文档库 最新最全的文档下载
当前位置:文档库 › Deform棒材热挤压过程模拟

Deform棒材热挤压过程模拟

Deform棒材热挤压过程模拟
Deform棒材热挤压过程模拟

铜陵学院课程实验报告

实验名称棒材热挤压过程模拟

实验课程材料成型计算机模拟

指导教师张金标. 专业班级10材控(2). 姓名彭建新. 学号1010121064 .

2012年04月23日

实验二棒材热挤压过程模拟

1 实验目的与内容

1.1 实验目的

进一步熟悉DEFORM软件前处理、后处理的操作方法,掌握热力耦合数值模拟的模拟操作。深入理解并掌握DEFORM软件分析热挤压的塑性变形力学问题。

1.2 实验内容

运用DEFORM模拟如图2所示的黄铜(DIN_CuZn40Pb2)棒挤压过程(已知:坯料φ90?25mm)。

图1 棒材热挤压示意图

挤压工具:尺寸如图所示,材质DIN-D5-1U,COLD,温度3500。

坯料:材质DIN_CuZn40Pb2,尺寸φ98×60,温度6300。

工艺参数:挤压速度10mm/s,摩擦系数0.1。

(二)实验要求

(1)运用AUTOCAD或PRO/e绘制各模具部件及棒料的三维造型,以stl格式输出;

(2)设计模拟控制参数;

(3)DEFORM前处理与运算;

(4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态;

(5)运用DEFORM后处理Flow Net(流动栅格)功能观察金属流动的不均匀性,说明原因;

(6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。

2 实验过程

2.1挤压工模具及工件的三维造型

根据给定的几何尺寸,运用AUTOCAD或PRO/E分别绘制坯料、挤压模、挤压垫、挤压筒的几何实体,文件名称分别为extrusion workpiece,extrusion die,extusion mandrel,extusion dummy block,extusion chamber。输出STL格式。

说明:上述几何形体尽量在一个空间体系下用相对尺寸绘制,保证它们的装配关系;所有实体造型都要在空间体系的第一象限内,即几何点的坐标值非负。

2.2 挤压模拟

1.前处理

2.建立新问题:

注:单位制度选择:点击Simulation Conrol按钮→Main按钮→在Units栏中选中SI(国际标准单位制度)。

3.添加对象:点击+按钮添加对象,依次为“workpiece”、“top die”、“bottom die”和“object 4”,在Object Name栏中填入extrusion workpiece→点击Change按钮→点击geometry →点击import→选择extrusion workpiece.stl实体文件→打开;重复操作,依次添加extrusion die,extusion mandrel,extusion dummy block,extusion chamber。

4.定义对象的材料模型

5.模拟控制设置

6.实体网格化

说明:工模具不作分析,可以不进行网格划分。

7.设置对象材料属性:在对象树上选择extrusion workpiece→点击Meterial→点击other→选择DIN-CuZn40Pb2→点击Assign Meterial完成材料属性的添加;

8.设置主动工具运行速度:在对象树上选择extusion dummy block→点击Movement→在speed/force选项卡的type栏上选中Speed选项→在Directiont选中主动工具运行,如-Y→在speed卡上选中Define选项,其性质选为Constant,填入数度值,如10mm/s;

9.工件体积补偿:在对象树上选择extrusion workpiece→点击Property→在Target V olume卡上选中Active选项→点击Calculate V olumer按钮→→点击Yes按钮→勾选Compensate during remeshing

10.边界条件定义:在工具栏上点击Inter-Object按钮→在对话框上选择extrusion workpiece—extusion dummy block→点击Edit按钮→点击Deformation卡Friction栏上选中Shear和Constant选项,填入摩擦系数或选择摩擦类型如Hot Forging (Lubricated) →点击Thermal→选中Constant选项,填入传热系数或选择传热类型如Fomging →点击Close按钮→如此重复,依次设置其它接触关系→点击Generate all按钮点击tolerace 按钮→点击OK按钮完成边界条件设置;

保存k文件:在对象树上选择extrusion workpiece→点击Save按钮→点击保存按钮→保存工件的前处理信息→重复操作,依次保存各工模具的信息。

2.2.1 生成库文件

2.2.2 退出前处理程序

在工具栏上点击Exi按钮,退出前处理程序界面。

2.2.3 模拟运算

在主控程序界面上,单击项目栏中的stick extrusion.DB 或tuble extrusion.DB文件→单击Run按钮,进入运算对话框→单击Start按钮开始运算→单击Stop按钮停止运算→单击Summary,Preview,Message,Log按钮可以观察模拟运算情况。2.3 后处理

模拟运算结束后,在主控界面上单击stick extrusion.DB 或tuble extrusion.DB文件→在Post Processor栏中单击DEFORM-3D Post按钮,进入后处理界面。

(1)观察变形过程:点击播放按钮查看成型过程;

(2)观察温度变化:在状态变量的下拉菜单中选择Temperature,点击播放按钮查看成型过程中温度变化情况;

(3)观察最大应力分布:在状态变量的下拉菜单中选择Max Stress,点击播放按钮查看成型过程中最大应力分布及其变化情况;

(4)观察最大应变分布:在状态变量的下拉菜单中选择Max Strain,点击播放按钮查看成型过程中最大应变分布及其变化情况;

(5)观察破坏系数分布:在状态变量的下拉菜单中选择Damage,点击播放按钮查看成型过程中可能产生破坏的情况;

(6)成型过程载荷:点击Load Stroke按钮,生成变形工具加载曲线图,保存图形文件为load.png;

(7)点跟踪分析:点击Point Tracking按钮,根据上图点的位置,在工件上依次点击生成跟踪点,点击Save按钮,生成跟踪信息,观察跟踪点的最大应力、最大应变、温度、破坏系数,保存相应的曲线图。

(8)流动网格分析:点击Flow Net按钮,在对话框中分别选择Starting step和Ending step的数值,点击Next,选择Surface net,点击Next,选中Parallel,点击Next,确定起点平面、终点平面,输入方向矢量和分割面的数量,点击Next,点击Finish,生成金属流动网格数据,点击播放按钮查看流动格变化情况,如图3所示。

3 实验结果与分析

3.1 黄铜挤压变形过程

3.2 黄铜挤压过程中温度变化

在整个挤压过程中,中部的温度分布比较均匀且较高,因为工件中心不与空气和挤压模具接触,散热和传热都很少;远离挤压垫一端的温度最高,而与挤压垫相接触的一端温度最低,主要是由于在挤压过程中与挤压垫接触的一端存在着热交换,散热较快,使温度降低,不接触的一端在整个过程中金属流动较激烈,且因传热不好和时间短,温度较接触端高且变化不大。

3.3 黄铜挤压终止时最大应力分布

从图中可以清晰地看出,中间部位应力分布较均匀,且数值较大,为三向压应力状态,从中还可以看出挤压过程中应力最大的位置出现在工件刚刚进入挤压模的位置,因为在此处由于工件的直径急剧变化,金属流动的阻力最大,不均匀变形也

最大,在此处将产生较大的附加应力。在挤压筒与工件的接触部位残余应力和应力图2 黄铜挤压的变形过程

图3 黄铜挤压变形过程中温度变化 图4 挤压终止时最大应力分布

都影响最小。

3.4 黄铜挤压终止时最大应变分布

黄铜挤压终了最大应变分布如图5所示。从上图

中可以清晰的看出,在整个挤压过程中应变最大的位

置出现在工件刚刚进入挤压模的位置,此时工件部的

主变形量最大,也即应变最大。中间位置应变其次,

中心内部位应变较小,两端应变最小。

3.5黄铜挤压终止时损伤系数分布

如图6所示胚料破坏系数几乎分布均匀,且为0。理论上随着坯料变成程度的增大,在变形区出破坏应该最大,这是坯料在变形区变形程度很大,晶体发生畸变,破坏其点阵结构从而产生破坏。另外,由于物体变形协调性会使变形区对周围金属产生附加应力,从而在变形区出存在附加拉应力,使坯料破坏。而本次模拟效果不是很明显,可能是由于挤压模设计不合理,摩擦力小和不当的操作有关,也可能与deform 软件有关。

3.6挤压过程中载荷曲线

从图中可以看出,从0-4.05秒,上模的载荷曲线

为0,在此时间段内,挤压垫与圆棒还未接触。4.05

秒至6.08秒整个挤压过程的成型载荷总体上是沿直

线逐渐增加的趋势,这是因为主延伸变形随着压出制

品长度的增加而增大,而挤压力与主延伸变形量大小

大致成正比,然而变形过程中应变不均匀造成曲线有

点小起伏;随着挤压过程的进行,工件和挤压模的接

触面积越多,则受挤压模具的摩擦力就会逐渐增大,

同时还会受到金属内部原子的相互作用力,金属流动

越来越困难,要求的挤压力也越大。在6.08秒后,

出现了一段上下起伏的曲线,原因可能时在模拟时计

算机计算不了原始网格划分而进行的网格重划分。

3.7点追踪分析

3.7.1点追踪最大应力分布

从图8可以看出,应力分布不均匀,且变化幅度较

大,因为在挤压过程中工件的变形区部位有很大的不

均匀变形,同时附带了大量的残余应力,残余应力在

整个工件上的分布也是不均匀的,所以也就出现了如

图所示的情况。从上图中可以分析出坯料表面的一直

处于三向压应力状态,变形比较均匀。

图5 挤压终止时最大应变分布

图6 黄铜挤压终止时的损伤分布

图7 黄铜挤压过程中载荷图8 点追踪最大应力分布图

3.7.2 点追踪最大应变分布

从图9点追踪最大应变分布图可以看出,应变整

体上市呈上升趋势,由于挤压过程中变形不断增

加,故各处的最大应变均呈现出上升趋势

3.7.3 点追踪破坏系数分布

从上图10可以看出,破坏系数的变化趋势整体是

增大的,因为随着挤压过程的进行工件的应变越

来越大,不均匀变形也越严重,同时残余应力也

增加,金属内部晶格畸变也是越来越严重,则挤压

变形的进行旧越容易破坏,所以工件的破坏系数是

逐渐增加的。

3.8.4点追踪温度分析

此次试验,挤压后,胚料的温度均匀几乎不变,因

而温度分布系数为一条纵坐标为0的曲线。与理论

上有差别,可能是因为挤压产生的热量不足以产生

显著地温度变化造成的。

3.9流动栅格

4 实验小结

通过本次模拟,是我学会了怎样去设计挤压模具,挤压工艺基本流程,挤压参数。采用DEFORM 三维有限元模拟软件,能够准确地计算黄铜挤压过程中的挤压力、温度、挤压速度、应力和应变,输出便于观察的各种等值线图,形象地展示黄铜热挤压变形过程,并精确地揭示变形过程中各参数的演变规律。通过这次实验,验证了挤压变形的特点,即挤压过程变形不均匀,应力分布也不均匀。把书本的知识应用到模拟当中,使我对课本的知识有了更进一步的理解。

本次模拟棒材热挤压训练,使我熟悉并掌握AUTOCAD 、DEFORM-3D 、OFFICE (Word 、Excel )等软件的实用方法,同时也提高了专业知识和计算机技术综合分析问题、解决问题的能力。学习并掌握了DEFORM-3D 软件的实用的环境,学会了使用

DEFORM-3D 图9 点追踪最大应力分布图

图10 挤压终止时破坏系数分布

进行简单的材料成型模拟,DEFORM-3D是模拟3D材料流动的理想工具。

在模拟过程中,部分模拟试验结果与里理论不符,这是DEFORM软件的缺点之一。因此,我们应该将理论模拟和实际试验相结合,一方面可以减少费用,节约人力物力,一方面又实事求是,尊重事实,以事实为基础。

铸造过程模拟仿真

铸造过程模拟仿真 1、概述 在铸造生产中,铸件凝固过程是最重要的过程之一,大部分铸造缺陷产生于这一过程。凝固过程的数值模拟对优化铸造工艺,预测和控制铸件质量和各种铸造缺陷以及提高生产效率都非常重要。 凝固过程数值模拟可以实现下述目的: 1)预知凝固时间以便预测生产率。 2)预知开箱时间。 3)预测缩孔和缩松。 4)预知铸型的表面温度以及内部的温度分布,以便预测金属型表面熔接情况,方便金属型设计。 5)控制凝固条件[1]。 为预测铸应力,微观及宏观偏析,铸件性能等提供必要的依据和分析计算的基础数据。作为铸造工艺过程计算机数值模拟的基础,温度场模拟技术的发展历程最长,技术也最成熟。温度场模拟是建立在不稳定导热偏微分方程的基础上进行的。考虑了传热过程的热传导、对流、辐射、结晶潜热等热行为。所采用的计算方法主要有:有限差分法、有限元法、边界元法等;所采用的边界条件处理方法有N方程法、温度函数法、点热流法、综合热阻法和动态边界条件法;潜热处理方法有:温度回升法、热函法和固相率法。 自丹麦Forsound于1962年第一次采用电子计算机模拟铸件凝固过程以来,为铸造工作者科学地掌握与分析铸造工艺过程提出了新的方法与思路,在全世界范围内产生了积极的影响,许多国家的专家与学者陆续开展此项研究工作。在铸造工艺过程中,铸件凝固过程温度场的数值模拟计算相对简单,因此,各国的专家与学者们均以铸件凝固过程的温度场数值模拟为研究起点。继丹麦人之后,美国在60年代中期开始进行大型铸钢件温度场的计算机数值模拟计算研究,且模拟计算的结果与实测温度场吻合良好;进入70年代后,更多的国家加入了铸件凝固过程数值模拟的研究行列中,相继开展了有关研究与应用,理论研究与实际应用各具特色。其中有代表性的研究人员有美国芝加哥大学的R.D.Pehlke教授、佐治亚工学院的J.Berry教授、日本日立研究所的新山英辅教授、大阪大学的大中逸雄教授、德国亚探工业大学的P.Sham教授和丹麦科技大学的P.N.Hansen教授等。我国的铸件凝固过程温度场数值模拟研究始于70年代末期,沈阳铸造研究所的张毅高级工程师与大连工学院的金俊泽教授在我国率先开展了铸造工艺过程的计算机数值模拟研究工作,虽然起步较晚,但研究工作注重与生产实践密切结合,取得了较好的应用效果,形成了我国在这一研究领域的研究特色[2]。 1988年5月,在美国佛罗里达州召开的第四届铸造和焊接计算机数值模拟会议上,共有来自10个研究单位的从事铸造凝固过程计算机数值模拟技术研究的专家和学者参加了会议组织的模拟斧锤型铸件凝固过程的现场比赛。由于该铸件在几何形状上属复杂类型,模拟计算有一定的难度。从比赛结果看,绝大部分的模拟结果与实际测温结果相吻合。此次比赛得出如下结论[8]: l)铸件凝固过程的计算机模拟达到了相当的水平,如三维自动刻分、三维模拟计算、三维温度场显示等,并产生了一些软件包,如日立公司的HICASS、丹麦的Geomesh、大阪大学的SOLAM及亚琛的CASTS等。 2)模拟计算的结果都接近实测,这说明有限差分、有限元和边界元这三种计算方法对温度场计算都能满足精度要求,同时也说明了铸件凝固过程温度场计算机模拟计算技术已趋成熟。

deform挤压模拟课程设计

课题: 材料成型计算机模拟系别: 机械工程学院专业班级: 11级材控1班 指导教师: 张金标 组别: 第五组 2014年6月

第一章课程设计内容及任务分配.............................................................................................................. - 1 - 1.1 概述.......................................................................................................................................................... - 1 - 1.2 设计目的.................................................................................................................................................. - 1 - 1.3 设计内容.................................................................................................................................................. - 1 - 1.4 设计要求.................................................................................................................................................. - 1 - 1.5 挤压方案任务分配.................................................................................................................................. - 2 - 第二章工艺参数.......................................................................................................................................... - 3 - 2.1 工艺参数的设计...................................................................................................................................... - 3 - 2.1.1 摩擦系数的确定.................................................................................................................................... - 3 - 2.1.2 挤压速度的确定.................................................................................................................................... - 3 - 2.1.3 工模具预热温度的确定........................................................................................................................ - 3 - 第三章模具尺寸的确定.............................................................................................................................. - 4 - 3.1 挤压工模具示意图.................................................................................................................................. - 4 - 3.2 模具尺寸的确定...................................................................................................................................... - 4 - 3.2.1挤压模结构尺寸的确定......................................................................................................................... - 4 - 3.2.2 挤压筒结构尺寸的确定...................................................................................................................... - 6 - 3.2.3 挤压垫的结构及尺寸确定.................................................................................................................... - 7 - 第四章实验模拟及数据提取分析............................................................................................................ - 8 - 4.1挤压工模具及工件的三维造型............................................................................................................... - 8 - 4.2 挤压模拟.................................................................................................................................................. - 8 - 4.3 后处理...................................................................................................................................................... - 9 - 4.4分析数据................................................................................................................................................... - 9 - 4.5 坯料温度对挤压力的影响.................................................................................................................... - 10 - 4.6 坯料预热温度对破坏系数的影响........................................................................................................ - 11 - 个人小结........................................................................................................................................................ - 12 - 参考文献........................................................................................................................................................ - 21 - 附表《塑性成型计算机模拟》课程设计成绩评定表

deform模拟常见问题

1.我用deform模拟轧制过程时,推动块(pusher)和轧件(slab)再整个运动过程中始终粘在一起,我设置多个轧辊速度都不能使其分离,为什么?请高手指点? (1)你给推动块设置一个速度时间曲线就可以了吧,让它在某一时间停下来,不就分离了 2.DEFORM的一些参数跟我们传统理工科的习惯很不一致,导致建模、模拟的时候经常会莫名的出错,而且很难找出问题出在哪里!比如:(1) 边界条件设置(BDRY)中的压强(pressure)——按照我们的习惯,施加在面上的应为压应力(因为是压强嘛),如果想设置为拉应力的话,要取负值;可在DEFORM中却是相反的。不信你建个简单的立方体模型,上下面加压(正的值),模拟结果很明显是物体被拉长了!(2) 旋转方向设置——如果从旋转轴的箭头方去看,我们通常以顺时针为正;可是在DEFORM中是反过来的!而且有的时候你选了轴,可在用系统选定旋转中心点后(俗称小绿帽),刚刚选好的轴会更改,本来你选的-X,它有时会变成+X(很奇怪!),出现这种情况只能通过正负值的设定来改变旋转方向了。特别是在轧制、旋压加工的时候,千万要看准工作辊旋转方向!(3)边界条件设置(BDRY)中的力(force)——这地方的正负值仅仅是决定方向的,更值得注意的地方是:有时候你设置的拉力或张力在生成DB文件的时候不写入的(可能是DEFORM有个许可范围,你设置的值溢出了),也就是说你的边界力是没有加上去的,模拟的时候为零。还要注意,你输入的力值是加在每个所选的节点上的,举例:你想在面上加载100kN的力,面上节点数为100,这时你在力值的输入窗口所写的值应为1kN。类似的细节问题还有很多,一不小心或稍有不熟悉就可能出问题,而且很难排查出,最伤人了! (1)正应力—拉、负应力—压是常识呀;旋转方向的判别采用右旋定则,即右手握住旋转轴,大拇指伸直与旋转轴正向一致。 3.我用Dform 3D进行轧制模拟,起初用稳态ALE模型,但是轧件扭曲很严重,计算很快就终止了。换成增量ALE以后,便基本顺利完成了轧制的模拟(模拟

deform3D实验报告

学生学号0120801080128 实验课成绩 学生实验报告书 实验课程名称材料成型数值模拟设计实验 开课学院材料学院 指导教师姓名朱春东、钱东升 学生姓名王丹丹 学生专业班级成型0801 2011-- 2012学年第一学期

实验教学管理基本规范 实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平 与质量的重要依据。为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高 学生质量,特制定实验教学管理基本规范。 1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参 照执行或暂不执行。 2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验 报告外,其他实验项目均应按本格式完成实验报告。 3、实验报告应由实验预习、实验过程、结果分析三大部分组成。每部分均在实验成绩中占一 定比例。各部分成绩的观测点、考核目标、所占比例可参考附表执行。各专业也可以根据具体情况,调整考核内容和评分标准。 4、学生必须在完成实验预习内容的前提下进行实验。教师要在实验过程中抽查学生预习情况, 在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。 5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。在完成所有 实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。 6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。 附表:实验考核参考内容及标准 观测点考核目标成绩组成 实验预习1.预习报告 2.提问 3.对于设计型实验,着重考查设计方案的 科学性、可行性和创新性 对实验目的和基本原理 的认识程度,对实验方 案的设计能力 20% 实验过程1.是否按时参加实验 2.对实验过程的熟悉程度 3.对基本操作的规范程度 4.对突发事件的应急处理能力 5.实验原始记录的完整程度 6.同学之间的团结协作精神 着重考查学生的实验态 度、基本操作技能;严 谨的治学态度、团结协 作精神 30% 结果分析1.所分析结果是否用原始记录数据 2.计算结果是否正确 3.实验结果分析是否合理 4.对于综合实验,各项内容之间是否有分 析、比较与判断等 考查学生对实验数据处 理和现象分析的能力; 对专业知识的综合应用 能力;事实求实的精神 50%

Magma铸造CAE模拟

Magma操作 STL导入 点击“preprocessor”进入“MAGMApre”界面,依次导入相应的构件,保存。

Mesh划分网格 如上图所示,Magma共提供以上四种划分网格方法:自动划分、标准划分、高级、高级2。其中,自动划分是指用户自己制定划分的总的网格数,Magma自动进行适当的调整划分实体,标准划分是指铸型等不需要很高精度的部分进行的一种比较粗略的划分,如果需要对某一部分进行更细的划分,那么用户可以在“高级”中进行制定网格大小,甚至可以在“高级2”中对更进一步的某些部分进行更细的网格划分。 自动划分是用户可以制定计算部分的大约网格数、是否生成壳、是否核心划分、是否针对解法5进行划分。 Solver5是一种针对复杂结构铸件的网格划分方法。 1.2.4 网格划分 1.根据网格总量划分 1)打开选择功能表enmeshment,则mesh generation的视窗就出现; 2)选择automatic ,输入网格总数量; 3)选择generate 划分。

按照网格总数划分 2.根据单元网格三维尺寸划分 标准高级更高级 1)操作步骤: (1)选择功能表enmeshment,则mesh generation的视窗即出现;

(2)选择standard模式定义标准的网格化参数(如图 1.2.4-2); (3)若standard模式不符划分需求,选择advanced和advanced2模式 ,来局部区域细分; 依据个人需求,改变预设的参数,参数说明后面3)中叙述。 (4)选择calculate,测试产生网格数; (5)假如接受测试结果,选择generate正式产生网格。 网格数量 2)划分准则 1、Wall thichness— 网格划分最小结构厚度。 2、Accuracy— 精度 3、Element size— 网格大小 4、Option。 其中Wall thichness和Element size一般设成一样大小。 3)参数说明 (1)wall thickness(壁厚) ─粗分网格; 几何中只要有壁厚小于设定值的地方就不会有网格产生,单位是mm 。

Deform-3D在挤压中的应用1

Deform-3D在挤压中的应用挤压就是对放在容器(挤压筒)内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的一种塑性成型方法。 挤压过程分为开始(填充)挤压阶段、基本(平流)挤压阶段和终了(紊流)挤压三个阶段。在填充挤压阶段:金属发生横向流动,出现单鼓或双鼓变形。随着挤压杆的向前移动,挤压力呈直线上升。随着填充过程中锭坯直径增大,在锭坯的表面层出现了阻碍其自由增大的周向附加拉应力。随着填充过程进行,锭坯长度缩短,直径增大,中间部分首先与挤压筒壁接触,由于摩擦作用,从而在表面层出现了阻碍金属向前后两个空间流动的纵向附加拉应力。在基本挤压阶段:金属不发生横向流动。挤压力随挤压杆向前移动几乎呈直线下降。在终了挤压阶段:金属的横向流动剧烈增加,并产生环流,挤压力增加,产生挤压缩尾。这些因素使其变形机理非常复杂,很难用准确的数学关系式进行描述,从而导致生产过程中对产品质量控制的难度增大。采用DEFORM软件对大变形生产工序进行模拟分析和控制,能有效地对挤压生产进行指导。这里主要介绍DEFORM塑性成形模拟的基本过程和方法。 关键字:DEFORM 挤压塑性成形 DEFORM软件模拟塑性成形的基本流程: (1)几何模型的建立。 DEFORM-3D不具有三维造型功能,所以物理模型要在其他三维软

件中建立。例如用CAD,Pro/e,UG等三维造型软件造型,然后,通过另存为STL格式,实现模型与数值模拟软件间的数据转换。 (2)网格的划分与重划分。 划分网格是将问题的几何模型转化成离散化的有限元网格。分网时要根据问题本身的特点选择适当的单元类型。根据问题的几何和受力状态的特点,尽可能的选用比较简单的的单元类型。网格划分的方法有映射法或称为结构化的方法和自由的或非结构化的方法两种,根据不同问题类型应选用合适的方法划分网格。网格划分太大则模拟精度降低;网格划分太小模拟准确性上升,但是模拟时间增加,效率降低。所以选择一个合适的网格划分方式和网格划分大小至关重要。用刚(黏)塑性有限元法计算材料成型过程时,随着变形程度的增加和动态边界条件的变化,初始化分好的规则有限元网格,会发生部分畸变现象,网格出现不同程度的扭曲,从而影响有限元的计算精度,严重时会使迭代过程不收敛,这时就需要进行网格的重新划分,保证仿真过程中材料经大量流动后仍然可以继续,获得的结果仍然具有足够的精度。Deform在网格畸变到一定程度后会自动进行网格重划分,生成搞质量的网格。 (3)材料模型的建立及其他参数设置 功能强的分析软件提供的材料模型种类较多,用户可以根据问题的主要特点,精度要求即可得到的材料参数选择合适的模型,并输入相关参数。越是复杂的模型,其计算精度越高;但计算量也会提高,同时所需输入的材料参数也越多。一般而言,材料的物理性能和弹

Deform 6.1 开式模锻模拟实例

一.DEFORM软件介绍 DEFORM系列软件是由位于美国Ohio Clumbus的科学成形技术公司(Science Forming Technology Corporation)开发的。该系列软件主要应用于金属塑性加工、热处理等工艺数值模拟、它的前身是美国Battelle实验室开发的ALPID软件。在1991年成立的SFTC公司将其商业化,目前,Deform软件已经成为国际上流行的金属加工数值模拟软件之一。 其主要软件产品有: 1. DEFORM-2D(二维) 适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT 微机平台。可以分析平面应变和轴对称等二维模型。它包含了最新的有限元分析技术,既适用于生产设计,又方便科学研究。 2. DEFORM-3D(三维) 适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT 微机平台。可以分析复杂的三维材料流动模型。用它来分析那些不能简化为二维模型的问题尤为理想。 3. DEFORM-PC(微机版) 适用于运行Windows 95,98和NT的微机平台。可以分析平面应变问题和轴对称问题。适用于有限元技术刚起步的中小企业。 4. DEFORM-PC Pro(Pro版) 适用于运行Windows 95,98和NT的微机平台。比DEFORM-PC功能强大,它包含了DEFORM-2D的绝大部分功能。 5. DEFORM-HT(热处理) 附加在DEFORM-2D和DEFORM-3D之上。除了成形分析之外,DEFORM-HT还能分析热处理过程,包括:硬度、晶相组织分布、扭曲、残余应力、含碳量等。 二.模锻模拟 2.1 创建一个新的题目 正确安装DEFORM 6.1后运行程序DEFORM-3D,其界面如下图所示。

DEFORM模拟锻造过程中的憋气

DEFORM模拟锻造过程中的憋气 模锻件生产过程中,最常见的缺陷之一是未充满模具型腔,其中主要原因有结构设计上的不合理,造成模具中的气体在金属流动过程中被过早封闭于型腔内,无法及时排除型腔,尤其润滑液较充分的时候,影响更加明显。目前大部分金属成形仿真软件实际计算过程中,并没有由于憋气造成未充满缺陷,这给工艺人员判断是否会存在憋气造成未完全充满型腔缺陷的直观判断造成困扰。 DEFORM模拟仿真软件是目前世界上最著名的金属成形仿真软件,它能够模拟金属整个成形及热处理过程,预测各个阶段可能出现的缺陷,分析产生缺陷的原因,帮助工艺人员在工艺及模具设计阶段提前修正和优化。未充满型腔缺陷也是DEFORM能够精准预测的缺陷之一,该缺陷的精准性模拟主要体现在能够区分模拟有排气孔、无排气孔憋气、无排气孔憋油的充满型腔的结果。 DEFORM憋气模拟原理是以变形体与模具构成一个型腔的封闭情况和气体或油的体积模量来计算,如下图1所示,当构成这样一个封闭的型腔时(红色圈区域),通过理想气体定律,工件表面将增加一个压力,最终轻微的未充满被标记,如图2所示,通过高亮的绿色接触点可以看到。在这个案例中,即使两个物体已经被完全挤到一起,但仍然有细微的裂缝存在。 图1 受压作用下的体积

图2 最终状态下带有轻微未充满的体积 下面是一个简单的墩粗案例,当不考虑不憋气影响时,墩粗高度为88.5217mm,如果考虑了憋气的影响,墩粗高度为88.426mm,高度略低。但如果同时考虑了润滑油的影响,墩粗高度只有73.1683mm。 图3 不考虑憋气影响

图4 考虑憋气影响 图5 憋油影响 我们再看一个复杂模锻件如果考虑了憋气与憋油的影响,模拟计算结果如下:图6为不考虑憋气影响的模拟结果,与图7考虑憋气影响的模拟计算结果模具型腔充满性基本相同,完全充满了模具,但图7飞边部位的接触情况更加接近实际生产结果,而图8是考虑了润滑较充分的情况下憋油的影响,未充满区域较多, 与实际生产完全一致,生产时需要采取适当的润滑措施。

DEFORM模拟锻压挤压实验报告

铜陵学院课程实验报告 实验课程材料成型计算机模拟 指导教师 专业班级 姓名 学号 2014年05月11日

实验一 圆柱体压缩过程模拟 1 实验目的与内容 1.1 实验目的 进一步熟悉AUTOCAD 或PRO/E 实体三维造型方法与技艺,掌握DEFORM 软件的前处理、后处理的操作方法与热能,学会运用DEFORM 软件分析压缩变形的变形力学问题。 1.2 实验内容 运用DEFORM 模拟如图1所示的圆柱坯压缩过程。 (一)压缩条件与参数 锤头与砧板:尺寸200×200×20mm ,材质DIN-D5-1U,COLD ,温度室温。 工件:材质DIN_CuZn40Pb2,尺寸如表1所示,温度700℃。 (二)实验要求 (1)运用AUTOCAD 或PRO/e 绘制各模具部件及棒料的三维造型,以stl 格式输出; 砧板 工件 锤头 图1 圆柱体压缩过程模拟

(2)设计模拟控制参数; (3)DEFORM前处理与运算(参考指导书); (4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态; (5)比较实验 1与2、3与4、1与3和2与4的模拟结果,找出圆柱体变形后的形状差别,说明原因; (6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。 2 实验过程 2.1工模具及工件的三维造型 根据给定的几何尺寸,运用AUTOCAD或PRO/E分别绘制坯料、锤头和砧板的几何实体,文件名称分别为workpiece,topdie,bottomdie,输出STL格式。 2.2 压缩过程模拟 2.2.1 前处理 建立新问题:程序→DEFORM6.1→File→New Problem→Next→在Problem Name栏中填写“Forging”→ Finish→进入前前处理界面; 单位制度选择:点击Simulation Conrol按钮→Main按钮→在Units栏中选中SI(国际标准单位制度)。 添加对象:点击+按钮添加对象,依次为“workpiece”、“topdie”、“bottomdie”。 定义对象的材料模型:在对象树上选择workpiece →点击General按钮→选中Plastic 选项(塑性)→点击Assign Temperature按钮→填入温度,→点击OK按钮;在对象树上选择topdie →点击General按钮→选中Rigid选项(刚性)→点击Assign Temperature 按钮→填入温度,→点击OK按钮→勾选Primary Die选项(定义为extusion dummy block 主动工具)→如此重复,定义其它工模具的材料模型(不勾选Primary Die选项)。 调整对象位置关系:在工具栏点击Object Positioning按钮进入对象位置关系调整对话框→根据挤压要求及实体造型调整相互位置关系→点击OK按钮完成; 模拟控制设置:点击Simulation Conrol按钮→Main按钮→在Simulation Title栏中填入“tuble extrusion”或“stick extrusion”→在Operation Title栏中填入“deform heat transfer”→选中SI选项,勾选“Defromation”选项,点击Stemp按钮→在Number of Simulation Stemps 栏中填入模拟步数→Stemp Increment to Save栏中填入每隔几步就保存模拟信息→在Primary Die栏中选择extusion dummy block(以挤压垫为主动工具)→在With Constant Time Increment栏中填入时间步长→点击OK按钮完成模拟设置; 实体网格化:在对象树上选择workpiece→点击Mesh →在Number of Elements卡上填入需要的网格数,如15000→点击Generate Mesh →工件网格生成; 说明:工模具不作分析,可以不进行网格划分。 设置对象材料属性:在对象树上选择workpiece→点击Meterial→点击other→选择DIN-CuZn40Pb2→点击Assign Meterial完成材料属性的添加; 设置主动工具运行速度:在对象树上选择topdie →点击Movement→在speed/force选

铸造模拟

三个基本问题 1)什么是金属材料制备工艺? 通过一定的生产流程,获得可以作为工业或工程中使用的金属材料或者构件,这个过程称之为金属材料制备与加工。 2)什么是金属材料制备工艺的计算机模拟? 根据用户要求,基于一定的判据设计的制备与加工工艺过程,建立起数学物理模型,在计算机上进行造型、运算,并将得到的成千上万的数据综合在一起逼近研究对象的全貌,表达出成分工艺组织性能的演变规律,用形象的图形或者动画形式,显示出这些过程的直观画面称之为计算机模拟。 3)为什么进行金属材料制备工艺的计算机模拟? 基本的加工工艺 1)铸造,凝固成形,液固相变。 2)焊接,凝固成形,液固相变,热影响区晶粒长大。 3)压力加工,固态成形,固态相变。 4)热处理,固态相变。 5)冷成形模拟 模拟的框架1)前处理,造型,数据输入等 2)计算,算法的优化 3)后处理,模拟结果输出,判据函数 4)数据库 模拟具有实时性,模拟的准确性取决于模型的精度。 开展工艺模拟的目的 1)优化现有工艺 2)进行模具与新工艺设计 3)缩短设计、试制和生产周期,降低成本 4)工艺的可视化,工程师和模拟工作者之间能够共同分析出达到最佳工艺的判据标准 5)机理性分析 热加工过程的结果成型和改性:使材料的成分、组织、性能最后处于最佳状态 热加工工艺设计根据所要求的组织和性能,制定合理的热加工工艺,指导材料的热加工过程热加工工艺设计存在的问题 复杂的高温、动态、瞬时过程:难以直接观察,间接测试也十分困难 建立在“经验”、“技艺”基础上 解决方法 热加工工艺模拟技术:在材料热加工理论指导下,通过数值模拟和物理模拟,在实验室动态仿真材料的热加工过程,预测实际工艺条件下的材料的最后组织、性能和质量,进而实现热加工工艺的优化设计 热加工过程模拟的意义 认识过程或工艺的本质,预测并优化过程和工艺的结果(组织和性能) 与制造过程结合,实现快速设计和制造 热加工过程模拟的部分商业软件 铸造PROCAST, SIMULOR 锻压DEFORM, AUTOFORGE, SUPERFORGE 通用MARC, ABAQUS, ADINA, ANSYS 三种传热方式:热对流,热传导,热辐射。

Deform棒材热挤压过程模拟

铜陵学院课程实验报告 实验名称棒材热挤压过程模拟 实验课程材料成型计算机模拟 指导教师张金标. 专业班级10材控(2). 姓名彭建新. 学号1010121064 . 2012年04月23日

实验二棒材热挤压过程模拟 1 实验目的与内容 1.1 实验目的 进一步熟悉DEFORM软件前处理、后处理的操作方法,掌握热力耦合数值模拟的模拟操作。深入理解并掌握DEFORM软件分析热挤压的塑性变形力学问题。 1.2 实验内容 运用DEFORM模拟如图2所示的黄铜(DIN_CuZn40Pb2)棒挤压过程(已知:坯料φ90?25mm)。 图1 棒材热挤压示意图 挤压工具:尺寸如图所示,材质DIN-D5-1U,COLD,温度3500。 坯料:材质DIN_CuZn40Pb2,尺寸φ98×60,温度6300。 工艺参数:挤压速度10mm/s,摩擦系数0.1。 (二)实验要求

(1)运用AUTOCAD或PRO/e绘制各模具部件及棒料的三维造型,以stl格式输出; (2)设计模拟控制参数; (3)DEFORM前处理与运算; (4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态; (5)运用DEFORM后处理Flow Net(流动栅格)功能观察金属流动的不均匀性,说明原因; (6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。 2 实验过程 2.1挤压工模具及工件的三维造型 根据给定的几何尺寸,运用AUTOCAD或PRO/E分别绘制坯料、挤压模、挤压垫、挤压筒的几何实体,文件名称分别为extrusion workpiece,extrusion die,extusion mandrel,extusion dummy block,extusion chamber。输出STL格式。 说明:上述几何形体尽量在一个空间体系下用相对尺寸绘制,保证它们的装配关系;所有实体造型都要在空间体系的第一象限内,即几何点的坐标值非负。 2.2 挤压模拟 1.前处理 2.建立新问题: 注:单位制度选择:点击Simulation Conrol按钮→Main按钮→在Units栏中选中SI(国际标准单位制度)。 3.添加对象:点击+按钮添加对象,依次为“workpiece”、“top die”、“bottom die”和“object 4”,在Object Name栏中填入extrusion workpiece→点击Change按钮→点击geometry →点击import→选择extrusion workpiece.stl实体文件→打开;重复操作,依次添加extrusion die,extusion mandrel,extusion dummy block,extusion chamber。 4.定义对象的材料模型 5.模拟控制设置 6.实体网格化 说明:工模具不作分析,可以不进行网格划分。 7.设置对象材料属性:在对象树上选择extrusion workpiece→点击Meterial→点击other→选择DIN-CuZn40Pb2→点击Assign Meterial完成材料属性的添加; 8.设置主动工具运行速度:在对象树上选择extusion dummy block→点击Movement→在speed/force选项卡的type栏上选中Speed选项→在Directiont选中主动工具运行,如-Y→在speed卡上选中Define选项,其性质选为Constant,填入数度值,如10mm/s; 9.工件体积补偿:在对象树上选择extrusion workpiece→点击Property→在Target V olume卡上选中Active选项→点击Calculate V olumer按钮→→点击Yes按钮→勾选Compensate during remeshing

铸造模拟软件讲解

PROCAST ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 procast 百科名片 ProCast软件界面 ProCAST由法国ESI公司开发的综合的铸造过程软件解决方案,有20多年的历史,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺。 目录 适用范围材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 适用范围 材料数据库 模拟分析能力 分析模块 ProCAST特点 模拟过程 展开 ProCast应用(10张) 编辑本段适用范围 ProCAST适用于砂型铸造、消失模铸造、高压铸造、低压铸造、重力铸造、

软件操作界面 倾斜浇铸、熔模铸造、壳型铸造、挤压铸造、触变铸造、触变成形、流变铸造。由于采用了标准化、通用的用户界面,任何一种铸造过程都可以用同一软件包ProCAST进行分析和优化。它可以用来研究设计结果,例如浇注系统、通气孔和溢流孔的位置,冒口的位置和大小等。实践证明,ProCAST可以准确地模拟型腔的浇注过程,精确地描述凝固过程。可以精确地计算冷却或加热通道的位置以及加热冒口的使用。 编辑本段材料数据库 ProCAST可以用来模拟任何合金,从钢和铁到铝基、钴基、铜基、镁基、镍基、钛基和锌基合金,以及非传统合金和聚合体。ESI旗下的热物理仿真研究开发队伍汇集了全球顶尖的五十多位冶金、铸造、物理、数学、计算力学、流体力学和计算机等多学科的专家,专业从事ProCAST和相关热物理模拟产品的开发。得益于长期的联合研究和工业验证,使得通过工业验证的材料数据库不断地扩充和更新,同时,用户本身也可以自行更新和扩展材料数据。除了基本的材料数据库外,ProCAST还拥有基本合金系统的热力学数据库。这个独特的数据库使得用户可以直接输入化学成分,从而自动产生诸如液相线温度、固相线温度、潜热、比热和固相率的变化等热力学参数。 编辑本段模拟分析能力 ProCAST可以分析缩孔、裂纹、裹气、冲砂、冷隔、浇不足、应力、变形、模具寿命、工艺开发及可重复性。ProCAST几乎可以模拟分析任何铸造生产过程中可能出现的问题,为铸造工程师提供新的途径来研究铸造过程,使他们有机会看到型腔内所发生的一切,从而产生新的设计方案。其结果也可以在网络浏览器中显示,这样对比较复杂的铸造过程能够通过网际网络进行讨论和研究。 编辑本段分析模块 ProCAST是针对铸造过程进行流动一传热一应力耦合作出分析的系统。它主要由8个模块组成:有限元网格划分MeshCAST基本模块、传热分析及前后处理(Base License)、流动分析(Fluid flow)、应力分析(Stress)、热辐射分析(Radiation)、显微组织分析(Micromodel)、电磁感应分析(Electromagnetics)、反向求解(Inverse),这些模块既可以一起使用,也可以根据用户需要有选择地使用。对于普通用户,ProCAST应有基本模块、流动分析模块、应力分析模块和网格划分模块。 1)传热分析模块 本模块进行传热计算,并包括ProCAST的所有前后处理功能。传热包括

挤压过程模拟分析

挤压过程模拟分析 1.几何模型制造 利用PRO-E软件,建立毛坯,上、下模的实体模型,将实体模型文件以“*.stl”的格式进行保存。 2.将模具坯料导入有限元分析平台 a.打开DEFORM软件,进入DEFORM主界面,单击新建图标, 进入DEFORM前处理界面。 b.打开对话框,单击按钮,弹出“Import Geometry”对话框,在所保存的文件中调入毛坯。 c. 接着单击按钮,插入上模,在“Object Type”中选中“Rigid”, 即定义上模的对象类型为刚体。选中“Primary Die”,激活主 模具开关。 d.用同样的方法调入下模。结果如下:

3.坯料,模具设置(物理属性、运动方向、速度等)(1)设置“Workpiece”的物理属性、运动方向、速度 单击对话框,在温度一栏里输入500。即坯料的初始温度为500。 接着,单击对话框,在“Number of Element”栏中输 入“10000”,然后点击按钮,待毛坯出现网格后,单击

按钮. 单击图标,在弹出的对话框中,选择材料 “AISI-1045,COLD[70F(20C)]”即45钢,然后点击按钮即可。

单击图标,在弹出的对话框中,在“Target Volume”栏中选择“Active”,然后点击按钮即可。 (2)设置“Top Die”的物理属性(Rigid),运动方向,速度(1)。 单击图标,在弹出的对话框中,在“Direction”栏中选择“-Y”;在“Speed”栏中,选择“Defined”,在框里输入“1”,结果如下:

(3)设置“Bottom Die”的物理属性(Rigid),运动方向,速度(1)。 单击图标,在弹出的对话框中,在“Direction”栏中选择“+Y”;在“Speed”栏中,选择“Defined”,在框里输入“1”,结果如下:

实验上机指导书(Deform基础操作)

上机实验DEFORM软件的基本操作 1实验目的 了解认识DEFORM软件的窗口界面,掌握DEFORM软件的前处理、后处理的操作方法与技能,学会运用DEFORM软件分析实际问题。 2实验内容 (1)运用DEFORM绘制或导入各模具部件及坯料的三维造型; (2)设计模拟控制参数; (3)定义模具及坯料的材料; (4)完成模具及坯料的网格划分; (5)调整模具和坯料的相对位置; (6)设定模具运动; (7)设定变形边界条件; (8)生成数据库; (9)利用后处理观察变形过程,绘制载荷曲线图,观察变形体内部应力、应变及损伤值分布状态; (10)制作分析报告。 图1圆柱体镦粗过程模拟 3实验步骤 3.1创建新项目 打开DEFORM软件,在DEFORM主界面单击设置工作目录为C:\DEFORM3D\PROBLEM。单击按钮,弹出Problem setup(项目设置)对话框,选择

使用Deform-3D preprocessor,单击进入项目位置设置对话框,直接单击进入项目名称设置对话框,在Problem name框中输入本项目名称“Upset”,进入DEFORM-3D前处理界面。 3.2设置模拟控制初始参数 单击Input/Simulation controls菜单或单击按钮进入模拟控制对话框,在对话框左侧的栏中选取Main窗口,如图2所示。设定模拟分析标题为“Upset”,操作名为“Upset”,Units单位制为“SI”,分析模式为变形“Deformation”,单击OK按钮,完成模拟控制的初始设置。 图2模拟控制初始设置 3.3创建对象 3.3.1坯料的定义 单击对象设置区的按钮,进入Workpiece对象一般信息设置窗口,。在Object name后面的框中输入“Billet”,单击其后的按钮,将对象名称改为“Billet”。在Object type(对象类型)中选择Plastic(塑性)。 单击对象设置区的按钮,进行对象几何模型的设置,单击 按钮,进入几何造型单元。采用圆柱体,输入其半径为100,高度为200,

相关文档
相关文档 最新文档