文档库 最新最全的文档下载
当前位置:文档库 › 动态平衡问题常见解法

动态平衡问题常见解法

动态平衡问题常见解法
动态平衡问题常见解法

动态平衡问题

苗贺铭

动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。因此,本文对动态平衡问题的常见解法梳理如下。

所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。即三个力能围成一个闭合的矢量三角形。

一、图解法

方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形的边长,各力的大小及变化就一目了然了。

例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始

缓慢地转到水平位置.不计摩擦,在此过切程中( )

A.F N1始终减小

B. F N2始终减小

C. F N1先增大后减小

D. F N2先减小后增大

解析:以小球为研究对象,分析受力情况:重力G、

墙面的支持力和木板的支持力,如图所示:由矢量三

角形可知:始终减小,始终减小。

归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。

二、解析法

方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。

例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是() A. F N变

大,F f变大

B. F N变小,F f变小

C. F N变大,F f变小

D. F N变小,F f变大

解析:设木板倾角为θ

根据平衡条件:F N=mgcosθ

F f=mgsinθ

可见θ减小,则F N变大,F f变小;

故选:C

例题2.2 如图所示,轻绳OA 、OB 系于水平杆上的A 点和B 点,两绳与水平杆之间的夹角均为30°,重物通过细线系于O 点。将杆在竖直平面内沿顺时针方向缓慢转动30°此过程中( )

A. OA 绳上拉力变大,OB 绳上拉力变大

B. OA 绳上拉力变大,OB 绳上拉力变小

C. OA 绳上拉力变小,OB 绳上拉力变大

D. OA 绳上拉力变小,OB 绳上拉力变小

解析:转动前,T A =T B ,2T A sin30°=mg ,则T A =mg=T B ;

转动后,OA 与水平方向的夹角变为60°,OB 变为水平。

T A ’sin60°=mg ,T A ’cos60°= T B ’

解得:T A ’=332mg ,T B ’=21T A ’=3

3mg ,故B 正确。 归纳:解析法适用于一个力大小、方向都不变,另两个力在变化的过程中始终垂直的问题,或一个力大小、方向不变,另两个力大小相等的问题

三、相似三角形

方法:找到与力的矢量三角形相似的几何三角形,根据相似三角形的性质,建立比例关系,进行讨论。

例题3 如图所示,光滑的半球形物体固定在水平地面上,球心正

上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,

另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使

小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和

绳对小球的拉力T 的大小变化情况是( )。

(A) N 变大,T 变小 (B)N 变小,T 变大

(B) N 变小,T 先变小后变大 (D)N 不变,T 变小

解析:小球受力如图所示,此三力使小球受力平衡.力矢

量三角形如图乙,设球面半径为R ,BC=h,AC=L,AO=R.则由三角形相似有:R G h =L F T =R

F N

G 、h 、R 均为定值,故F N 为定值,不变,F T ∝L ,由题知:

L ↓,故F T ↓.故D 正确.

归纳:相似三角形法适用于物体受到的三个力中,

一个力的大小、方向均不变,其他两个力的方向均发生

变化,且三个力中没有两个力保持垂直关系,但可以找到与力构成的矢量三角形相似的几何三角形的问题。

四、辅助圆法

方法:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,第一种情况以不变的力为弦作个圆,在辅助的圆中可容易画出两力夹角不变的力的矢量三角形,从而轻易判断各力的变化情况。第二种情况以大小不变,方向变化的力为半径作一个辅助圆,在辅助的圆中可容易画出一个力大小不变、方向改变的力的矢量三角形,从而轻易判断各力的变化情况。

例题4.1 如图所示,物体G 用两根绳子悬挂,开始时绳OA 水平,现将两绳同时沿顺时针方向转过90°,且保持两绳之间的夹角α不变(α>90°),物体保

持静止状态。在旋转过程中,设绳OA 的拉力为T1,绳OB 的拉力为T2,

则:( )

A 、T1先减小后增大

B 、T1先增大后减小

C 、T2逐渐减小

D 、T2最终变为零

解析:取绳子结点O 为研究对角,受到三根绳的拉力,如图所示分别为F 1、F 2、F 3,将三力构成矢量三角形(如图所示的实线三角形CDE),需满足力F 3大小、方向不变,角∠ CDE 不变(因为角α不变),由于角∠DCE 为直角,则三力的几何关

系可以从以DE 边为直径的圆中找,则动态矢量三角形如图中画

出的一系列虚线表示的三角形。由此可知,F 1先增大后减小,

F 2随始终减小,且转过90°时,当好为零。正确答案选项为B 、

C 、

D 。 例题4.2如图所示,在做“验证力的平行四边形定则”的实验时,用M 、N 两个测力计(图中未画出)通过细线拉橡皮条的端点,使其到达O 点,此时α+β=90°,然后保持M 的示数不变,而使α角减小,为保持端点位置不变,可采用的办法是( )

A . 减小N 的示数同时减小β角

B . 减小N 的示数同时增大β

C . 增大N 的示数同时增大β角

D . 增大N 的示数同时减小β

解析:以结点O 为研究对角,受到三个拉力,如图所示分别为F M 、F N

、F 合,将三力构成矢量三角形(如图所示的实线三角形),以O 为圆心,F M 为半径作圆,需满足力F 合大小、方向不变,角α减小,则动态矢量三角形如图中画出的一系列虚线表示的三角形。由此可知F N 的示数减小同时β角减小。故选A 。

归纳:作辅助圆法适用的问题类型可分为两种情况:①物体

所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,另两个力大小、方向都在改变,但动态平衡时两个力的夹角不变。②物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,动态平衡时一个力大小不变、方向改变,另一个力大小、方向都改变。

五、拉密定理法

例题5 如图,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物,

用手拉住绳的另一端N .初始时,OM 竖直且MN 被拉直,

OM

MN

之间的

夹角α(α>90°).现将重物向右上方缓慢拉起,并保持夹角α不变,

在OM 由竖直被拉到水平的过程中( )

A MN上的张力逐渐增大

B MN上的张力先增大后减小

C OM上的张力逐渐增大

D OM上的张力先增大后减小

解析:缓慢拉起到某位置时受力分析如图所示,根据拉密定

F MO

大后变小,F MO先变大后变小;γ变小,sinγ变大,F MN 逐渐变大。

故选AD。

归纳:在物体受到三个力的动态平衡问题中,应用拉密定理

可解决一个力的大小、方向不变,另两个力大小、方向都改变,

但夹角不变的问题。

物体的动态平衡问题解题技巧

物体的动态平衡问题解题技巧 一、总论 1、动态平衡问题的产生——三个平衡力中一个力已知恒定,另外两个力的大小或者方向不断变化,但物体仍然平衡,典型关键词——缓慢转动、缓慢移动…… 2、动态平衡问题的解法——解析法、图解法 解析法——画好受力分析图后,正交分解或者斜交分解列平衡方程,将待求力写成三角函数形式,然后由角度变化分析判断力的变化规律; 图解法——画好受力分析图后,将三个力按顺序首尾相接形成力的闭合三角形,然后根据不同类型的不同作图方法,作出相应的动态三角形,从动态三角形边长变化规律看出力的变化规律。 3、动态平衡问题的分类——动态三角形、相似三角形、圆与三角形(2类)、等腰三角形等 二、例析 1、第一类型:一个力大小方向均确定,一个力方向确定大小不确定,另一个力大小方向均不确定——动态三角形 【例1】如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为F N1,球对木板的压力大小为F N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中 A .F N1始终减小,F N2始终增大 B .F N1始终减小,F N2始终减小 C .F N1先增大后减小,F N2始终减小 D .F N1先增大后减小,F N2先减小后增大 解法一:解析法——画受力分析图,正交分解列方程,解出F N1、F N2随夹角变化的函数,然后由函数讨论; 【解析】小球受力如图,由平衡条件,有 0sin 2N =-mg F θ 0cos 1N 2N =-F F θ 联立,解得:θsin 2N mg F =,θ tan 1N mg F = 木板在顺时针放平过程中,θ角一直在增大,可知F N1、F N2都一直在减 小。选B 。 解法二:图解法——画受力分析图,构建初始力的三角形,然后“抓住不变,讨论变化”,不变的是小球重力和F N1的方向,然后按F N2方向变化规律转动F N2,即可看出结果。 【解析】小球受力如图,由平衡条件可知,将三个力按顺序首尾相接,可形 成如右图所示闭合三角形,其中重力mg 保持不变,F N1的方向始终水平向右, 而F N2的方向逐渐变得竖直。 则由右图可知F N1、F N2都一直在减小。 【拓展】水平地面上有一木箱,木箱与地面间的动摩擦因数为μ(0<μ<1)。现对木箱施加一拉力F ,F N2 mg F N1 F N1 F N2 mg θ

高中物理力学图解动态平衡问题与相似三角形问题

图解法分析动态平衡问题 所谓图解法就是通过平行四边形的邻边和对角线长短的关系或变化情况,做一些较为复杂的定性分析,从图形上一下就可以看出结果,得出结论。 题型特点:(1)物体受三个力。(2)三个力中一个力是恒力,一个力的方向不变,由于第三个力的方向变化,而使该力和方向不变的力的大小发生变化,但二者合力不变。 解题思路:(1)明确研究对象。(2)分析物体的受力。(3)用力的合成或力的分解作平行四边形(也可简化为矢量三角形)。(4)正确找出力的变化方向。(5)根据有向线段的长度变化判断各个力的变化情况。 注意几点:(1)哪个是恒力,哪个是方向不变的力,哪个是方向变化的力。 (2)正确判断力的变化方向及方向变化的围。 (3)力的方向在变化的过程中,力的大小是否存在极值问题。 【例1】如图2-4-2所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°.现保持绳子AB与水平方向的夹角不变,将绳子BC逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC的拉力变化情况是( ) A.增大B.先减小,后增大 C.减小D.先增大,后减小 解析:方法一:对力的处理(求合力)采用合成法,应用合力为零求解时采用图解法(画动态平行四边形法).作出力的平行四边形,如图甲所示.由图可看出,FBC先减小后增大.方法二:对力的处理(求合力)采用正交分解法,应用合力为零求解时采用解析法.如图乙所示,将FAB、FBC分别沿水平方向和竖直方向分解,由两方向合力为零分别列出: FAB cos 60°=FB C sin θ, FAB sin 60°+FB C cos θ=FB,

联立解得FBC sin(30°+θ)=FB/2, 显然,当θ=60°时,FBC最小,故当θ变大时,FBC先变小后变大. 答案:B 变式1-1如图2-4-3所示,轻杆的一端固定一光滑球体,杆的另一端O为自由转动轴,而球又搁置在光滑斜面上.若杆与墙面的夹角为β,斜面倾角为θ,开始时轻杆与竖直方向的夹角β<θ. 且θ+β<90°,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力F的大小及轻杆受力T和地面对斜面的支持力N 的大小变化情况是( ) A.F逐渐增大,T逐渐减小,F N逐渐减小B.F逐渐减小,T逐渐减小,F N逐渐增大C.F逐渐增大,T先减小后增大,F N逐渐增大 D.F逐渐减小,T先减小后增大,F N逐渐减小 解析:利用矢量三角形法对球体进行分析如图甲所示,可知T是先减小后增大.斜面 对球的支持力F N′逐渐增大,对斜面受力分析如图乙所示,可知F=F N″sinθ,则F 逐渐增大,水平面对斜面的支持力F N=G+F N″·cos θ,故F N逐渐增大. 答案:C 利用相似三角形相似求解平衡问题 2.相似三角形法: 当物体受三个共点力作用处于平衡状态时,若三力中有二力的方向发生变化,而无法直接用图解法得出结论时,可以用表示三力关系的矢量三角形跟题中的其他三角形相似对应边成比例,建立关系求解。 【例2】一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图2-4-4所示.现将细绳缓慢往左拉,使杆BO与杆AO间的夹角θ逐渐减小,则在此过程中,拉力F及杆BO所受压力F N的大小变化情况是( ) A.F N先减小,后增大B.F N始终不变 C.F先减小,后增大D.F始终不变 解析:取BO杆的B端为研究对象,受到绳子拉力(大小为F)、BO杆的支持力F N和悬挂重物的绳子的拉力(大小为G)的作用,将F N 与G合成,其合力与F等值反向,如图所示,得到一个力的三角形(如图中画斜线部分),此

力学中的动态平衡问题优选稿

力学中的动态平衡问题集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

力学中的动态平衡问题 1、动态三角形法 特点:物体所受的三个力中,其中一个力的大小、方向均不变(通常为重力,也 可能是其它力),视为合力,一个分力的方向不变,大小变化,另一个分力则大 小、方向均发生变化的问题。 分析技巧:正确画出物体所受的三个力,将方向不变的分力F1的矢量延长,通过合力的末端做另一个分力F2的平行线,构成一个闭合三角形。看这个分力F2在动态平衡中的方向变化,画出其变化平行线,形成动态三角形,三角形变长的变化对应力的变化。 1.如图,一小球放置在木板与竖直墙面之间.设球对墙面的压力大小为N 1 ,球对木板的 压力大小为N 2 ,以木板与墙连接点所形成的水平直线为轴,将木板从水平位置开始缓慢地转到图示位置.不计摩擦,在此过程中() A.N 1始终增大,N 2 始终增大 B.N 1始终减小,N 2 始终减小 C.N 1先增大后减小,N 2 始终减小 D.N 1先增大后减小,N 2 先减小后增大 2.如图所示,重物G系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形支架上.若固定A端的位置,将OB绳的B端沿半圆形支架从水平位置逐渐移至竖直位置OC的过程中() A.OA绳上的拉力减小B.OA绳上的拉力先减小后增大 C.OB绳上的拉力减小D.OB绳上的拉力先减小后增大 2、相似三角形法

特点:物体所受的三个力中,一个力大小、方向不变(一般是重力,视为合力),其它二 个分力力的方向均发生变化。 分析技巧:先正确画出物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。 3.一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图所示,现将细绳缓慢往右放,使杆BO 与杆AO间的夹角θ逐渐增大,则在此过程中,拉力F及杆BO所受压力F N 的大小变化情况是() A.F N 减小,F增大B.F N 、F都不变C.F增大,F N 不变D.F、F N 都减小 4.光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A到半球的顶点B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化情况是()。 A.N变大,T变小 B.N变小,T变大 C.N变小,T先变小后变大 D.N不变,T变小 3、辅助圆法 特点:三个力中一个为恒力,其它两个力方向和大小均发生变化,但其夹角不变,通常情况下可以采用辅助圆法 分析技巧:先对物体进行受力分析,将三个力的矢量首尾相连构成闭合三角形,然后作闭合三角形的外接圆,以恒力所在边为定弦,按题目要求移动定弦所对圆周角,观察其它两个力的变化情况 5.如图所示,直角尺POQ竖直放置,其中OP部分竖直,OQ部分水平,

讲解:求解共点力平衡问题的八种方法

求解共点力平衡问题的八种方法 一、分解法 一个物体在三个共点力作用下处于平衡状态时, 将其中任意一个力沿其他两个力的反方 向分解,这样把三力平衡问题转化为两个方向上的二力平衡问题, 则每个方向上的一对力大 小相等。 二、合成法 对于三力平衡时,将三个力中的任意两个力合成为一个力,则其合力与第三个力平衡, 把三力平衡转化为二力平衡问题。 [例1]如图1所示,重物的质量为 m ,轻细绳Ao 和Bo 的A 端、B 端是固定的,平衡 时AO 是水平的,BO 与水平面的夹角为 θ, AO 的拉力F i 和BO 的拉力F ?的大小是( ) A . F i = mgcos θ B. F i = mgcot θ C. F 2= mgs in θ D. F 2= mg/sin θ [解析]解法一(分解法) 用效果分解法求解。F 2共产生两个效果:一个是水平方向沿 A →O 拉绳子AO ,另一个 是拉着竖直方向的绳子。如图 2甲所示,将F 2分解在这两个方向上,结合力的平衡等知识 解得F i = F ?' = mgcot θ F ?= F —眉 卫迅。显然,也可以按mg (或F i )产生的效果分解 Sin θ Sin θ F i )来求解此题。 解法二(合成法) 由平行四边形定则,作出 F i 、F 2的合力F i2,如图乙所示。又考虑到 F i2 = mg ,解直角 三角形得F i = mgcot θ, F 2= mg/sin θ,故选项 B 、D 正确。 mg (或

[答案]BD 三、正交分解法 物体受到三个或三个以上力的作用处于平衡状态时,常用正交分解法列平衡方程求解: F X合=0, F y合=0。为方便计算,建立坐标系时以使尽可能多的力落在坐标轴上为原则。 [例2]如图3所示,用与水平成θ角的推力F作用在物块上,随着θ逐渐减小直到水平的过程中,物块始终沿水平面做匀速直线运动。关于物块受到的外力,下列判断正确的是 A .推力F先增大后减小 B .推力F —直减小 C.物块受到的摩擦力先减小后增大 D .物块受到的摩擦力一直不变 [解析]对物体受力分析,建立如图4所示的坐标系。 r Γ∣Γ & ^^I匚 图4 由平衡条件得 FCoS θ—F f = 0 F N —(mg + FS in θ)= 0 又F f= μF N 可见,当θ减小时,F —直减小,故选项B正确。 [答案]B 四、整体法和隔离法 若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法。对于多物体问题,如果不求物体间的相互作用力,优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法 相结合的方法。 [例3](多选)如图5所示,放置在水平地面上的质量为M的直角劈上有一个质量为m 联立可得 μ mg cos θ—μin θ 图3

动态平衡受力分析专题

专题 动态平衡中的三力问题 图解法分析动态平衡 在有关物体平衡的问题中,有一类涉及动态平衡。这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点,许多同学因不能掌握其规律往往无从下手,许多参考书的讨论常忽略几中情况,笔者整理后介绍如下。 方法一:三角形图解法。 特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是 其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。然后将方向不变的力的 矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形, 各力的大小及变化就一目了然了。 例1.1 如图1所示,一个重力G 的匀质球放在光 滑斜面上,斜面倾角为α,在斜面上有一光滑的 不计厚度的木板挡住球,使之处于静止状态。今 使板与斜面的夹角β缓慢增大,问:在此过程中, 挡板和斜面对球的压力大小如何变化? 解析:取球为研究对象,如图1-2所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。F 1的方向不变,但方向不变,始终与斜面垂直。F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F 2。由此可知,F 2先减小后增大,F 1随β增大而始终减小。 同种类型:例1.2所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量 为m ,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中, 绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球 的支持力增大) 方法二:相似三角形法。 特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化, 且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题 原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与 力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。 例2.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端 挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉 住,如图2-1所示。现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角 θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情 况是( ) A .F N 先减小,后增大 B .F N 始终不变 C .F 先减小,后增大 D.F 始终不变 解析:取BO 杆的B 端为研究对象,受到绳子拉力(大小为F )、BO 杆的支持力F N 和悬挂重物的绳子的拉力(大小为G )的作用,将F N 与G 合成,其合力与F 等值反向,如图2-2所示,将三个力矢量构成封 闭的三角形(如图中画斜线部分),力的三角形与几何三角形OBA 相似,利用相似三角形对 应边成比例可得:(如图2-2所示,设AO 高为H ,BO 长为L ,绳长l ,)l F L F H G N ==,式 中G 、H 、L 均不变,l 逐渐变小,所以可知F N 不变,F 逐渐变小。正确答案为选项B 同种类型:如图2-3 所示,光滑的半球形物体固定在水平地面上,球心正上方有一光

力学中的动态平衡问题

力学中的动态平衡问题 1、动态三角形法 特点:物体所受的三个力中,其中一个力的大小、方向均不变(通常为重力,也可能是其它力),视为合力,一个分力的方向不变,大小变化,另一个分力则大小、方向均发生变化的问题。 分析技巧:正确画出物体所受的三个力,将方向不变的分力F1的矢量延长,通 过合力的末端做另一个分力F2的平行线,构成一个闭合三角形。看这个分力F2在动态平衡中的方向变化,画出其变化平行线,形成动态三角形,三角形变长的变化对应力的变化。 1.如图,一小球放置在木板与竖直墙面之间.设球对墙面的压力大小为N 1 ,球 对木板的压力大小为N 2 ,以木板与墙连接点所形成的水平直线为轴,将木板从水平位置开始缓慢地转到图示位置.不计摩擦,在此过程中() A.N 1始终增大,N 2 始终增大 B.N 1始终减小,N 2 始终减小 C.N 1先增大后减小,N 2 始终减小 D.N 1先增大后减小,N 2 先减小后增大 2.如图所示,重物G系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形支架上.若固定A端的位置,将OB绳的B端沿半圆形支架从水平位置逐渐移至竖直位置OC的过程中()

A.OA绳上的拉力减小B.OA绳上的拉力先减小后增大 C.OB绳上的拉力减小D.OB绳上的拉力先减小后增大 2、相似三角形法 特点:物体所受的三个力中,一个力大小、方向不变(一般是重力,视为合力),其它二个分力力的方向均发生变化。 分析技巧:先正确画出物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。 3.一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图所示,现将细绳缓慢往右放,使杆BO与杆AO间的夹角θ逐渐增大,则在此过程中,拉力F及杆BO 所受压力F N 的大小变化情况是() A.F N 减小,F增大B.F N 、F都不变C.F增大,F N 不变D.F、F N 都减小 4.光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮,后用力拉住,使小

动态平衡问题常见解法

动态平衡问题 苗贺铭 动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。因此,本文对动态平衡问题的常见解法梳理如下。 所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。即三个力能围成一个闭合的矢量三角形。 一、图解法 方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形的边长,各力的大小及变化就一目了然了。 例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始 缓慢地转到水平位置.不计摩擦,在此过切程中( ) A.F N1始终减小 B. F N2始终减小 C. F N1先增大后减小 D. F N2先减小后增大 解析:以小球为研究对象,分析受力情况:重力G、 墙面的支持力和木板的支持力,如图所示:由矢量三 角形可知:始终减小,始终减小。 归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 二、解析法 方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。 例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是() A. F N变 大,F f变大 B. F N变小,F f变小 C. F N变大,F f变小 D. F N变小,F f变大 解析:设木板倾角为θ 根据平衡条件:F N=mgcosθ F f=mgsinθ 可见θ减小,则F N变大,F f变小;

力学的动态平衡问题

【解答】BD 由于物体a 、b 均保持静止,各绳间角度保持不变,对a 受力分析得,绳的拉力T =m a g ,所以物体a 受到绳的拉力保持不变.由滑轮性质,滑轮两侧绳的拉力相等,所以连接a 和b 绳的张力大小、方向均保持不变,C 选项错误;a 、b 受到绳的拉力大小、方向均不变,所以OO′的张力不变,A 选项错误;对b 进行受力分析,如图所示.由平衡条件得:Tcos β+f =Fcos α,Fsin α+F N +Tsin β=m b g.其中T 和m b g 始终不变,当F 大小在一定范围内变化时,支持力在一定范围内变化,B 选项正确;摩擦力也在一定范围内发生变化,D 选项正确. 3.(2017·河北冀州2月模拟)如图所示,质量为m(可以看成质点)的小球P ,用两根轻绳OP 和O′P 在P 点拴结后再分别系于竖直墙上相距0.4 m 的O 、O′两点上,绳OP 长0.5 m ,绳O′P 长0.3 m ,今在小球上施加一方向与水平成θ=37°角的拉力F ,将小球缓慢拉起.绳O′P 刚拉直时,OP 绳拉力为T 1,绳OP 刚松弛时,O′P 绳拉力为T 2,则T 1∶T 2为(sin 37°=0.6;cos 37°=0.8)( ) A .3∶4 B .4∶3 C .3∶5 D .4∶5 【解答】C 绳O′P 刚拉直时,由几何关系可知此时OP 绳与竖直方向夹角为37°,小球受力如图甲,则T 1= 4 5mg.绳OP 刚松驰时,小球受力如图乙,则T 2=4 3 mg.则T 1∶T 2=3∶5,C 项正确. 1. (多选)(2017·全国卷Ⅰ)如图,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物,用手拉住绳的另一端N.初始时,OM 竖直且MN 被拉直,OM 与MN 之间的夹角为α(α>π 2).现将重物向右上方缓慢拉起,并保持夹角α 不变.在OM 由竖直被拉到水平的过程中( ) A .MN 上的张力逐渐增大 B .MN 上的张力先增大后减小 C .OM 上的张力逐渐增大 D .OM 上的张力先增大后减小 【解答】AD 设重物的质量为m ,绳OM 中的张力为T OM ,绳MN 中的张力为T MN .开始时,T O M =mg ,T MN =0.由于缓慢拉起,则重物一直处于平衡状态,两绳张力的合力与重物的重力mg 等大、反向. 如图所示,已知角α不变,在绳MN 缓慢拉起的过程中,角β逐渐增大,则角(α-β)逐渐减小,但角θ不变,在三角形中,利用正弦定理得: T OM α-β =mg sin θ , (α-β)由钝角变为锐角,则T OM 先增大后减小,选项 D 正确; 同理知 T MN sin β=mg sin θ ,在β由0变为π 2 的过程中,T MN 一直增大,选项A 正确. 2.(多选)(2016·全国卷Ⅰ)如图所示,一光滑的轻滑轮用细绳OO′悬挂于O 点;另一细绳跨过滑轮,其一端悬挂物块a ,另一端系一位于水平粗糙桌面上的物块b.外力F 向右上方拉b ,整个系统处于静止状态.若F 方向不变,大小在一定范围内变化,物块b 仍始终保持静止,则( ) A .绳OO′的张力也在一定范围内变化 B .物块b 所受到的支持力也在一定范围内变化 C .连接a 和b 的绳的张力也在一定范围内变化 D .物块b 与桌面间的摩擦力也在一定范围内变化

共点力平衡的几种解法(例题带解析)

共点力平衡的几种解法 1. 力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三个力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到的这两个分力势必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2. 矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接,构成一个矢量三角形;反之,若三个力矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法,根据正弦定理、余弦定理或相似三角形等数学知识可求得未知力。 矢量三角形作图分析法,优点是直观、简便,但它仅适于处理三力平衡问题。 3. 相似三角形法:相似三角形法,通常寻找的是一个矢量三角形与三个结构(几何)三角形相似,这一方法也仅能处理三力平衡问题。 4. 正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。 5. 三力汇交原理:如果一个物体受到三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必为共点力。 6. 正交分解法:将各力分别分解到x轴上和y轴上,运用两坐标轴上的合力等于零的条件,多用干三个以上共点力作用下的物体的平衡,值得注意的是,对“x、y方向选择时,尽可能使落在x、y轴上的力多;被分解的力尽可能是已知力。不宜分解待求力。 7. 动态作图:如果一个物体受到三个不平行外力的作用而处于平衡,其中一个力为恒力,第二个力的方向一定,讨论第二个力的大小和第三个力的大小和方向。 三. 重难点分析: 1. 怎样根据物体平衡条件,确定共点力问题中未知力的方向? 在大量的三力体(杆)物体的平衡问题中,最常见的是已知两个力,求第三个未知力。解决这类问题时,首先作两个已知力的示意图,让这两个力的作用线或它的反向延长线相交,则该物体所受的第三个力(即未知力)的作用线必定通过上述两个已知力的作用线的交点,然后根据几何关系确定该力的方向(夹角),最后可采用力的合成、力的分解、拉密定理、正交分解等数学方法求解。 2. 一个物体受到n个共点力作用处于平衡,其中任意一个力与其余(n-1)个力的合力有什么关系? 根据二力平衡条件,一个物体受n个力平衡可看作是任意一个力和其余(n-1)个力的合力应满足平衡条件,即任意一个力和其余(n-1)个力的合力满足大小相等、方向相反、作用在同一直线上。 3. 怎样分析物体的平衡问题 物体的平衡问题是力的基本概念及平行四边形定则的直接应用,也是进一步学习力和运动关系的基础。 (1)明确分析思路和解题步骤 解决物理问题必须有明确的分析思路.而分析思路应从物理问题所遵循的物理规律本身去探求。物体的平衡遵循的物理规律是共点力作用下物体的平衡条件:,要用该规律去分析平衡问题,首先应明确物体所受该力在何处“共点”,即明确研究对象.在分析出各个力的大小和方向后,还要正确选定研究方法,即合成法或分解法,利用平行四边形定则建立各力之间的联系,借助平衡条件和数学方法,确定结果.由上述分析思路知,解决平衡问题的基本解题步骤为: ①明确研究对象。 在平衡问题中,研究对象常有三种情况: <1> 单个物体,若物体能看成质点,则物体受到的各个力的作用点全都画到物体的几何中心上;若物体不能看成质点,则各个力的作用点不能随便移动,应画在实际作用位置上。 <2> 物体的组合,遇到这种问题时,应采用隔离法,将物体逐个隔离出去单独分析,其关键是找物体之间的联系,相互作用力是它们相互联系的纽带。 <3> 几个物体的的结点,几根绳、绳和棒之间的结点常常是平衡问题的研究对象。 ②分析研究对象的受力情况 分析研究对象的受力情况需要做好两件事:

谈动态平衡问题的分析方法

谈动态平衡问题的分析方法 在有关物体平衡的问题中,存在着大量的动态平衡问题。所谓动态平衡问题是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这个过程中物体又处于一系列的平衡状态。分析动态平衡问题通常有两种方法。 (1)解析法:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变物理量与自变物理量的一般函数关系式,然后根据自变量的变化确定应变物理量的变化情况。 (2)图解法:对研究对象进行受力分析,再根据平行四边形定则或三角形定则画出不同状态下的力的矢量图(画在同一个图中),然后根据有向线段(表示力)的长度变化判断 各个力的变化情况。 【例1】如右图所示,一个重为G 的匀质球放在光滑斜面上,斜 面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于 静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,球对 挡板和球对斜面的压力大小如何变化? 【解析】解析法:选球为研究对象,球受三个力作用,即重力G 、 斜面支持力1F 、挡板支持力2F ,受力分析如右图所示。由平衡条件 可得: 21cos(90)sin 0F F αβα---= 12cos sin(90)0F F G ααβ----= 联立求解并进行三角形变换可得: 1cos sin cot()G F αααβ=-+,2sin sin F G αβ =? 讨论: (1)对1F :①()90αβ+<,1cot()F βαβ↑→+↓→↓ ②()90αβ+>,1cot()F βαβ↑→+↑→↓ (2)对2F :①90β<,2sin F ββ↑→↑→↓ ②90β>,2sin F ββ↑→↓→↑ 综上所述:球对斜面的压力随β增大而减小;球对挡板的压力在90β<时,随β增大而减小,在90β>时,随β增大而增大;当90β=时,球对挡板的压力最小。 图解法:取球为研究对象,球受重力G 、斜面支持力1F ,挡板支持力2F 。因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形,当挡板逆时针转动时,

典型共点力平衡问题例题汇总

典型共点力作用下物体的平衡例题 [[例1]如图1所示,挡板AB和竖直墙之间夹有小球,球的质量为m,问当挡板与竖直墙壁之间夹角θ缓慢增加时,AB板及墙对球压力如何变化。 极限法 [例2]如图1所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求 (1)物体A所受到的重力; (2)物体B与地面间的摩擦力; (3)细绳CO受到的拉力。 例3]如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。当细绳的端点挂上重物G,而圆环将要开始滑动时,试问 (1)长为30cm的细绳的张力是多少? (2)圆环将要开始滑动时,重物G的质量是多少?

(3)角φ多大? [分析]选取圆环作为研究对象,分析圆环的受力情况:圆环受到重力、细绳的张力T、杆对圆环的支持力N、摩擦力f的作用。 [解]因为圆环将要开始滑动,所以,可以判定本题是在共点力作用下物体的平衡问题。由牛顿第二定律给出的平衡条件∑F x=0,∑F y=0,建立方程有 μN-Tcosθ=0, N-Tsinθ=0。 设想:过O作OA的垂线与杆交于B′点,由AO=30cm,tgθ=,得B′O的长为40cm。在直角三角形中,由三角形的边长条件得AB′=50cm,但据题述条件AB=50cm,故B′点与滑轮的固定处B点重合,即得φ=90°。 (1)如图2所示选取坐标轴,根据平衡条件有 Gcosθ+Tsinθ-mg=0, Tcosθ-Gsinθ=0。 解得 T≈8N, (2)圆环将要滑动时,得 m G g=Tctgθ, m G=0.6kg。

力学动态平衡问题

力学动态平衡问题 所谓动态平衡问题是指通过控制某些物理量,使物体的状态发生缓慢的变化,而在这个过程中物体又始终处于一系列的平衡状态中。 解决动态平衡问题的思路是,①明确研究对象。②对物体进行正确的受力分析。③观察物体受力情况,认清哪些力是保持不变的,哪些力是改变的。④选取恰当的方法解决问题。 根据受力分析的结果,我们归纳出解决动态平衡问题的三种常用方法,分别是“图解法”,“相似三角形法”和“正交分解法”。 1、图解法 在同一图中做出物体在不同平衡状态下的力的矢量图,画出力的平行四边形或平移成矢量三角形,由动态力的平行四边形(或三角形)的各边长度的变化确定力的大小及方向的变化情况。 适用题型: (1)物体受三个力(或可等效为三个力)作用,三个力方向都不变,其中一个力大小改变。 例1、重G 的光滑小球静止在固定斜面和竖直挡板之间,若对小球施加一通过球心竖直向下的力F 作用,且F 缓慢增大,问在该过程中,斜面和挡板对小球的弹力的大小F 1、F 2如何变化? 解析:选取小球为研究对象,小球受自身重力G ,斜面对小球的支持力F1,挡板对小球的弹力F2和竖直向下的压力F 四个力作用,画出受力示意图如图1-2所示。因为力F 和重力G 方向同为竖直向下,所以可以将它们等效为一个力,设为F ,这样小球就等效为三个力作用,力的示意图如图1-3所示。画出以F1和F2为邻边的力的平行四边形,因为三力平衡,所以F1和F2的合力F 合与F 等大反向(如图1-4所示)。各力的方向不变,当F 增大,F 合应随之增大,对应平行四边形的对角线变长,画出另一个状态的力的矢量图(如图1-5所示),由图中平行四边形边长的变化可知F1和F2都在增大。 根据物体在三个力的作用下平衡时,这三个力一定能构成一个封闭的矢量三角 形。这样也可以将上述三个力F 、F1、F2平移成矢量三角形(如图1-6所示),由F 增大,可画出另一个状态下的矢量三角形,通过图像中三角形边长的变化容易看出 F1和F2都在增大。 图1-1 图1-2 图1-3 图1-4 图1-5 图 1-6

求解共点力平衡问题的常见方法(经典归纳附详细答案)

求解共点力平衡问题的常见方法 共点力平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。对于刚入学的高一新生来说,这个部分是一大难点。 一、力的合成法 物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等,方向相反; 1.(2008年·广东卷)如图所示,质量为m 的物体悬挂在轻质支架上,斜梁OB 与竖直方向的夹角为θ(A 、B 点可以自由转动)。设水平横梁OA 和斜梁OB 作用于O 点的弹力分别为F 1和F 2,以下结果正确的是( ) A.F 1=mgsinθ B.F 1= sin mg q C.F 2=mgcosθ D.F 2=cos mg q 二、力的分解法 在实际问题中,一般根据力产生的实际作用效果分解。 2、如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少? 3.如图所示,质量为m 的球放在倾角为α的光滑斜面上,试分析挡板AO 与斜面间的倾角β多大时,AO 所受压力最小。 三、正交分解法 解多个共点力作用下物体平衡问题的方法 物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解: 0x F =合,0 y F =合. 为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则 . θ

4、如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60° 角时,物体静止。不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。 四、相似三角形法 根据平衡条件并结合力的合成与分解的方法,把三个平衡力转化为三角形的三条边,利用力的三角形与空间的三角形的相似规律求解. 5、 固定在水平面上的光滑半球半径为R ,球心0的正上方C 处固定一个小定滑轮,细线一端拴一小球置于半球面上A 点,另一端绕过定滑轮,如图5所示,现将小球缓慢地从A 点拉向B 点,则此过程中小球对半球的压力大小N F 、细线的拉力大小T F 的变化情况是 ( ) A 、N F 不变、T F 不变 B. N F 不变、T F 变大 C , N F 不变、T F 变小 D. N F 变大、T F 变小 6、两根长度相等的轻绳下端悬挂一质量为m 物体,上端分别固定在天花板M 、N 两点,M 、N 之间距离为S ,如图所示。已知两绳所能承受的最大拉力均为T ,则每根绳长度不得短于____ 。 五、用图解法处理动态平衡问题 对受三力作用而平衡的物体,将力矢量图平移使三力组成一个首尾依次相接的封闭力三角形,进而处理物体平衡问题的方法叫三角形法;力三角形法在处理动态平衡问题时方便、直观,容易判断. 7、如图4甲,细绳AO 、BO 等长且共同悬一物,A 点固定不动,在手持B 点沿圆弧向C 点缓慢移动过程中,绳BO 的张力将 ( ) A 、不断变大 B 、不断变小 C 、先变大再变小 D 、先变小再变大 六.矢量三角形在力的静态平衡问题中的应用 若物体受到三个力(不只三个力时可以先合成三个力)的作用而处于平衡状态,则这三个力一定能构成一个力的矢量三角形。三角形三边的长度对应三个力的大小,夹角确定各力的方向。 8.如图所示,光滑的小球静止在斜面和木版之间,已知球重为G ,斜面的倾角为θ,求下列情况

相似三角形法分析动态平衡问题)

相似三角形法分析动态平衡问题 (1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。 (2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。 例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面 B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉 住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( ) A 、N 变大,T 变小 B 、N 变小,T 变大 C 、N 变小,T 先变小后变大 D 、N 不变,T 变小 解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式: R N R h mg L T =+= 可得:mg R h L T += 运动过程中L 变小,T 变小。 mg R h R N += 运动中各量均为定值,支持力N 不变。正确答案D 。 例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( ) A 、T 变小

三力动态平衡问题的几种解法

三力动态平衡问题的几种解法 物体在几个力的共同作用下处于平衡状态,如果其中的某一个力或某几个力发生缓慢的变化,其他的力也随之发生相应的变化,在变化过程中物体仍处于平衡状态,我们称这种平衡为动态平衡。因为物体受到的力都在发生变化,是动态力,所以这类问题是力学中比较难的一类问题。因为在整个过程中物体一直处于平衡状态,所以过程中的每一瞬间物体所受到的合力都是零,这是我们解这类题的根据. 下面就举例介绍几种这类题的解题方法. 一,三角函数法 例1.(2014年全国卷1)如图,用橡皮筋将一小球悬挂在小车的架子上,系绕处于平衡状态。现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。与稳定在竖直位置时相比,小球的高度() A.一定升高B.一定降低 C.保持不变D.升高或降低由橡皮筋的劲度系数决定 解析:设L0为橡皮筋的原长,k为橡皮筋的劲度系数,小 车静止时,对小球受力分析得:F1=mg,弹簧的伸长 ,即小球与悬挂点的距离为,当小车的加速度稳定在一定值时,对小球进行受力分析如图: 得:,,解得:,弹簧的伸长: ,则小球与悬挂点的竖直方向的距离为: ,即小球在竖直方向上到悬挂点的距离减小, 所以小球一定升高,故A正确,BCD错误.故选A. 点评:这种方法适用于有两个力垂直的情形,这样才能构建直角三角形,从而根据直角三角形中的边角关系解题. 二,图解法 例2.如图所示,半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐移至竖

直的位置C的过程中,如图所示,OA绳受力大小变化情况是______,OB绳受力大小变化情况是______. 解析:对O点受力分析,根据O点合力是零可知绳OA和绳OB上拉力的合力跟重力大小相等,方向相反,也就是说这个合力的大小不变方向竖直向上。根据图像OA绳受力 变小,OB绳受力先变小后变大. 点评:这种方法适用于一个力大小方向都不变,另一个力方向不变,只有第三个力大小方向都变化的情况. 三,相似三角形法 例3.(2014年上海卷)如图,竖直绝缘墙上固定一带电小球A,将带电小球B用轻质绝缘丝线悬挂在A的正上方C处,图中AC=h。当B静止在与竖直方向夹角方 向时,A对B的静电力为B所受重力的倍,则丝线BC长度为。若A对B的静电力为B所受重力的0.5倍,改变丝线长度,使B仍能在处平衡。以后由于A 漏电,B在竖直平面内缓慢运动,到处A的电荷尚未漏完,在整个漏电过程中,丝线上拉力大小的变化情况是。

高三受力分析动态平衡模型总结(解析版)

动态平衡受力分析 在有关物体平衡的问题中,有一类涉及动态平衡。这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点。 基础知识必备 方法一:三角形图解法 特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。 【例1】如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板对球的压力F N1和斜面对球的支持力F N2变化情况为()A.F N1、F N2都是先减小后增加 B.F N2一直减小,F N1先增加后减小 C.F N1先减小后增加,F N2一直减小 D.F N1一直减小,F N2先减小后增加 答案 C 【练习1】如图所示,小球被轻质细绳系着,斜吊着放在光滑劈面上,小球质量为m,斜面倾角为θ,向右缓慢推动劈一小段距离,在整个过程中() A.绳上张力先增大后减小 B.绳上张力先减小后增大 C.劈对小球支持力减小 D.劈对小球支持力增大 答案 D

相关文档
相关文档 最新文档