文档库 最新最全的文档下载
当前位置:文档库 › 电动汽车的车架焊接工装技术方案设计介绍

电动汽车的车架焊接工装技术方案设计介绍

电动汽车的车架焊接工装技术方案设计介绍
电动汽车的车架焊接工装技术方案设计介绍

焊接工装夹具在汽车制造业的发展

摘要

东莞市三威柔性自动化装备有限公司专注于工装夹具、焊接工装、柔性组合工装、专用工装夹具、自动专机、智能焊接工装工艺装备及提高生产效率解决方案的研发和运营。装配夹具和焊接夹具在汽车车身装配和焊接生产线与生产制造优质的汽车设备息息相关,焊装夹具是焊接工艺的重要组成部分,装配和焊接夹具除了是完成这个过程中零部件装配的途径和定位,同时在生产线上也作为一个测试和校准程序,完成检测焊接配件和焊接质量的任务。因此焊装夹具的设计和制造,直接影响焊接过程中汽车的生产能力和产品质量。汽车焊装夹具是保证其制造质量,缩短制造周期的重要手段。因此,正确理解焊装夹具的设计要点,改善和提高焊装夹具的设计手段和设计水平,并提高夹具的调整和验证水平等三方面都是必不可少的,也是汽车制造公司在竞争中得以生存需解决的问题。汽车的风格不同,焊接夹具的形状,因而有着很大的不同,但在设计、制造和调整都是一样的可以借鉴的。

一.焊接工装夹具

焊接工装夹具就是将焊件准确定位和可靠加紧,便于焊件进行装配和焊接、保证焊件结构精度方面要求的工艺装备。在现代焊件生产中积极推广和使用与产品结构相适应的工装夹具,对提高产品质量,减轻工人的劳动强度,加速焊接生产实现机械化、自动化进程等方面起着非常重要的作用。

在焊接生产过程中,焊接所需的工时较少,而约占加工工时的2/3以上的时间是用于备料、装配及其他辅助的工作,极大地影响着焊接的生产速度。为此,必须大力推广使用机械化和自动化程度较高的装配焊接工艺装备。

焊接工装夹具的主要作用有以下几方面:

(1)准确、可靠的定位和夹紧,可以减轻甚至取消下料和划线工作。减小制品的尺寸偏差,提高了零件的精度和可换性。

(2)有效地防止和减轻了焊件变形。

(3)是工件处于最佳的施焊部位,焊缝的成形性良好,工艺缺陷明显降低,焊接速度得以提高。

(4)以机械装置代替了手工装配零件部位时的定位、夹紧及工件翻转等繁重的工作,改善了工人的劳动条件。

(5)可以扩大先进的工艺方法的适用范围,促进焊接结构的生产机械化和自动化的综合发展。

二.汽车焊接工装夹具

中国汽车工业经历了从无到有、从小到大,从货车时代到轿车时代,从“公车”到“私车”的发展过程,其创建、成长的每一步都成为中国制造业发展与开拓的见证。而作为汽车生产四大工艺之一的车身焊装生产线,也经历了一个从低端到高端,从手动到自动的发展过程。为了赶上国际水平,在提高产量的同时,要求努力提高汽车制造质量,因此对焊装夹具也提出了新的要求,以满足更快的新品开发速度。在研发新车型的过程中,需要一种柔性化、模块化的三维组合工装替代传统的专用工装,可以大量缩短设计、制造时间,并可以反复使用,节约研制成本。同时,在专用车辆,工程车辆和大客车的生产中,由于批量小、客户要求不同,使用柔性化工装制造也是非常实用和经济的方法。

1.焊装工装夹具的发展

焊装夹具也称焊接工装夹具,它与焊接变位机械装备在焊接结构生产中总称为工艺装备。其中,工装夹具包括夹紧器、定位器、推拉装置等。夹紧器是焊装夹具中最基本、应用量最多的设备,通过夹紧器对焊接工件的夹紧,可有效保证焊接工件的焊接精度和焊接质量。

从50年代开始发展的中国汽车制造业,以手工焊和电阻点焊作为主要加工手段,跨出了汽车制造的第一步,其焊装夹具也主要是以手工操作为主。夹紧器的应用经历了以手动夹紧器为主,到以拉杆式气缸驱动夹紧机构为主,再到现今的以气动一体式夹紧器为主的一个发展过程。

2.焊装夹具对夹紧器/机构的基本要求

1)、夹紧作用准确,处于夹紧状态时应能保持自锁,保证夹紧定位的安全可靠;

2)、夹紧动作迅速,操作方便省力,夹紧时不应损坏零件表面质量;

3)、夹紧件应具备一定的刚性和强度,夹紧作用力应是可调的;

4)、结构力求简单,便于制造和维修。

3.柔性组合焊接工装的应用

焊接工装夹具过去一直没有受到机械焊接与切削行业的重视。各厂家都实行自己开发设计制造,专用性强,费时费工,工装成本非常高。柔性组合焊接工装基本上是一个空白。东莞三威公司在自身承接客户变化多样的结构件的生产过程中,应用组合夹具的设计思想,以其创意和创新的巧妙构思、灵活多样的结构组合,独创了组合式三维焊接工作台,并逐渐从满足自我的使用到供应给各行各业的用户。柔性化的焊接工装免除了设计人员重复设计和制作工装的投入,在短短10年左右的时间内,就已经在几千家欧美著名的机械焊接与切削行业成功应用。

3.1柔性组合焊接工装概述

东莞三威公司三维组合焊接工作台有D28和D16两个系列。在高精度的台面上,每隔100mm均布D28的圆孔或每隔50mm均布D16的圆孔,这些孔可用于拼接各种功能的定位模块和夹具。各种功能模块除台面外,还有定位块,直角块,立柱,任意角度调整,V形块,销栓,各类快速夹具,间隙调整片及各种辅助模块。模块的设计构思巧妙,可以进行各种组合和反复应用。

用于模块之间互相紧固连接的销栓,内部采用五个同心钢珠。销栓松开时,钢珠退入销栓内,此时销栓可方便地插入模块的孔内。当用手逐渐拧紧时,五个钢珠逐渐弹出,自动对中并夹紧模块。用扳手扳紧后,其对模块的夹紧力可达5吨,剪切力可达25吨。

3.2柔性组合焊接工装特点

东莞三威三维柔性组合焊接夹具系统广泛应用于各类钢结构、工程机械制造、压力容器、建筑框架、汽车工业、自行车(摩托车)制造、钣金加工、金属家具、工业管道(法兰)、机器人技术以及设备装配和检测设备等。这种组合夹具的突出优点是:1)模块化:所有组件分门别类,进行了标准化和系列化,互相匹配。选用最少的模块,就可以实现各种快速定位和夹紧的功能。

2)柔性化:拼装方式多样,用户只要充分发挥想象力,几乎可达到任何专用夹具同样的定位和夹紧功能。拼装快速,装拆方便;工作台面可以根据工件形状、大小进行拼装组合。台面上的刻度和模块尺寸的设计,使操作工人不用量具就可以根据工件尺寸迅速搭出所需要的工装。

3)高精度:工作台面和各种功能模块上每隔50或100mm 配套的D16或

D28的圆孔,任意孔的孔间距尺寸公差小于0.02mm,这种精度将会反映在用户所加工的产品中。所以,也有用户将此工作台用作检具的基准平台。

4)专利设计:各功能模块中有不少是专利产品,如模块间连接采用的销栓,为防止工件在夹紧过程中移位而特殊设计的带补偿的弹性夹具等。

5)三维立体设计:模块中的立柱,直角块可用于向三维空间拼接,便于生产各类立体构件。

3.3柔性组合焊接工装应用

有了这种组合焊接工作台,对于不断重复设计工装的用户来说,就可大大节约重复投资耗费在工装上的设计制作时间和资金。用户可根据需要快速拼接出不同要求的工装,就像儿童玩拼装式玩具一样。这种三维柔性工装可用于汽车制造行业,工程机械行业,钢结构生产行业,扳金加工行业,自行车(摩托车)制造行业,与焊接机器人或专用焊机配套等等。如:德国Benz公司(斯图加特工厂)在汽车模具和检具上的应用;Liebherr和MAN公司在生产工程车辆和机械中应用siegmund工装, 焊接拼装底盘和车架;Schwing Stetter公司应用siegmund工装生产搅拌车和建筑机械;用siegmund工作台作为Trumpf 公司的激光焊接和切割设备的工作平台。当然,作为日常工作必不可少的辅助工具,siegmund产品更广泛地应用在各种焊接场合中。相信在我国焊接工艺不断发展中,siegmund产品一定能得到越来越多的中国用户欢迎。

(1)应用实例一下图所示为某厂生产装载机的承重臂。由于这一承重臂规格多,批量不大,以前在焊接前必须制作专用焊接工装,以保证左右臂的平行度及弯角的角度。这样仅从设计到制作完成工装,就至少需要4周的时间,而且要投入大量资金;用完以后,工装还需要一定的空间存放,以备下次使用。有了西格芒柔性组合工装后,从考虑构思工装到拼装完成,最多一天时间(随着对西格芒柔性工装熟悉程度的提高还可大大缩短)。用完后这套工装可立即拆除,再搭建其他工装,不占用空间。即使过若干年后,用户再来订做更换备件,也不用担心工装的问题。这一实例中比较重要的定位尺寸为左右臂两端部及转角部位轴孔的同心度。建议焊接前使用辅助的芯棒对穿两孔,然后将芯棒夹持于工作台面上。完成焊接后松开并抽出芯棒。

(2)应用实例二下图为某著名汽车厂在开发新车中使用的西格芒柔性工装。整个汽车的框架都用西格芒工装定位和夹紧。这样做的目的,一是这种车型本身的批量不大,不适用专用流水线焊装;另一种是为大批量生产的焊装生产寻找最佳的夹紧工艺。

(3)应用实例三下图所示为某管道中一节弯管(法兰)的焊接实例,由于使用了西格芒柔性工装,保证了法兰定位的精确,避免了管道最后安装时的错位。

由于西格芒三维组合工装的灵活性,它的应用实例是大量的。对于较简单的平面构件、立体框架、箱体等焊接时的定位,它可以非常方便地实现。即使是较复杂的构件,实际上也可以通过分步焊接来实现。这样既实现了操作的方便性,又大大提高了工作台的利用率。实践证明,该三维组合焊接夹紧系统可以按照用户的充分想象,在绝大部分的焊接过程中获得应用。

关键词:工装夹具、焊接工装夹具、焊接平台、柔性组合焊接工装夹具、汽车焊接工装夹具

纯电动汽车整车控制器的设计

纯电动汽车整车控制器的设计 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。传 统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。纯电 动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。随着科 技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提 供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。本文 从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。 关键词:纯电动汽车;整车控制器;硬件设计;软件设计 纯电动汽车作为新能源汽车的一种,以其清洁无污染、驱动能源多样化、能 量效率高等优点成为现代汽车的发展趋势。整车控制器(vehicle control unit,VCU)作为纯电动汽车整车控制系统的中心枢纽,主要实现数据采集和处理、控 制信息传递、整车能量管理、上下电控制、车辆部件控制和错误诊断及处理、车 辆安全监控等功能。国外在纯电动汽车整车控制器的产品开发中,积极推行整车 控制系统架构的标准化和统一化,汽车零部件厂商提供硬件电路和底层驱动软件,整车厂只需要开发核心应用软件,有利的推动了整车行业的快速发展。虽然国内 各大汽车厂商基本掌握了整车控制器的设计方案,开发技术进步明显,但是对核 心电子元器件、开发环境的严重依赖,所以导致了整车控制器的国产化水平较低。本文以复合电源纯电动汽车作为研究对象,针对电动汽车应有的结构和特性,对 整车控制器的设计和开发展开研究。 一、整车控制系统分析与设计 (一)整车控制系统分析 复合电源纯电动汽车整车控制系统主要由整车控制器、能量管理系统、整车 通信网络以及车载信息显示系统等组成。首先纯电动汽车整车控制器通过采集启动、踏板等传感器信号以及与电机控制器、能量管理系统等进行实时的信息交互,获取整车的实时数据,然后整车控制器通过所有当前数据对驾驶员意图和车辆行 驶状态进行判断,从而进入不同的工况与运行模式,对电机控制系统或制动系统 发出操控命令,并接受各子控制器做出的反馈。 保障纯电动汽车安全可靠运行,并对各个子控制器进行控制管理的整车控制器,属于纯电动汽车整车控制系统的核心设备。整车控制器实时地接收传感器传 输的数据和驾驶操作指令,依照给定的控制策略做出工况与模式的判断,实现实 时监控车辆运行状态及参数或者控制车辆的上下电,以整车控制器为中心通信节 点的整车通信网络,实现了数据快速、可靠的传递。 (二)整车控制系统设计 复合电源的结构设计,选择了超级电容与DC/DC串联的结构,双向DC/DC跟 踪动力电池电压来调整超级电容电压,使两者电压相匹配。为了车辆驾驶运行安全,同时为了更好地使超级电容吸收纯电动汽车的再生制动能量,在复合电源系 统中动力电池与一组由IGBT组成双向可控开关,防止了纯电动汽车处于再生制动状态时,动力电池继续供电,降低再生制动能量的吸收效率。 整车CAN通信网络设计,由整车控制器(VCU)、电机控制器(motor control unit,MCU)、电池管理系统(battery management system,BMS)、双向DC/DC控制器以及汽车组合仪表等控制单元(Electronic Control Unit,ECU)组成 了复合电源纯电动汽车的整车通信网络。 二、整车控制器硬件设计及软件设计

电动车设计计算书

一、车型设计的主要参数指标 表1 主要参数 二、车型设计的计算方程式 电动汽车动力传动系统的设计应该满足车辆对动力性能的要求和续驶里程的要求。我们得到动力性能的要求,即最高车速80km/h ,加速性能0~50km/h 小于10s ,爬坡度不小于20%(20 km/h ),续航里程150kw (50km/h )。为此,需要掌握沿汽车行驶方向作用于汽车的各种外力,即驱动力与行驶阻力。根据这些力的平衡关系建立汽车行驶方程式,就可以估算汽车的最高车速、加速度、最大爬坡度和续航里程。 汽车的行驶方程式为: t F F =∑ 式中:F t ——驱动力; ΣF——行驶阻力之和。 车辆行驶的驱动力是路面作用在车辆驱动轮上的,电动汽车的电动机输出轴输出转矩,经过车辆传动系传递到驱动轮的驱动力矩为T t ,同时,地面对驱动轮产生反作用力F t ,这个反作用力就是驱动汽车行驶的外力,即驱动力。

其数值为: t t T F r = 式中:T t —作用与驱动轮上的转矩; r —车轮半径。 电动汽车中T t 是由电动机输出的转矩经传动系统传递到车轮上的。令传动系统总传动比为i ,传动系统的机械效率为ηt 。驱动电动机的输出转矩为T tq ,则有: t tq t T T i η=?? 汽车在水平道路上等速行驶时,必须克服来自地面的滚动阻力和来自空气的空气阻力。当汽车在坡道上上坡行驶时,还必须克服坡度阻力。汽车加速行驶时还需要克服加速阻力。因此汽车行驶过程中的总阻力为: f w i j F F F F F =+++∑ 式中:F f —滚动阻力 F w —空气阻力 F i —坡度阻力 F j —加速阻力 其中:(1)滚动阻力:F f 可以等效的表示为: f F W f =? 式中:W —作用于车辆上的法向载荷; f—滚动阻力系数,与路面种类,行驶车速以及轮胎的结构、材料、气压等有关。研究中滚动阻力系数,按经验公式取值。 (2) 空气阻力: 21 2 w D r F C A u ρ=????

电动汽车的车架焊接工装技术方案设计介绍

焊接工装夹具在汽车制造业的发展 摘要 东莞市三威柔性自动化装备有限公司专注于工装夹具、焊接工装、柔性组合工装、专用工装夹具、自动专机、智能焊接工装工艺装备及提高生产效率解决方案的研发和运营。装配夹具和焊接夹具在汽车车身装配和焊接生产线与生产制造优质的汽车设备息息相关,焊装夹具是焊接工艺的重要组成部分,装配和焊接夹具除了是完成这个过程中零部件装配的途径和定位,同时在生产线上也作为一个测试和校准程序,完成检测焊接配件和焊接质量的任务。因此焊装夹具的设计和制造,直接影响焊接过程中汽车的生产能力和产品质量。汽车焊装夹具是保证其制造质量,缩短制造周期的重要手段。因此,正确理解焊装夹具的设计要点,改善和提高焊装夹具的设计手段和设计水平,并提高夹具的调整和验证水平等三方面都是必不可少的,也是汽车制造公司在竞争中得以生存需解决的问题。汽车的风格不同,焊接夹具的形状,因而有着很大的不同,但在设计、制造和调整都是一样的可以借鉴的。 一.焊接工装夹具

焊接工装夹具就是将焊件准确定位和可靠加紧,便于焊件进行装配和焊接、保证焊件结构精度方面要求的工艺装备。在现代焊件生产中积极推广和使用与产品结构相适应的工装夹具,对提高产品质量,减轻工人的劳动强度,加速焊接生产实现机械化、自动化进程等方面起着非常重要的作用。 在焊接生产过程中,焊接所需的工时较少,而约占加工工时的2/3以上的时间是用于备料、装配及其他辅助的工作,极大地影响着焊接的生产速度。为此,必须大力推广使用机械化和自动化程度较高的装配焊接工艺装备。 焊接工装夹具的主要作用有以下几方面: (1)准确、可靠的定位和夹紧,可以减轻甚至取消下料和划线工作。减小制品的尺寸偏差,提高了零件的精度和可换性。 (2)有效地防止和减轻了焊件变形。 (3)是工件处于最佳的施焊部位,焊缝的成形性良好,工艺缺陷明显降低,焊接速度得以提高。 (4)以机械装置代替了手工装配零件部位时的定位、夹紧及工件翻转等繁重的工作,改善了工人的劳动条件。 (5)可以扩大先进的工艺方法的适用范围,促进焊接结构的生产机械化和自动化的综合发展。 二.汽车焊接工装夹具 中国汽车工业经历了从无到有、从小到大,从货车时代到轿车时代,从“公车”到“私车”的发展过程,其创建、成长的每一步都成为中国制造业发展与开拓的见证。而作为汽车生产四大工艺之一的车身焊装生产线,也经历了一个从低端到高端,从手动到自动的发展过程。为了赶上国际水平,在提高产量的同时,要求努力提高汽车制造质量,因此对焊装夹具也提出了新的要求,以满足更快的新品开发速度。在研发新车型的过程中,需要一种柔性化、模块化的三维组合工装替代传统的专用工装,可以大量缩短设计、制造时间,并可以反复使用,节约研制成本。同时,在专用车辆,工程车辆和大客车的生产中,由于批量小、客户要求不同,使用柔性化工装制造也是非常实用和经济的方法。

纯电动汽车设计方案

目录 一、汽车产品定位 (3) 二、汽车底盘布置形式 (4) 三、驱动电机的选择 (5) 四、蓄电池的选择 (8) 五、技术参数 (10) 六、成本分析 (11) 七、后记 (12)

一、汽车产品定位 二、汽车底盘布置形式 采用电动机前置前驱形式,变速驱动桥将变速器、主减速器和差速器安装在同一个外壳(常称为变速器壳)之内。这样可以有效地简化结构,减小体积,提高传动效率。而且取消了传动轴,可使汽车自重减轻。 电池组安装在前后两排座椅下。 三、驱动电机的选择 电动汽车电机是将电源电能转换为机械能,通过传动装置或直接驱动车轮的汽车驱动装置,该电机与其他电机相比具有体积小、重量轻、效率高且高效区范围广、调速性能好等特点。 电动汽车用电动机在需要满足汽车行走的功能同时,还应满足行车时的舒适性、耐环境性、一次充电的续行里程等性能,该电机要求比普通工业用电动机更为严格的技术规范,还希望有如下功能: 体积小,重量轻。 减小有限的车载空间,特别是总质量的减小,在整个运行范围内高效率。 一次充电续行里程长,特别是行走方式频繁改变时,低负载运行时,也有较高的效率。 低速大转矩特性及宽范围内的恒功率特性。 综合上述原因考虑我们初步选定永磁无刷直流电机作为驱动电机。

无刷直流电机优点是: ①电机外特性好,非常符合电动车辆的负载特性,尤其是电机具有可贵的低速 大转矩特性,能够提供大的起动转矩,满足车辆的加速要求。 ②速度范围宽,电机可以在低中高大速度范围内运行,而有刷电机由于受机械 换向的影响,电机只能在中低速下运行。 ③电机效率高,尤其是在轻载车况下,电机仍能保持较高的效率,这对珍贵的 电池能量是很重要的。 ④过载能力强,这种电机比Y系列电动机可提高过载能力2倍以上,满足车辆 的突起堵转需要。 ⑤再生制动效果好,因电机转子具有很高的永久磁场,在汽车下坡或制动时电 机可完全进入发电机状态,给电池充电,同时起到电制动作用,减轻机械刹 车负担。 ⑥电机体积小、重量轻、比功率大、可有效地减轻重量、节省空间。 ⑦电机无机械换向器,采用全封闭式结构,防止尘土进入电机内部,可靠性高。 ⑧电机控制系统比异步电机简单。缺点是电机本身比交流电机复杂,控制器比 有刷直流电机复杂。 永磁无刷直流电机的技术数据:

电动自行车控制器设计.

基于中颖SH79F081的电动自行车控制器设计 摘要:方波驱动的无刷直流电机由于力矩大, 运行可靠, 在电动车控制器中广泛应用, 方波驱动最大的缺点在于换相时的电流突变引起的转矩脉动, 导致噪声较大, 但好的控制策略可以大大改善换相噪声. 电动车控制器设计的难点在于电流控制, 本文就电动车控制器设计的一些关键地方加以描述. 关键词:电动车控制器直流无刷电机换相同步整流 概述 电动自行车上使用的电机普遍采用永磁直流电机. 所谓永磁电机, 是指电机线圈采用永磁体激磁, 不采用线圈激磁的方式. 这样就省去了激磁线圈工作时消耗的电能, 提高了电机机电转换效率, 这对使用车载有限能源的电动车来讲, 可以降低行驶电流, 延长续行里程. 永磁直流电机按照电机的通电形式来分, 可分为有刷电机和无刷电机两大类, 有刷电机由于采用机械换相装置导致可靠性和寿命降低, 因此逐渐退出电动车市场. 无刷电机又可分为有传感器和无传感器两类, 对于无位置传感器的无刷电机, 必须要先将车用脚蹬起来, 等电机具有一定的旋转速度以后, 控制器才能识别到无刷电机的相位, 然后控制器才能对电机供电. 由于无位置传感器无刷电机不能实现零速度启动, 所以现在生产的电动车上用得较少. 目前电动车行业内使用的无刷电机, 普遍采用有位置传感器无刷电机. 有位置传感器永磁直流无刷电机按照内部传感器的安装位置不同, 又可分为60度电机和120度电机. 在120°的霍尔信号中, 不可能出现二进制000和111的编码,

所以在一定程度上避免了因霍尔零件故障而导致的误操作. 因为霍尔组件是开漏输出, 高电平依靠电路上的上拉电阻提供, 一旦霍尔零件断电, 霍尔信号输出就是111. 一旦霍尔零件短路, 霍尔信号输出就是000, 而60°的霍尔信号在正常工作时这两种信号均会出现, 所以一定程度上影响了软件判断故障的准确率. 因此目前市面马达已经逐渐舍弃60°相位的霍尔排列. 2. 永磁直流电机基本原理 2.1. 主回路电路 1.

车架焊接工艺规范

本守则适用于车架车间生产的四轮车车架、三轮车车架的装焊。 3 引用文件 3.1 Q/FTB026-1999 四轮农用运输车车架总成技术条件 3.2 GB6417-86 金属熔化焊焊缝缺陷分类及说明 3.3 GB8110-95 二氧化碳气体保护焊用钢焊丝 3.4《焊接手册》机械工业出版社 3.5《焊接技术手册》山西科学技术出版社 4 焊接设备 4.1各车型车架焊接均采用CO2气体保护焊。 4.2焊接设备由电源与控制系统、送丝机构、供气系统、联接电缆、送气管道、焊枪、调节旋钮及指示表组成。 4.3焊接设备及其配套装置上的仪表、开关、按钮、旋钮、阀门、指示灯等元件必须完好,设备调节灵活,指示数据清晰、准确,使用方便。 4.4焊接设备的外壳必须有良好的接地,且地线截面积大于 12mm2,其接地线不能随意拆除,并应经常检查接地的可靠性。 4.5焊机接到配套装置和工件的电缆线、送丝软管、气管等附件应保持完好,联接牢固,并便于操作和检查。 编制(日期)校对 (日 期) 审核 (日 期) 标准 化 (日 期) 会签 (日 期) 批准 (日 期) 标记处 数 更改文 件号 签字 (日 期) 奔驰汽车股份有限公司北京汽车厂车架装焊通用工艺 守则 第2页 共6页

4.6经常检查导电嘴、送丝滚轮的磨损情况,导电嘴内径过大与焊丝接触不良、送丝滚轮过度磨损都会影响焊接质量和正常送丝,必须更换。 4.7要随时检查、及时清理喷嘴内部附着飞溅物,以免喷嘴与导电嘴短路而烧损元件。 4.8应经常保持焊接设备的清洁完好,并有日保记录,保持工作环境良好,满足焊机的使用要求。 5 工装焊胎 5.1焊胎必须保证焊合件的装配尺寸,使用安全、可靠,操作要灵活、方便。 5.2焊胎上的定位元件应正确牢固、夹紧装置动作正常。 5.3夹具、气缸上的夹紧和定位部件应经常紧固,防止松动,未经维修人员同意,不得随意拆除。 5.4夹具的气缸及滑动部件应经常维护,并添加润滑剂。 5.5严禁在焊胎上试焊或引弧。 5.6焊胎中气路、阀门不得漏气,若有漏气应及时处理。 5.7定位销等易损件若有磨损,应及时更换。 6 焊接材料 6.1装焊零部件必须经过检验,符合产品图纸要求。 6.2装焊零部件必须清洁,无油污、锈蚀、氧化皮等,对不干净的须经清理后方可焊接。 6.3焊丝应符合GB8110-1995的规定,并经有关部门检验合格,严禁使用不符合规定的材料。 6.4焊丝表面必须光滑、平整、清洁、无油污锈蚀、无毛刺划痕,对不干净的焊丝须经擦试后方可焊接。 编制(日校对 (日 审核 (日 标准 化会签 (日 批准 (日

纯电动车车身架构及其带宽设计

新能源汽车 收稿日期:2018-12-06纯电动车车身架构及其带宽设计陈东平王镝(泛亚汽车技术中心有限公司,上海201208) 【摘要】电动车用电机和电池取代了燃油车的动力总成、传动、排气及燃油系统,通过前后配置的轻巧电机简化了电动车的布置和架构类型。但现有的电池及其技术也全面影响着整车的布置、性能及柔性的变化,作为承载和性能实现的主体,车身架构需要适应这一新的变化。通过对比分析与燃油车主要系统的差异,在兼顾传统设计概念的基础上,提出了电动车的车身接口与布置解决方法以及车身架构的实现路径,并结合电池的柔性变化的特点,提出了与之相适应的尺寸及性能带宽的变化方法,实现了基于电动车特点的车身柔性架构及其精益设计。 【Abstract】BEV replace the powertrain,transmission,exhaust and fuel systems of fuel vehicles by motor and battery,and simplify the arrangement and structure type by using front and rear motors.Limited to the existing technology,the overall layout,performance and flexibility of the vehicle needs to adapt to this new change.In this paper,the differences between BEV and ICE are analyzed.The BEV body interface layout solution and the realization path of the vehicle body structure are proposed based on the concept of traditional design.Combined with the flexible change characteristics of batter-y,the size and performance bandwidth change are proposed,the flexible structure of the body based on the characteristics of BEV and lean design are realized. 【关键词】车身架构带宽柔性化车电动车 doi:10.3969/j.issn.1007-4554.2019.02.02 0引言 随着世界各地对碳排放要求的日益严苛,各国政府和各大车企均制定了应对战略并投入巨资进行电动车的研发,各种以纯电驱动的新能源车在国内出现了爆发式增长。但电动车相对燃油车在整车布置、性能及柔性变化的策略上有很大差异,本文将从电动车的特点和内在驱动出发,剖析与燃油车的相似性及特殊性,构建电动车车身架构及其柔性化的实现方法。1电动车车身架构及驱动特点分析 1.1车身架构及其在平台型谱开发中的作用车身架构通常指车身结构的下车体部分,由于它跟整车的动力驱动系统、悬架及转向等底盘系统、座椅及人机布置、整车尺寸及整车性能等核心架构要素密切相关,是上述系统及要求的承载主体,因而将下车体结构称为车身架构。它受造型的影响比较小,但却能更多地体现平台车型型谱的变化能力。一个好的车身架构能够适应车企灵活快速地开发多个车型及变化的要求,而又不 · 11 · 上海汽车2019.02

纯电动汽车整车控制器的设计

纯电动汽车整车控制器的设计 发表时间:2019-07-05T11:27:03.790Z 来源:《电力设备》2019年第4期作者:王坚 [导读] 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。 (柳州五菱汽车工业有限公司广西柳州 545007) 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。传统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。纯电动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。随着科技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。本文从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。 关键词:纯电动汽车;整车控制器;硬件设计;软件设计 纯电动汽车作为新能源汽车的一种,以其清洁无污染、驱动能源多样化、能量效率高等优点成为现代汽车的发展趋势。整车控制器(vehicle control unit,VCU)作为纯电动汽车整车控制系统的中心枢纽,主要实现数据采集和处理、控制信息传递、整车能量管理、上下电控制、车辆部件控制和错误诊断及处理、车辆安全监控等功能。国外在纯电动汽车整车控制器的产品开发中,积极推行整车控制系统架构的标准化和统一化,汽车零部件厂商提供硬件电路和底层驱动软件,整车厂只需要开发核心应用软件,有利的推动了整车行业的快速发展。虽然国内各大汽车厂商基本掌握了整车控制器的设计方案,开发技术进步明显,但是对核心电子元器件、开发环境的严重依赖,所以导致了整车控制器的国产化水平较低。本文以复合电源纯电动汽车作为研究对象,针对电动汽车应有的结构和特性,对整车控制器的设计和开发展开研究。 一、整车控制系统分析与设计 (一)整车控制系统分析 复合电源纯电动汽车整车控制系统主要由整车控制器、能量管理系统、整车通信网络以及车载信息显示系统等组成。首先纯电动汽车整车控制器通过采集启动、踏板等传感器信号以及与电机控制器、能量管理系统等进行实时的信息交互,获取整车的实时数据,然后整车控制器通过所有当前数据对驾驶员意图和车辆行驶状态进行判断,从而进入不同的工况与运行模式,对电机控制系统或制动系统发出操控命令,并接受各子控制器做出的反馈。 保障纯电动汽车安全可靠运行,并对各个子控制器进行控制管理的整车控制器,属于纯电动汽车整车控制系统的核心设备。整车控制器实时地接收传感器传输的数据和驾驶操作指令,依照给定的控制策略做出工况与模式的判断,实现实时监控车辆运行状态及参数或者控制车辆的上下电,以整车控制器为中心通信节点的整车通信网络,实现了数据快速、可靠的传递。 (二)整车控制系统设计 复合电源的结构设计,选择了超级电容与DC/DC串联的结构,双向DC/DC跟踪动力电池电压来调整超级电容电压,使两者电压相匹配。为了车辆驾驶运行安全,同时为了更好地使超级电容吸收纯电动汽车的再生制动能量,在复合电源系统中动力电池与一组由IGBT组成双向可控开关,防止了纯电动汽车处于再生制动状态时,动力电池继续供电,降低再生制动能量的吸收效率。 整车CAN通信网络设计,由整车控制器(VCU)、电机控制器(motor control unit,MCU)、电池管理系统(battery management system,BMS)、双向DC/DC控制器以及汽车组合仪表等控制单元(Electronic Control Unit,ECU)组成了复合电源纯电动汽车的整车通信网络。 二、整车控制器硬件设计及软件设计 (一)整车控制器结构设计 整车控制器的硬件结构根据其基本的功能需求进行设计,如图1所示。支持芯片正常工作的微控制器最小系统是整车控制器的核心,基础的信号处理模块,CAN通信与串口通信组成的通信接口模块,以及LCD显示等其他模块分别作为它的各大功能模块。 图1 整车控制器硬件结构图 (二)整车控制器硬件设计 从功能上可以把整车控制器分为6个模块。 1)微控制器模块:本设计选用美国德州仪器公司TI的数字信号处理芯片TMS320F2812为主控芯片,负责数据的运算及处理,控制方法的实现,是整车控制器的控制核心。此芯片运算速度快,控制精度高的特点基本满足了整车控制器的设计需求。TMS320F2812的最小系统主要由DSP主控芯片、晶振电路、电源电路以及复位电路组成。 2)辅助电源模块:由于整车控制器的控制系统中用到多种芯片,所以需要设计辅助电源电路为各个芯片提供电源,使其正常工作,因此输出电平有多种规格。采用芯片LM317、LM337可分别产生+5V和-5V的供电电压。 3)信号调理模块:输入整车控制器的踏板信号是1~4.2V模拟电压信号,TMS320F2812的12位16通道的A/D采样模块输入的信号范围为0~3.0V,因此需要对踏板输入的模拟电压信号进行相应的调理运算,以满足DSP的A/D采样电平要求。选用德州仪器的OPA4350轨至轨运算放大器,在输入级采用RC低通滤波电路与电压跟随电路以滤除干扰信号,减小输入的模拟信号失真。开关信号先经RC低通滤波电路滤除高频干扰,再作为电压比较器LM393的正端输入,电压比较器的负端输入接分压电路,将LM393的输出引脚外接光耦芯片,在起到电平转换作用的同时,进一步隔离干扰信号,提高信号的安全性与可靠性。 4)通讯模块:TMS320F2812具有一个eCAN模块,支持CAN2.0B协议,可以实现CAN网络的通讯,但是其仅作为CAN控制器使用。选用3.3V单电源供电运行的CAN发送接收器SN65HVD232D,其兼容TMS320F2812的引脚电平,用于数据速率高达1兆比特每秒(Mbps)的应

电动汽车充电站设计规范

电动汽车充电站设计规范 精品汇编资料 目次 2术语和符号........................................................... 2.1术语 2.2符号 3充电站规模及站址选择 ................................................. 3.1充电站规模......................................................... 3.2站址选择........................................................... 4总平面布置........................................................... 4.1一般规定........................................................... 4.2充电设施及建筑布置 ................................................. 4.3道路 5充电系统............................................................. 5.1非车载充电机 ....................................................... 5.2交流充电桩......................................................... 6供配电系统........................................................... 7电能质量............................................................. 8计量系统............................................................. 9监控及通信系统 ....................................................... 9.1系统构成........................................................... 9.2充电监控系统 ....................................................... 9.3供电监控系统 ....................................................... 9.4安防监控系统 ....................................................... 9.5通信系统........................................................... 10土建................................................................ 10.1建筑物............................................................

电动汽车前后副车架及底盘车架设计开发项目合同技术协议知识交流

附件1 技术开发协议 项目名称:电动汽车前后副车架及整体底盘设计开发委托人:_ 研究开发人:_ 签订地点:北京 签订日期:2016-3-11 ________

目录 一、产品定义 (1) 二、产品开发的要求 (1) 1. 产品的基本要求.......................................... 错误!未定义书签。 2. 产品性能目标及主要参数 (1) 3. ............................................................................................................................................... 产品 的配置要求 (2) 4. 产品开发原则及标准要求 (3) 5. 产品开发周期及节点 (3) 6. 生产技术支持要求 (4) 三、产品开发内容描述及分工 (4) 四、产品开发成果及验收方式 (5) 五、项目组织及相关事宜 (6) 六、其他 (6) 附件2、《电动汽车前后副车架及底盘车架设计开发项目计划进度表》 附件3、《电动汽车前后副车架及盘设车架计开发项目- 商业秘密保密协 议》

产品定义 1. 目标定义本项目以某商务车副车架为研究对象,借助先进的CAE 方法,建立汽车前、后悬架的动力学仿真模型和动力总成仿真模型。同时应用有限元方法,研究副车架的静、动态特性。同时对副车架进行疲劳寿命分析,并与试验结果进行比较,验证优化分析的正确性和合理性。为副车架结构的进一步设计和分析提供一定的理论基础,并为企业后续的产品研发提供借鉴和参考。同时完成对底盘车架的优化设计,各项参数需满足设计任务书的要求。 二、产品开发的要求 1、前后副车架应达到的指标 1.1 优化后的副车架应有足够的强度。确保副车架在各种工况下有足够的强度,在复杂受力情况下不易产生破坏,特别是严重的疲劳损伤,影响正常的使用寿命; 1.2 优化后的副车架应有足够的弯曲刚度。确保该型车在复杂受力的条件下,连接在其上的各总成,像转向机总成、下摆臂等因在特殊工况受力变形而丧失正常的工作能力,影响整车的使用寿命和安全性; 1.3 优化后的副车架应较原结构减轻30%以上重量。副车架作为一个重要的二级减振和隔 振部件,在保证各种性能的前提下,尽量减轻重量,降低成本,提高动力性和巡航里程。 1.4 副车架总成中有害物质应符合2000/53/EC 和2010/115/EU 的要求; 1.5 按甲方规定进行耐久性行驶试验后,副车架不允许出现断裂、严重锈蚀、弯曲或扭曲变形超限; 1.6 十万公里各种典型路面的试车后,副车架样件硬点和硬点坐标不允许有不合理变形和破坏;副车架进行6X105 次疲劳试验后,金属件无开裂、塑性变形等失效,橡胶件无功能性失效; 2、底盘车架应达到的技术指标 2.1 整体车架(底盘)轻量化设计方案的一阶弯曲不低于35Hz 和一阶扭转频率不低于36Hz; 2.2 整体车架(底盘)轻量化设计方案弯曲刚度不低于2900N/mm 和扭转刚度不低于3300N/mm; 2.3整体车架(底盘)轻量化设计方案的前后悬架在车架上的安装点(共计12 个点)刚度: X、Y > 8000N/mm, Z > 10000N/mm; 2.4 整体车架(底盘)轻量化设计方案刚度和强度性能不低于甲方现有同款车架在静态工况(垂直冲击、转弯、倒车制动、最大制动、最大加速、侧向冲击、

电动汽车用整车控制器总体设计方案

电动汽车用整车控制器总体设计方案

目次  1 文档用途 (1) 2 阅读对象 (1) 3 整车控制系统设计 (1) 3.1 整车动力系统架构 (1) 3.2 整车控制系统结构 (2) 3.3 整车控制系统控制策略 (3) 4 整车控制器设计 (4) 5 整车控制器的硬件设计方案 (5) 5.1 整车控制器的硬件需求分析 (5) 5.2 整车控制器的硬件设计要求 (6) 6 整车控制器的软件设计方案 (7) 6.1 软件设计需要遵循的原则 (7) 6.2 软件程序基本要求说明 (7) 6.3 程序中需要标定的参数 (7) 7 整车控制器性能要求 (8)

整车控制系统总体设计方案  1 文档用途  此文档经评审通过后将作为整车控制系统及整车控制器开发的指导性文件。 2 阅读对象  软件设计工程师 硬件设计工程师 产品测试工程师 其他相关技术人员 3 整车控制系统设计  3.1 整车动力系统架构  如图1所示,XX6120EV纯电动客车采用永磁同步电机后置后驱架构,电机○3通过二挡机械变速箱○4和后桥○5驱动车轮。车辆的能量存储系统为化学电池(磷酸铁锂电池组○8),电池组匹配电池管理系 统(Battery Management System,简称BMS)用以监测电池状态、故障报警和估算荷电状态(State of Charge,简称SOC)等,电池组提供直流电能给电机控制器○2通过直-交变换和变频控制驱动电机运转。 整车控制器○1(Vehicle Control Unit,简称VCU)通过CAN(Control Area Network)和其它控制器联接,用以交换数据和发送指令。该车采用外置充电机传导式充电,通过车载充电插头利用直流导线联接充电 机○9,充电机接入电网。 ○1整车控制器○2电机控制器○3交流永磁同步电机○4变速箱○5驱动桥 ○6车轮○7电池管理系统○8磷酸铁锂动力电池组○9外置充电机○10电网连接插座 图1 整车动力系统架构简图

基于单片机的电动车控制器

单片机原理与应用 课程设计报告 电动车控制器 专业班级:电气工程及其自动化xxx班姓名: 时间: 2010.3.3—3.19 指导教师:xxxxxxxxxxxxxxxxxxxxxxxxx 2010年 3 月19日

基于单片机的电动车控制器 一.设计要求 (一)基本功能 1.显示:实时显示电瓶的电量;车速 2.线性调速功能: 要求采用传统的手把调速方式(通过线性霍尔传感器),此处对霍尔器件的电压处理要求利用压频转换来代替A/D转换。 3.具备完善的保护功能: 如过载保护、欠压保护、短路保护和防飞车等功能。 (二)扩展功能 1.可增加实时的总里程显示 2.速度具有一定的记忆功能 二.计划完成时间三周 1.第一周完成软件和硬件的整体设计,同时按要求上交设计报告一份。 2.第二周完成软件的具体设计和硬件的制作。 3.第三周完成软件和硬件的联合调试。

目录 1引言 (1) 2总设计方案 (1) 2.1设计思路 (1) 2.2单片机介绍 (1) 2.3设计框图 (1) 3设计原理分析 (2) 3.1硬件设计 (2) 3.1.1最小系统 (2) 3.1.2时速控制电路 (3) 3.1.3驱动电路 (4) 3.1.4过流、欠压保护电路 (4) 3.1.5刹车保护 (4) 3.1.6显示电路 (5) 3.2软件设计 (5) 3.2.1主程序流程 (5) 4结束语 (6) 参考文献 (7) 符录1 (8) 符录2 (9)

基于单片机控制的电动车控制器 电气072班李占业 摘要:本系统由单片机系统、显示系统、驱动系统和数模转换系统组成。通过按键来控制单片机,通过P1口输出的具有时序的方波作为电动车的控制信号,使电动车的里程与转速发生变化,达到对电动车控制的目的。该设计具有结构简单、可靠性高、使用方便、可以实现较复杂的控制、具有较大的灵活性和适应性等特点。 关键词:电动车单片机ADC0809 A44E 1 引言 电动车控制器是用来控制电动车电机的启动、运行、进退、速度、停止以及电动车的其它电子器件的核心控制器件,它就象是电动车的大脑,是电动车上重要的部件。微型计算机的出现给人类生活带来了根本性的变化,使现代科学研究发生了质的飞跃,单片机技术的出现给现代生活带来了一次新的技术革命。本设计主要是设计一个由单片机控制的电动车控制器系统,操作者可通过系统的按钮控制电动车的旋转速度电量和里程。同时为了可以直观的看出电动车的运行状态,其旋转速度和当前电量可以在数码管上显示出来。 2 总体设计方案 2.1 设计思路 根据电动车的工作原理可以知道,电动车控制器是通过霍尔速度转把采集信号,然后通过数模转换将信号传给单片机,利用单片机控制输出用改变功率管控制信号PWM的方法来控制电动车的转速,用霍尔元件A44E安装在车轮上,车轮每转一圈霍尔器件就会给单片机一个脉冲,单片机根据这个脉冲的频率来计算车速并用数码管显示出来,另外为了保护电池当电池电压下降到一定程度的时候要有警示电路(用普通发光二极管警示)。并且要设计配套的刹车保护、欠压保护、过流保护等保护电路。 2.1.1 单片机的选用 单片计算机即单片微型计算机。(Single-Chip Microcomputer ),是集CPU ,RAM ,ROM ,定时,计数和多种接口于一体的微控制器。随着科学技术的发展,越来越多的智能化产品都用到了单片机。他体积小,成本低,功能强,广泛应用于智能产品和工业自动化上。而51 单片机是各单片机中最为典型和最有代表性的一种。本设计选用常见的AT89S51。 2.1.2 电动车电机的选用 目前电动车电机普遍采用永磁直流电机。所谓永磁电机,是指电机线圈采用永磁体激磁,不采用线圈激磁的方式。这样就省去了激磁线圈工作时消耗的电能,提高了电机机电转换效率,这对使用车载有限能源的电动车来讲,可以降低行驶电流,延长续行里程。本设计也选用此永磁直流电机。 2.1.3设计框图

电动汽车动力电池系统总体方案设计

电动汽车动力电池系统总体方案设计 1.1 额定电压及电压应用范围 对于高速电动车辆动力电池系统的额定电压等级,参照《GB/T31466-2015 电动车辆高压系统电压等级》可选择144V、288V、320V、346V、400V、576V等。对于微型低速电动车动力电池系统的电压等级,100V以下主要以48V、60V、72V和96V为主。 动力电池系统的额定电压及电压范围必须与整车所选用的 电机和电机控制器工作电压相匹配,因此为保证整车动力系统的可靠运行,需要根据电动整车电机的电压等级及工作电压范围要求,选择合适的单体电池规格(化学体系、额定电压、容量规格等)并确定单体电池的串联数量、系统额定电压及工作电压范围。通常允许使用的电压范围上限为系统额定电压的115%~120%,下限为系统额定电压的75%~80%。

1.2 动力电池系统容量 整车概念设计阶段,从整车车重和设定的典型工况出发,续驶里程、整车性能(最高车速、爬坡度、加速时间等)要求,可以计算出汽车行驶所需搭载的总能量需求。动力电池系统容量主要基于总能量和额定电压来进行计算。 1.3 功率和工作电流 整车在急加速情况下,动力电池系统需要提供短时脉冲放电功率,对应的工作电流为峰值放电电流;在紧急刹车情况下,需要提供短时能量回收功率,对应的回馈电流为峰值充电电流。

整车在平路持续加速或长坡道时,动力电池系统需要提供稳定的持续放电功率,此时要求能够长时间稳定输出一定额度的电流,即持续放电工作电流。 1.4 可用SOC范围 在动力电池系统产品设计上,由于SOC可用范围会直接影响总能量的设计,直接体现到单体电池的选型及数量要求,因此,也会对电池箱体的包络尺寸设计、内部布置及安装空间间隙以及对总体成本等方面产生最直接的影响。动力电池系统SOC应用范围的选择首先考虑整车对充放电功率和可用能量等方面的需求,同时结合单体电池在不同温度条件下的充放电能力(功率和能量)、存储性能(自放电率)、寿命、安全特性,以及电池管理系统的SOC估算精度等影响因素来确定。

纯电动汽车设计方案1

“宾客”纯电动汽车 设计方案 设计单位:四方汽车设计有限公司 项目负责人:陈维劲 小组成员:游东峰、林锦地、缪陈国

目录 一、汽车产品定位 (3) 二、汽车底盘布置形式 (4) 三、驱动电机的选择 (5) 四、蓄电池的选择 (8) 五、技术参数 (10) 六、成本分析 (11) 七、后记 (12) 八、参考文献 (12)

一、汽车产品定位 未来汽车企业要想发展,只有制造符合时代发展需要的产品才能在激烈的市场竞争中占据一席之地。如日本、韩国在世界石油危机之后推出的节能型小汽车,就是适应了时代的发展才在市场上立足。而目前,我国汽车产业要想真正发展起来,必须设计出符合我国市场需求的物美价廉产品。 当今随着科技的发展,汽车产品正在向安全、舒适、节能、环保、高自动化和智能化发展。 a.材料的轻型化。目前,制造一辆汽车所需钢材约占整个汽车自身质量的65%,塑料占11%,铝仅占4%。为了促使汽车向轻型化发展,世界汽车产业正在进行着—嘲材料革命”。 b.能源环保化。随着人们环保意识的提高,追求与自然协调发展已成为国际企业界的一项共识。而汽车一方面给人类带来巨大的进步,另一方面又污染环境,因而,在人类生活日益提高的今天,相信低能源消耗的绿色汽车今后会畅销。 c.高自动化、高智能化。随着电子装备微型化和电子及控制技术日渐成熟,汽车智能化将是汽车发展趋势,人们更多的是追求让汽车“独立思考和判断”。 d.舒适化、安全化。这样,人们驾驶汽车不再是一种危险和负担,因为汽车已成为一种精神和体感的双重享受。 中国是世界上最大的潜在汽车市常我国汽车企业只要利用天时地利,创造出符合我国人民需求的汽车产品,走民族品牌化的道路,就能在世界跨国公司的竞争中立于不败之地。 我们设计的纯电动汽车正是定位在5万到9万元之间的经济型轿车,它是根据比亚迪F0改装而成的,它本身是一辆小排量汽车。我们主要是面向城市里面30岁左右的购买人群。

电动汽车前后副车架及底盘车架设计开发项目合同专业技术协议

电动汽车前后副车架及底盘车架设计开发项目合同技术协议

————————————————————————————————作者:————————————————————————————————日期:

附件1 技术开发协议 项目名称:电动汽车前后副车架及整体底盘设计开发委托人: 研究开发人: 签订地点:北京 签订日期:___2016-3-11________

目录 一、产品定义 (1) 二、产品开发的要求 (1) 1.产品的基本要求............................................................................ 错误!未定义书签。 2.产品性能目标及主要参数 (1) 3.产品的配置要求 (2) 4.产品开发原则及标准要求 (3) 5.产品开发周期及节点 (3) 6.生产技术支持要求 (4) 三、产品开发内容描述及分工 (4) 四、产品开发成果及验收方式 (5) 五、项目组织及相关事宜 (6) 六、其他 (6) 附件2、《电动汽车前后副车架及底盘车架设计开发项目计划进度表》 附件3、《电动汽车前后副车架及盘设车架计开发项目-商业秘密保密协议》

一、产品定义 1.目标定义 本项目以某商务车副车架为研究对象,借助先进的CAE 方法,建立汽车前、后悬架的动力学仿真模型和动力总成仿真模型。同时应用有限元方法,研究副车架的静、动态 特性。同时对副车架进行疲劳寿命分析,并与试验结果进行比较,验证优化分析的正确性和合理性。为副车架结构的进一步设计和分析提供一定的理论基础,并为企业后续的产品研发提供借鉴和参考。同时完成对底盘车架的优化设计,各项参数需满足设计任务书的要求。 二、产品开发的要求 1、前后副车架应达到的指标 1.1优化后的副车架应有足够的强度。确保副车架在各种工况下有足够的强度,在复杂受力情况下不易产生破坏,特别是严重的疲劳损伤,影响正常的使用寿命; 1.2优化后的副车架应有足够的弯曲刚度。确保该型车在复杂受力的条件下,连接在其上的各总成,像转向机总成、下摆臂等因在特殊工况受力变形而丧失正常的工作能力,影响整车的使用寿命和安全性; 1.3 优化后的副车架应较原结构减轻30%以上重量。副车架作为一个重要的二级减振和隔振部件,在保证各种性能的前提下,尽量减轻重量,降低成本,提高动力性和巡航里程。 1.4 副车架总成中有害物质应符合2000/53/EC和2010/115/EU的要求; 1.5按甲方规定进行耐久性行驶试验后,副车架不允许出现断裂、严重锈蚀、弯曲或扭曲变形超限; 1.6 十万公里各种典型路面的试车后,副车架样件硬点和硬点坐标不允许有不合理变形和破坏;副车架进行 6X105次疲劳试验后,金属件无开裂、塑性变形等失效,橡胶件无功能性失效; 2、底盘车架应达到的技术指标 2.1整体车架(底盘)轻量化设计方案的一阶弯曲不低于35Hz和一阶扭转频率不低于36Hz; 2.2整体车架(底盘)轻量化设计方案弯曲刚度不低于2900N/mm和扭转刚度不低于3300N/mm; 2.3整体车架(底盘)轻量化设计方案的前后悬架在车架上的安装点(共计12个点)刚度:X、Y≥8000N/mm,Z≥10000N/mm; 2.4整体车架(底盘)轻量化设计方案刚度和强度性能不低于甲方现有同款车架在静态工况(垂直冲击、转弯、倒车制动、最大制动、最大加速、侧向冲击、前进拉手刹、倒车拉手刹、路缘冲击)作用下的刚度和强度性能指标; 2.5采用高强度铸铝合金,在刚度和强度性能不降低的条件下,要求比甲方现有的同款钢制整体车架(底盘)至少减重35%以上。

相关文档
相关文档 最新文档