a ,或2 221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2 224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2 221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2 224)4()622(=+++-y x . 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.

2021圆的方程、直线与圆及圆与圆的位置关系 教学案 高三数学一轮复习

圆的方程、直线与圆及圆与圆的位置关系 [典例] (2021·全国卷Ⅱ)设抛物线C :y2=4x 的焦点为F ,过F 且斜率为k(k >0)的直线l 与C 交于A ,B 两点,|AB|=8. (1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程. [解] (1)由题意得F(1,0),l 的方程为y =k(x -1)(k >0). 设A(x1,y1),B(x2,y2), 由??? y =k x -1,y2=4x 得k2x2-(2k2+4)x +k2=0. Δ=16k2+16>0,故x1+x2=2k2+4k2 . 所以|AB|=|AF|+|BF| =(x1+1)+(x2+1)=4k2+4k2 . 由题设知4k2+4k2 =8, 解得k =1或k =-1(舍去). 因此l 的方程为y =x -1. (2)由(1)得AB 的中点坐标为(3,2), 所以AB 的垂直平分线方程为y -2=-(x -3),

即y =-x +5. 设所求圆的圆心坐标为(x0,y0), 则? ?? y0=-x0+5, x0+12=y0-x0+122+16. 解得??? x0=3,y0=2或??? x0=11,y0=-6. 因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144. [方法技巧] 1.确定圆的方程必须有3个独立条件 不论是圆的标准方程还是一般方程,都有三个字母(a ,b ,r 或D ,E ,F)的值需要确定,因此需要三个独立的条件.利用待定系数法得到关于a ,b ,r(或D ,E ,F)的三个方程组成的方程组,解之得到待定字母系数的值,从而确定圆的方程. 2.几何法在圆中的应用

高考数学必考之圆的方程

高考数学必考之圆的方程 考点一 圆的方程 1.圆心为()3,1,半径为5的圆的标准方程是 【答案】()()2 2 3125x y -+-= 【解析】∵所求圆的圆心为()3,1,半径为5,∴所求圆的标准方程为:()()2 2 3125x y -+-=, 2.已知点()3,6A ,()1,4B ,()1,0C ,则ABC ?外接圆的圆心坐标为 【答案】()5,2 【解析】线段AB 中点坐标为()2,5,线段AB 斜率为 64 131 -=-,所以线段AB 垂直平分线的斜率为1-,故线段AB 的垂直平分线方程为()52y x -=--,即7y x =-+. 线段AC 中点坐标为()2,3,线段AC 斜率为 60331-=-,所以线段AC 垂直平分线的斜率为1 3 -,故线段AC 的垂直平分线方程为()1 323y x -=--,即11133 y x =-+. 由7 5111233y x x y y x =-+?=?? ??? ==-+??? .所以ABC ?外接圆的圆心坐标为()5,2. 3.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是 【答案】-2解得223a -<<. 考点二 点与圆的位置关系

1.点()1,1在圆()2 211x y +-=的( ) A .圆上 B .圆内 C .圆外 D .无法判定 【答案】A 【解析】将点()1,1的坐标代入圆()2 211x y +-=的方程即()2 21111+-=,∴点()1,1在圆()2 211x y +-=上, 2.经过点(1,2)A 可做圆2 2 240x y mx y ++-+=的两条切线,则m 的范围是( ) A .(,(23,)-∞-+∞ B .(5,(23,)--+∞ C .(,)-∞-?+∞ D .(5,(22,)--+∞ 【答案】B 【解析】圆2 2 240x y mx y ++-+=,即为222 ()(1)324 m m x y -+-= -, 2 304 m ∴->?m <-m > 由题意知点A 在圆外,14440m ∴++-+>,解得5m >-. 所以5m -<<-m >故选B 3.若坐标原点在圆2 2 2 22240x y mx my m +-++-=的内部,则实数m 的取值范围是( ) A .()1,1- B .,22?- ?? C .( D .( 【答案】D 【解析】把原点坐标代入圆的方程得:222002020240m m m +-?+?+-< 解得:m <本题正确选项:D

高考数学直线和圆的方程专题复习(专题训练)

专题六、解析几何(一) 直线和圆 1.直线方程:0=+++=c by ax t kx y 或 2.点关于特殊直线的对称点坐标: (1)点),(00y x A 关于直线方程x y = 的对称点),(n m A '坐标为:0y m =,0x n =; (2) 点),(00y x A 关于直线方程b x y +=的对称点),(n m A '坐标为:b y m -=0,b x n +=0; (3)点),(00y x A 关于直线方程x y -=的对称点),(n m A '坐标为:0y m -=,0x n -=; (4)点),(00y x A 关于直线方程b x y +-=的对称点),(n m A '坐标为:b y m +-=0,b x n +-=0; 3.圆的方程:()()2 2 2 x a y b r -+-=或() 2 2 2 2 040x y Dx Ey F D E F ++++=+->, 无xy 。

4.直线与圆相交: (1)利用垂径定理和勾股定理求弦长: 弦长公式:222d r l -=(d 为圆心到直线的距离),该公式只适合于圆的弦长。 若直线方程和圆的方程联立后,化简为:02 =++c bx ax ,其判别式为?,则 弦长公式(万能公式):12l x =-= a k a c a k ? +=--+=2 2214b 1)( 注意:不需要单独把直线和圆的两个交点的坐标求出来来求弦长,只要设出它们的坐标即可, 再利用直线方程和圆的联立方程求解就可达到目标。这是一种“设而不求”的技巧,它可以简化运算,降低思考难度,在解析几何中具有十分广泛的应用。 5.圆的切线方程: (1)点在圆外: 如定点()00,P x y ,圆:()()2 2 2 x a y b r -+-=,[()()2 2 2 00x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-;第二步:通过d r =,求出k ,从而得到切线方程,这里的切线方程的有两条。特别注意:当k 不存在时,要单独讨论。 (2)点在圆上: 若点P ()00x y ,在圆()()2 2 2 x a y b r -+-=上,利用点法向量式方程求法,则切线方程为: ?=--+--0)(()((0000b y y y a x x x ))()()()()200x a x a y b y b r --+--=。 点在圆上时,过点的切线方程的只有一条。 由(1)(2)分析可知:过一定点求某圆的切线方程,要先判断点与圆的位置关系。 (3)若点P ()00x y ,在圆()()2 2 2x a y b r -+-=外,即()()2 2 200x a y b r -+->, 过点P ()00x y ,的两条切线与圆相交于A 、B 两点,则AB 两点的直线方程为: 200))(())((r b y b y a x a x =--+--。 6.两圆公共弦所在直线方程: 圆1C :2 2 1110x y D x E y F ++++=,圆2C :2 2 2220x y D x E y F ++++=, 则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程。 7.圆的对称问题: (1)圆自身关于直线对称:圆心在这条直线上。 (2)圆C 1关于直线对称的圆C 2:两圆圆心关于直线对称,且半径相等。 (3)圆自身关于点P 对称:点P 就是圆心。

2021届高考数学(理)考点复习:圆的方程(含解析)

2021届高考数学(理)考点复习 圆的方程 圆的定义与方程 定义 平面内到定点的距离等于定长的点的轨迹叫做圆 方 程 标准 式 (x -a )2+(y -b )2=r 2(r >0) 圆心为(a ,b ) 半径为r 一 般 式 x 2+y 2+Dx +Ey +F =0 充要条件:D 2+E 2-4F >0 圆心坐标:????-D 2,-E 2 半径r =1 2 D 2+ E 2-4F 概念方法微思考 1.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是什么? 提示 ???? ? A =C ≠0, B =0, D 2+ E 2-4A F >0. 2.点与圆的位置关系有几种?如何判断? 提示 点和圆的位置关系有三种. 已知圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0), (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2

, 半径为1的圆经过点(3,4),可得该圆的圆心轨迹为(3,4)为圆心,1为半径的圆, 故当圆心到原点的距离的最小时, 连结OB ,A 在OB 上且1AB =,此时距离最小, 由5OB =,得4OA =, 即圆心到原点的距离的最小值是4, 故选A . 2.(2018?天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 【答案】22(1)1x y -+=(或2220)x y x +-= 【解析】【方法一】根据题意画出图形如图所示, 结合图形知经过三点(0,0),(1,1),(2,0)的圆, 其圆心为(1,0),半径为1, 则该圆的方程为22(1)1x y -+=. 【方法二】设该圆的方程为220x y Dx Ey F ++++=, 则0 42020F D F D E F =?? ++=??+++=? , 解得2D =-,0E F ==; ∴所求圆的方程为2220x y x +-=. 故答案为:22(1)1x y -+=(或2220)x y x +-=.

高三数学复习圆的方程

高三数学复习圆的方程 5.圆的方程 一、内容归纳 1. 知识精讲. ①圆的方程 (1)标准式:(x-a)2+(y-b)2=r2(r0),其中r为圆的半径,(a,b)为圆心。 (2)一般式:x2+y2+Dx+Ey+F=0(D2+E2-4F0),其中圆心为(-,-),半径为, (3)直径式:(x-x1)(x-x2)+(y-y1)(y-y2)=0,其中点(x1, y1),(x2,y2)是圆的一条直径的两个端点。(用向量法证之)(4)半圆方程:等 (5)圆系方程: i)过圆C:x2+y2+Dx+Ey+F=0和直线l:Ax+By+C=0的交点的 圆的方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0 ii)过两圆C1:x2+y2+D1x+E1y+F1=0,C2: x2+y2+D2x+E2y+F2=0的交点的圆的方程为 x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)该方 程不包括圆C2; (时为一条直线方程,相交两圆时为公共弦方程;两等圆 时则为两圆的对称轴方程)

(6) 圆的参数方程 圆心在(0,0),半径为r的圆的参数方程为为参数 圆心在(a,b),半径为r的圆的参数方程为为参数 ②圆的一般方程与二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0的 关系; 二元二次方程表示圆的充要条件A=C≠0,B=0 ,D2+E2-4AF0。 二、问题讨论 例1、根据下列条件,求圆的方程。 (1)和圆x2+y2=4相外切于点P(-1,),且半径为4; (2)经过坐标原点和点P(1,1),并且圆心在直线2x+3y+1=0上; (3)已知一圆过P(4,-2)、Q(-1,3)两点,且在y轴上截得 的线段长为4,求圆的方程。 解:(1)设圆心Q的坐标为(a,b) ∵⊙O与⊙Q相外切于P ∴O、P、Q共线,且λ==-=- 由定比分点公式求得a=-3, b=3 ∴所求圆的方程为(x+3)2+(y-3)2=16 (2)显然,所求圆的圆心在OP的垂直平分线上,OP的垂直平分线方程为: = 即x+y-1=0 解方程组 x+y-1=0 2x+3y+1=0 得圆心C的坐标为(4,-3)。又圆的半径

高考数学考点《圆与方程》

圆与方程 4.1.1 圆的标准方程 1、圆的标准方程:222()()x a y b r -+-= 圆心为A(a,b),半径为r 的圆的方程 2、点00(,)M x y 与圆2 22()()x a y b r -+-=的关系的判断方法: (1)22 00()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内 4.1.2 圆的一般方程 1、圆的一般方程:022=++++F Ey Dx y x 2、圆的一般方程的特点: (1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项. (2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了. (3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。 4.2.1 圆与圆的位置关系 1、用点到直线的距离来判断直线与圆的位置关系. 设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2, 2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交; 4.2.2 圆与圆的位置关系 两圆的位置关系. 设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点: (1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交; (4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1C 与圆2C 内含; 4.2.3 直线与圆的方程的应用

高考数学试题汇编圆的方程

第二节圆的方程 高考试题 考点一求圆的方程 1.(2009年辽宁卷,理4)已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为( ) (A)(x+1)2+(y-1)2=2 (B)(x-1)2+(y+1)2=2 (C)(x-1)2+(y-1)2=2 (D)(x+1)2+(y+1)2=2 解析:由题意可设圆心坐标为(a,-a), 解得a=1,故圆心坐标为(1,-1), 半径 所以圆的方程为(x-1)2+(y+1)2=2. 答案:B 2.(2010年广东卷,理12)已知圆心在x轴上,y轴左侧,且与直线x+y=0相切,则圆O的方程是. 解析:设圆心坐标为(a,0),且a<0,由题意得 ∴a=-2. ∴圆的方程为(x+2)2+y2=2. 答案:(x+2)2+y2=2 3.(2010年新课标全国卷,理15)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆的方程为. 解析:由题意知A、B两点在圆上, ∴直线AB的垂直平分线x=3过圆心. 又圆C与直线y=x-1相切于点B(2,1), ∴k BC=-1. ∴直线BC的方程为y-1=-(x-2), 即y=-x+3. y=-x+3与x=3联立得圆心C的坐标为(3,0), ∴ ∴圆C的方程为(x-3)2+y2=2. 答案:(x-3)2+y2=2 考点二直线与圆的位置关系的判定与应用 1.(2013年天津卷,理4)已知下列三个命题: ①若一个球的半径缩小到原来的1 2 ,则其体积缩小到原来的 1 8 ; ②若两组数据的平均数相等,则它们的标准差也相等; ③直线x+y+1=0与圆x2+y2=1 2 相切. 其中真命题的序号为( )

高考数学复习《圆的方程》

圆的方程 【考点导读】 1.掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆的方程;理解圆的标准方程与一般方程之间的关系,会进行互化。 2.本节内容主要考查利用待定系数法求圆的方程,利用三角换元或数形结合求最值问题,题型难度以容易题和中档题为主. 【基础练习】 1.已知点A(3,-2),B(-5,4),以线段AB 为直径的圆的方程为(x + 1)2 + (y -1)2 = 25 2.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是(x -1)2+(y -1)2=4 3.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为0422=-+x y x 4.圆22420x y x y c +-++=与y 轴交于A 、B 两点,圆心为P ,若∠APB=120°,则实数c 值为_-11__ 5.如果方程 220x y Dx Ey F ++++=()2240D E F +->所表示的曲线关于直线y x =对称,那么必有__D=E__ 【范例导析】 【例1】 设方程22242(3)2(14)1690x y m x m y m +-++-++=,若该方程表示一个圆,求m 的取值范围及这时圆心的轨迹方程。 分析:配成圆的标准方程再求解 解:配方得:[]2 222(3)(14)167x m y m m m ??-++--=+-?? 该方程表示圆,则有 2 1670m m +->,得1(,1)7m ∈-,此时圆心的轨迹方程为2341x m y m =+??=-?,消去m ,得24(3)1y x =--,由1(,1)7m ∈-得x =m +320,47??∈ ???∴所求的轨迹方程是24(3)1y x =--,20,47x ??∈ ??? 注意:方程表示圆的充要条件,求轨迹方程时,一定要讨论变量的取值范围,如题中 20,47x ??∈ ??? 变式1:方程224(1)40ax ay a x y +--+=表示圆,求实数a 的取值范围,并求出其中半径最小的圆的方程。 解:原方程可化为22222(1)24(22)()a a a x y a a a --+??-++=??? ? 2220,a a -+>∴Q 当a 0≠时,原方程表示圆。 又r ===≥

高中数学圆的方程专题复习

1 / 4 高一数学辅导资料 内容:圆与方程 本章考试要求 一、圆的方程 【知识要点】 1.圆心为),(b a C ,半径为r 的圆的标准方程为:)0()()(222>=-+-r r b y a x 0==b a 时,圆心在原点的圆的方程为:222r y x =+. 2.圆的一般方程02 2 =++++F Ey Dx y x ,圆心为点,2 2D E ?? -- ???,半径2 r = , 其中0422 >-+F E D . 3.圆系方程:过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++= 交点的圆系方程是()22221112220x y D x E y F x y D x E y F λ+++++++++=(不含圆2C ), 当1λ=-时圆系方程变为两圆公共弦所在直线方程. 【互动探究】 考点一 求圆的方程 问题1. 求满足下列各条件圆的方程: ()1以两点(3,1)A --,(5,5)B 为直径端点的圆的方程是 ()2求经过)2,5(A ,)2,3(-B 两点,圆心在直线32=-y x 上的圆的方程; ()3过点()4,1A 的圆C 与直线10x y --=相切于点()2,1B ,则圆C 的方程是? 考点二 圆的标准方程与一般方程 问题2.方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 考点三 轨迹问题

问题3.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是 问题4.设两点()3,0A -,()3,0B ,动点P 到点A 的距离与到点B 的距离的比为2,求P 点的轨迹. 二、直线和圆、圆与圆的位置关系 【知识要点】 1.直线与圆的位置关系 将直线方程代入圆的方程得到一元二次方程,设它的判别式 为△,圆的半径为r ,圆心C 到直线l 的距离为d 则直线与 圆的位置关系满足以下关系: 2.直线截圆所得弦长的计算方法: 利用垂径定理和勾股定理:AB =r 为圆的半径,d 直线到圆心的距离). 0:111221=++++F y E x D y x C 0:222222=++++F y E x D y x C 则两圆的公共弦所在的直线方程是 4.相切问题的解法: ①利用圆心到切线的距离等于半径列方程求解 ②利用圆心、切点连线的斜率与切线的斜率的乘积为1-(或一条直线存在斜率,另一条不存在) ③利用直线与圆的方程联立的方程组的解只有一个,即0=?来求解. 特殊地,已知切点),(00y x P ,圆222r y x =+的切线方程为 . 圆222)()(r b y a x =-+-的切线方程为 【互动探究】 考点一 直线与圆的位置关系 问题1:()1已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则 .A l 与C 相交 .B l 与C 相切 .C l 与C 相离 .D 以上三个选项均有可能 ()2直线l :1mx y m -+-与圆C :() 2 211x y +-=的位置关系是 .A 相离 .B 相切 .C 相交 .D 无法确定,与m 的取值有关. ()3过点()1,3P 引圆2244100x y x y +---=的弦,则所作的弦中最短的弦长为

08高考数学第二轮复习直线与圆的方程

08高考数学直线与圆的方程 一、重点知识结构 本章以直线和圆为载体,揭示了解析几何的基本概念和方法。 直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础; 两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容; 用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意; 曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据; 圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。 二、高考要求 1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系; 3、会用二元一次不等式表示平面区域; 4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用; 5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法; 6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。 三、热点分析 在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。 四、复习建议 本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。 直线 【例题】 【例1】已知点B(1,4),C(16,2),点A在直线x-3y+3 = 0上,并且使 AB C的面积等于21,求点A的坐标。 解:直线B C方程为2x+5y-22 = 0,|B C| = 29,设点A坐标(3y-3,y),则可求A到

年高考第一轮复习数学圆的方程

圆的方程 ●知识梳理 1.圆的方程 (1)圆的标准方程 圆心为(a ,b ),半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2. 说明:方程中有三个参量a 、b 、r ,因此三个独立条件可以确定一个圆. (2)圆的一般方程 二次方程x 2+y 2+Dx +Ey +F =0.(*) 将(*)式配方得 (x +2D )2+(y +2 E )2=4422 F E D -+. 当D 2+E 2-4F >0时,方程(*)表示圆心(- 2D ,-2 E ),半径r =21F E D 422-+的圆,把方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)叫做圆的一般方程. 说明:(1)圆的一般方程体现了圆方程的代数特点: 、y 2项系数相等且不为零. b.没有xy 项. (2)当D 2+E 2-4F =0时,方程(*)表示点(-2D ,-2 E ),当D 2+E 2-4F <0时, 方程(*)不表示任何图形. (3)据条件列出关于D 、E 、F 的三元一次方程组,可确定圆的一般方程. (3)圆的参数方程 ①圆心在O (0,0),半径为r 的圆的参数方程为 x =r cos θ, y =r sin θ ②圆心在O 1(a ,b ),半径为r 的圆的参数方程为 x =a +r cos θ, y =b +r sin θ 说明:在①中消去θ得x 2+y 2=r 2,在②中消去θ得(x -a )2+(y -b )2=r 2,把这两个方程相对于它们各自的参数方程又叫做普通方程. 2.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件 若上述二元二次方程表示圆,则有A =C ≠0,B =0,这仅是二元二次方程表示圆的必要条件,不充分. 在A =C ≠0,B =0时,二元二次方程化为x 2+y 2+A D x +A E y +A F =0, 仅当(A D )2+(A E )2-4·A F >0,即D 2+E 2-4AF >0时表示圆. 故Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是:①A =C ≠0,②B =0,③D 2+E 2-4AF >0. ●点击双基 1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是 (θ为参数) . ① (θ为参数) . ②

高考数学圆的方程专题练习(含答案)

2019-2019年高考数学圆的方程专题练习 (含答案) 圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,下面是查字典数学网整理的2019-2019年高考数学圆的方程专题练习,希望岁考生复习有帮助。 一、填空题 1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________. [解析] 设圆心C(a,b)(a0,b0),由题意得b=1. 又圆心C到直线4x-3y=0的距离d==1, 解得a=2或a=-(舍). 所以该圆的标准方程为(x-2)2+(y-1)2=1. [答案] (x-2)2+(y-1)2=1 2.(2019南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________. [解析] 因为点P关于直线x+y-1=0的对称点也在圆上, 该直线过圆心,即圆心满足方程x+y-1=0, 因此-+1-1=0,解得a=0,所以圆心坐标为(0,1). [答案] (0,1) 3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.

[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x 联立可求得圆心为(1,-4). 半径r=2,所求圆的方程为(x-1)2+(y+4)2=8. [答案] (x-1)2+(y+4)2=8 4.(2019江苏常州模拟)已知实数x,y满足 x2+y2-4x+6y+12=0,则|2x-y|的最小值为________. [解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令 x=2+cos , y=-3+sin ,则|2x-y|=|4+2cos +3-sin | =|7-sin (-7-(tan =2). [答案] 7- 5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________. [解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),所以a+b=2.所以+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b=时取等号. [答案] 9 6.(2019南京市、盐城市高三模拟)在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________. [解析] 由题意得圆心与P点连线垂直于AB,所以kOP==1,kAB=-1,

浙江省衢州市高三数学《圆的一般方程》教案

教材分析: 教 学重点、难点 重点:掌握圆的一般方程,以及用待定系数法求圆的一般方程。 难点:二元二次方程与圆的一般方程的关系及求动点的轨迹方程 教学过程: 1、情境设置:问题提出 方程014222=++-+y x y x 表示什么图形?方程064222=+--+y x y x 表示什么图形?(采用由特殊到一般,由具体到抽象的认知方式) 对给出的方程通过配方,化成圆的标准方程的形式,第一个方程为4)2()1(22=++-y x ,它表示以(1,-2)为圆心,2为半径的圆;第二个方程为 1)2()1(22-=-+-y x , 由于不存在点的坐标),(y x 满足这个方程,所以它不表示任何图形。 2、探索研究: 方程02 2=++++F Ey Dx y x 在什么条件下表示圆? 配方得4 4)2()2(2222F E D E y D x -+=+++。(1)当0422>-+F E D 时,方程表示以)2,2(E D --为圆心,F E D 42 122-+为半径的圆; (2)当0422=-+F E D 时,方程表示一个点

)2 ,2(E D -- ; (3) 当0422<-+F E D 时,方程不表示任何图 形。 关于y x ,的二元二次方程 022=+++++F Ey Dx Cy Bxy Ax 成为圆方程的充要条件是(1)2x 和2y 的系数相同且不等于0,即A=C ≠0;(2)没有xy 这样的二次项,即B=0;(3) 0422>-+AF E D 。 对于圆的一般方程,要熟练地通过配方法,求出圆的圆心坐标和半径。 根据已知条件求圆的方程,仍然采用待定系数法,但要注意的是待定的方程是设标准方程还是设一般方程,这要根据已知条件而定。 3、思考交流 圆的标准方程和圆的一般方程各有什么特点? 圆的标准方程指出了圆心坐标与半径大小,几何特征明显;圆的一般方程表明圆的方程是一种特殊的二元二次方程,代数特征明显。圆的一般方程与圆的标准方程可以相互转化。 例1:已知方程x 2+y 2+2kx+4y+3k+8=0表示一个圆,求k 的取值范围。 分析:由二元二次方程成为圆方程的条件,得到关于k 的不等式。 解: 方程x 2+y 2+2kx+4y+3k+8=0表示一个圆, ∴0)83(44)2(2 2>+-+k k ,解得14-<>k k 或 ∴当14-<>k k 或时,方程x 2+y 2+2kx+4y+3k+8=0表示一个圆。 总结:在圆的一般方程02 2=++++F Ey Dx y x 中,系数D 、E 、F 必须满足0422>-+F E D 。 例2:求经过三点A (1,-1)、B (1,4)、C (4,-2)的圆的方程。 解:设所求圆的方程为02 2=++++F Ey Dx y x , A (1,-1)、 B (1,4)、 C (4,-2)三点在圆上,代入圆的方程并化简,得 ?? ???-=+--=++-=+-20241742F E D F E D F E D ,解得D =-7,E =-3,F =2 ∴所求圆的方程为02372 2=+--+y x y x 。 总结:待定系数法是求圆的方程最常见的方法,但是在求圆的方程时是设标准方程还是设一般方程,要由已知条件确定。一般地,如果由已知条件易求得圆心坐标、半径或需要利用圆心坐标或半径列方程,常选用标准方程;如果已知条件与圆心坐标、半径无直接关系,常选用一般方程。 例3、已知线段AB 的端点B 的坐标是(4,3),端点A 在圆上()2214x y ++=运动,求线段AB 的中点M 的轨迹方程。

高考数学复习-圆的标准方程和一般方程

圆的标准方程和一般方程 A 组 1.若圆x 2+y 2-2kx +2y +2=0(k >0)与两坐标轴无公共点,那么实数k 的取值范围为________. 解析:圆的方程为(x -k )2+(y +1)2=k 2-1,圆心坐标为(k ,-1),半径r =k 2 -1,若圆与两坐标无公共点,即? ???? k 2 -1<|k |k 2 -1<1,解得1

相关文档
相关文档 最新文档