文档库 最新最全的文档下载
当前位置:文档库 › 高中数学讲义 圆锥曲线

高中数学讲义 圆锥曲线

高中数学讲义 圆锥曲线
高中数学讲义 圆锥曲线

高中数学讲义圆锥曲线

【方法点拨】

解析几何是高中数学的重要内容之一,也是衔接初等数学和高等数学的纽带。而圆锥曲线是解析几何的重要内容,因而成为高考考查的重点。研究圆锥曲线,无外乎抓住其方程和曲线两大特征。它的方程形式具有代数的特性,而它的图像具有典型的几何特性,因此,它是代数与几何的完美结合。高中阶段所学习和研究的圆锥曲线主要包括三类:椭圆、双曲线和抛物线。圆锥曲线问题的基本特点是解题思路比较简单清晰,解题方法的规律性比较强,但是运算过程往往比较复杂,对学生运算能力,恒等变形能力,数形结合能力及综合运用各种数学知识和方法的能力要求较高。

1. 一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质.

2.着力抓好运算关,提高运算与变形的能力,解析几何问题一般涉及的变量多,计算量大,解决问题的思路分析出来以后,往往因为运算不过关导致半途而废,因此要寻求合理的运算方案,探究简化运算的基本途径与方法,并在克服困难的过程中,增强解决复杂问题的信心,提高运算能力.

3.突出主体内容,要紧紧围绕解析几何的两大任务来学习:一是根据已知条件求曲线方程,其中待定系数法是重要方法,二是通过方程研究圆锥曲线的性质,往往通过数形结合来体现,应引起重视.

4.重视对数学思想如方程思想、函数思想、数形结合思想的归纳提炼,达到优化解题思维、简化解题过程

第1课 椭圆A

【考点导读】

1. 掌握椭圆的第一定义和几何图形,掌握椭圆的标准方程,会求椭圆的标准方程,掌握椭圆

简单的几何性质;

2. 了解运用曲线方程研究曲线几何性质的思想方法;能运用椭圆的标准方程和几何性质处

理一些简单的实际问题. 【基础练习】

1.已知△ABC 的顶点B 、C 在椭圆2

213

x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是______ 2.椭圆1422=+y x 的离心率为______

3.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆

的标准方程是______

4. 已知椭圆

19

82

2=++y k x 的离心率21=e ,则k 的值为______ 【范例导析】 例1.(1)求经过点35

(,)22

-

,且229445x y +=与椭圆有共同焦点的椭圆方程。 (2)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,点P (3,0)在该椭圆上,求椭圆的方程。

【分析】由所给条件求椭圆的标准方程的基本步骤是:①定位,即确定椭圆的焦点在哪轴上;②定量,即根据条件列出基本量a 、b 、c 的方程组,解方程组求得a 、b 的值;③写出方程.

解:(1)∵椭圆焦点在y 轴上,故设椭圆的标准方程为22

221y x a b

+=(0a b >>),

由椭圆的定义知,

2a ==

∴10a =,又∵2c =,∴222

1046b a c =-=-=,

所以,椭圆的标准方程为

22

1106

y x +=。 (2)方法一:①若焦点在x 轴上,设方程为()22

2210x y a b a b

+=>>,

∵点P (3,0)在该椭圆上∴

2

91a

=即29a =又3a b =,∴2

1b =∴椭圆的方程为

2

219

x y +=. ②若焦点在y 轴上,设方程为()22

2210y x a b a b

+=>>,

∵点P (3,0)在该椭圆上∴

29

1b

=即29b =又3a b =,∴281a =∴椭圆的方程为22

1819

y x += 方法二:设椭圆方程为()2210,0,Ax By A B A B +=>>≠.∵点P (3,0)在该椭圆上∴9A=1,

即19A =,又3a b =∴1181B =或,2

81a =∴椭圆的方程为

2219x y +=或221819

y x +=. 【点拨】求椭圆标准方程通常采用待定系数法,若焦点在x 轴上,设方程为

()222210x y a b a b +=>>,若焦点在y 轴上,设方程为()222210y x a b a b

+=>>,有时为了运算方便,也可设为221Ax By +=,其中

0,0,A B A B >>≠.

例2.点A 、B 分别是椭圆

120

362

2=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。 (1)求点P 的坐标;

(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值。

【分析】①列方程组求得P 坐标;②解几中的最值问题通常可转化为函数的最值来求解,要注意椭圆上点坐标的范围. 解:(1)由已知可得点A(-6,0),F(0,4) 设点P(x ,y ),则AP =(x +6, y ),FP =(x -4, y ),由已知可得

22

213620(6)(4)0

x y x x y ?+=???+-+=?

则22

x +9x -18=0, x =23或x =-6.

由于y >0,只能x =

23,于是y =2

35. ∴点P 的坐标是(23,235)

(2) 直线AP 的方程是x -3y +6=0. 设点M(m ,0),则M 到直线AP 的距离是

2

6+m .

于是

2

6+m =6m -,又-6≤m ≤6,解得m =2. 椭圆上的点(x ,y )到点M 的距离d 有

2

2

2

2

22549

(2)4420()15992

d x y x x x x =-+=-++-=-+, 由于-6≤m ≤6, ∴当x =

2

9

时,d 取得最小值15 点拨:本题考查了二次曲线上的动点与定点的距离范围问题,通常转化为二次函数值域问题.

【反馈练习】

1.如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是______

2.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是______

3.椭圆3

122

2y x +

=1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的______倍

4.若椭圆2215x y m +=的离心率e =,则m 的值为______

5..椭圆13

422=+y x 的右焦点到直线x y 3=的距离为______

6.与椭圆22

143x y +=具有相同的离心率且过点(2,_____ 7.椭圆

14

1622=+y x 上的点到直线022=-+y x 的最大距离是______ 8. 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为

354和3

5

2,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

第2课 椭圆B

【考点导读】

1. 掌握椭圆的第二定义,能熟练运用两个定义解决椭圆的有关问题;

2. 能解决椭圆有关的综合性问题. 【基础练习】

1.曲线

()2216106x y m m m +=<--与曲线()22

15959x y n n n

+=<<--的( ) A 焦点相同 B 离心率相等 C 准线相同 D 焦距相等

2.如果椭圆

116

252

2=+y x 上的点A 到右焦点的距离等于4,那么点A 到两条准线的距离分别是______ 3 离心率3

5

=e ,一条准线为3=x 的椭圆的标准方程是______ 【范例导析】

例1.椭圆122

22=+b

y a x (a>b>0)的二个焦点F 1(-c ,0),F 2(c ,0),M 是椭圆上一点,且

021=?F F 。

求离心率e 的取值范围.

分析:离心率与椭圆的基本量a 、b 、c 有关,所以本题可以用基本量表示椭圆上点的坐标,再借助椭圆椭圆上点坐标的范围建立关于基本量的不等式,从而确定离心率的范围. 解:设点M 的坐标为(x ,y),则),(1y c x M F +=,),(2y c x M F -=。由021=?M F M F ,

得x 2-c 2+y 2=0,即x 2-c 2=-y 2

。 ①

又由点M 在椭圆上,得y 2

=b 2

222x a

b -,代入①,得x 2-

c 22222b x a b -=,即2222

2c b a a x -=。

∵0≤2

x ≤2a ,∴0≤2a 222c

b a -≤2a ,即0≤2

22c c a -≤1,0≤112-e ≤1,解得22≤e ≤1。

又∵0<e <1,∵

2

2

≤e ≤1. 例2.如图,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.

(1)求该弦椭圆的方程; (2)求弦AC 中点的横坐标.

分析:第一问直接可有第一定义得出基本量a

解:(1)由椭圆定义及条件知,2a =|F 1B |+|F 2B |=10,得a =5,又c =4,故椭圆方程为9

252

2y x +

=1.

(2)由点B (4,y B )在椭圆上,得|F 2B |=|y B |=5

9.因为椭圆右准线方程为x =425

,离心率为54,根据椭

圆定义,有|F 2A |=

54(425-x 1),|F 2C |=54(4

25

-x 2), 由|F 2A |、|F 2B |、|F 2C |成等差数列,得54(425-x 1)+54(425-x 2)=2×5

9

,由此得出:x 1+x 2=8. 设弦AC 的中点为P (x 0,y 0),则x 0=2

2

1x x +=4.

【反馈练习】

1.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为______

2.已知F 1、F 2为椭圆

2

212

x y +=的两个焦点,过F 1作倾斜角为4π的弦AB ,则△F 2AB 的面积为______

3.已知正方形ABCD ,则以A B ,为焦点,且过C D ,两点的椭圆的离心率为______

4.椭圆

136

1002

2=+y x 上的点P 到它的左准线的距离是10,那么点P 到它的右焦点的距离是 ______

5.椭圆19252

2=+y x 上不同三点()11y x A ,,??

? ??594,B ,()22y x C ,与焦点()04,F 的距离成等

差数列.

求证:821=+x x ;

第3课 双曲线

【考点导读】

1. 了解双曲线的定义、几何图形和标准方程,了解其几何性质

2. 能用双曲线的标准方程和几何性质解决一些简单的实际问题. 【基础练习】

1.双曲线22

1mx y +=的虚轴长是实轴长的2倍,则14

m =-

2. 方程

13

322

=+--k y k x 表示双曲线,则k 的范围是______ 3.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为x y 2

1

±=,则此双曲线的离心率为______

4. 已知焦点12(5,0),(5,0)F F -,双曲线上的一点

P 到12,F F 的距离差的绝对值等于6,则双曲线的标准方程为______ 【范例导析】

例 1. (1) 已知双曲线的焦点在y 轴上,并且双曲线上两点12,P P 坐标分别为

9

(3,2),(,5)4

-,求双曲线的标准方程;

(2)求与双曲线19

162

2=-y x 共渐近线且过()

332-,A 点的双曲线方程及离心率. 分析:由所给条件求双曲线的标准方程的基本步骤是:①定位,即确定双曲线的焦点在哪轴上;②定量,即根据条件列出基本量a 、b 、c 的方程组,解方程组求得a 、b 的值;③写出方程. 解:(1)因为双曲线的焦点在y 轴上,所以设所求双曲线的标准方程为

22

2

21(0,0)y x a b a b -=>>①; ∵点12,P P 在双曲线上,∴点12,P P 的坐标适合方程①。

将9(3,2),(,5)4-

分别代入方程①中,得方程组:22

2

22

22(319()

2541

a b a

b ?--=??

??-=?? 将21a 和21b 看着整体,解得221116

119

a b ?=????=??,

∴2216

9

a b ?=??=??即双曲线的标准方程为

221169y x -=。 点评:本题只要解得22

,a b 即可得到双曲线的方程,没有必要求出,a b 的值;在求解的

过程中也可以用换元思想,可能会看的更清楚。

(2)解法一:双曲线

19

162

2=-y x 的渐近线方程为:x y 43±= 当焦点在x 轴时,设所求双曲线方程为122

22=-b

y a x ()0,0a b >>

34a b =,∴a b 4

3

= ① ∵()

332-,A 在双曲线上

19

122

2=-b a ② 由①-②,得方程组无解

当焦点在y 轴时,设双曲线方程为122

22=-b x a y ()0,0a b >>

4

3=a b ,∴a b 34

= ③

∵()

332-,A 在双曲线上,∴112

922=-b

a ④

由③④得4

92=a ,42

=b

∴所求双曲线方程为:144

922=-x y 且离心率35=e 解法二:设与双曲线

191622=-y x 共渐近线的双曲线方程为:()09

162

2≠=-λλy x ∵点()

332-,A 在双曲线上,∴4

1

991612-=-=

λ ∴所求双曲线方程为:

4

1

91622-=-y x ,即144

922=-x y . 点评:一般地,在已知渐近线方程或与已知双曲线有相同渐近线的条件下,利用双曲线系方

程()022

22≠=-λλb

y a x 求双曲线方程较为方便.通常是根据题设中的另一条件确定参数λ. 例2. 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上) 解:如图:

以接报中心为原点O ,正东、正北方向为x 轴、y 轴正向,建立直角坐标系.设A 、B 、C 分别是西、东、北观测点,则A (-1020,0),B (1020,0),C (0,1020)

设P (x ,y )为巨响为生点,由A 、C 同时听到巨响声,得|PA|=|PB|,故P 在AC 的垂直平分线PO 上,PO 的方程为y =-x ,因B 点比A 点晚4s 听到爆炸声,故|PB|- |PA|=340×4=1360 由双曲线定义知P 点在以A 、B 为焦点的双曲线122

22=-b

y a x 上, 依题意得a =680, c =1020,

1340

5680340568010202

2

22222222=?-?=-=-=∴y x a c b 故双曲线方程为

用y =-x 代入上式,得5680±=x ,∵|PB|>|PA|,

10680),5680,5680(,5680,5680=-=-=∴PO P y x 故即

答:巨响发生在接报中心的西偏北450距中心m 10680处.

例3.双曲线)0,1(122

22>>=-b a b

y a x 的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,

0)到直线l 的距离与点(-1,0)到直线l 的距离之和.5

4

c s ≥求双曲线的离心率e 的取值范围.

解:直线l 的方程为

1=+b

y

a x ,即 .0=-+a

b ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离2

2

1)1(b

a a

b d +-=

同理得到点(-1,0)到直线l 的距离2

2

2)1(b

a a

b d ++=

.222

221c

ab

b a ab d d s =

+=

+= 由,5

42,54c c ab c s ≥≥

得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即

解不等式,得

.5452≤≤e 由于,01>>e 所以e 的取值范围是.52

5

≤≤e 点拨:本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.

【反馈练习】

1.双曲线14

22

2-=-y x 的渐近线方程为______ 2.已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为______

例2

3.已知双曲线的两个焦点为)0,5(1-F ,)0,5(2F ,P 是此双曲线上的一点,且21PF PF ⊥,

2||||21=?PF PF ,则该双曲线的方程是______

4. 设P 是双曲线22

2x y 19

a -=

上一点,双曲线的一条渐近线方程为320x y -=,1F 、2F 分别是双曲线左右焦点,若1PF =3,则2PF =______

5.与椭圆

22

1255

x y +=共焦点且过点的双曲线的方程______ 6. (1)求中心在原点,对称轴为坐标轴经过点()31-,P 且离心率为2的双曲线标准方程. (2)求以曲线0104222=--+x y x 和222-=x y 的交点与原点的连线为渐近线,且实轴长为12的双曲线的标准方程.

7.设双曲线122

22=-b

y a x )0(b a <<的半焦距为c ,直线l 过)0,(a 、),0(b 两点,且原点到

直线l 的距离为

c 43

,求双曲线的离心率. 分析:由两点式得直线l 的方程,再由双曲线中a 、b 、c 的关系及原点到直线l 的距离建立等式,从而解出a

c

的值.

8.已知双曲线的中心在原点,焦点12,F F (4,. (1)求双曲线方程;(2)若点()3,M m 在双曲线上,求证:120MF MF ?=; (3)对于(2)中的点M ,求21MF F ?的面积.

第4课 抛物线

【考点导读】

1.了解抛物线的定义,掌握抛物线标准方程的四种形式和抛物线的简单几何性质.

2.会用抛物线的标准方程和几何性质解决简单的实际问题. 【基础练习】

1.焦点在直线x -2y -4=0上的抛物线的标准方程是______

2.若抛物线2

2y px =的焦点与椭圆22

162

x y +=的右焦点重合,则p 的值为______

3.抛物线)0(42<=a ax y 的焦点坐标是______

4.抛物线212y x =上与焦点的距离等于9的点的坐标是______

5.点P 是抛物线x y 42=上一动点,则点P 到点)1,0(-A 的距离与P 到直线1-=x 的距离和的最小值______

【范例导析】

例1. 给定抛物线y 2=2x ,设A (a ,0),a >0,P 是抛物线上的一点,且|P A |=d ,试求d

的最小值.

解:设P (x 0,y 0)(x 0≥0),则y 02=2x 0,

∴d =|P A |=2020)(y a x +-

=0202)(x a x +-=12)]1([20-+-+a a x . ∵a >0,x 0≥0,

∴(1)当0<a <1时,1-a >0,

此时有x 0=0时,d m i n =12)1(2-+-a a =a . (2)当a ≥1时,1-a ≤0, 此时有x 0=a -1时,d m i n =12-a .

例2.如图所示,直线1l 和2l 相交于点M ,1l ⊥2l ,点1l N ∈,以A 、B 为端点的曲线段C 上的任一点到2l 的距离与到点N 的距离相等,若△AMN 为锐角三角形,7=AM ,3=AN ,

且6=BN ,建立适当的坐标系,求曲线段C 的方程.

分析:因为曲线段C 上的任一点是以点N 为焦点,以2l 为准线的抛物线的一段,所以本题关键是建立适当坐标系,确定C 所满足的抛物线方程.

解:以1l 为x 轴,MN 的中点为坐标原点O ,建立直角坐标系.

由题意,曲线段C 是N 为焦点,以2l 为准线的抛物线的一段,其中A 、B 分别为曲线段的两端点.

∴设曲线段C 满足的抛物线方程为:),0,)(0(22>≤≤>=y x x x p px y B A 其中A x 、B x 为A 、B 的横坐标 令,p MN =则)0,2

(),0,2(p

N p M -

,3,17==AN AM ∴由两点间的距离公式,得方程组:???

???

?

=+-=++92)2

(17

2)2

(22

A A A A

px p x px p x 解得???==14A x p 或???==22A

x p

∵△AMN 为锐角三角形,∴

A x p

>2

,则4=p ,1=A x 又B 在曲线段C 上,4262

=-=-

=∴p

BN x B 则曲线段C 的方程为).0,41(82

>≤≤=y x x y

【反馈练习】

1.抛物线2

8

y x =的准线方程是______

2.抛物线)0(2≠=a ax y 的焦点到其准线的距离是______

3.设O 为坐标原点,F 为抛物线x y 42

=的焦点,A 为抛物线上的一点,若4-=?,则点A 的坐标为______

4.抛物线2

y x =-上的点到直线4380x y +-=距离的最小值是______

5.若直线l 过抛物线2

y ax =(a>0)的焦点,并且与y 轴垂直,若l 被抛物线截得的线段长为4,则a =______

6.某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.

例2

7.已知抛物线的顶点在原点,焦点F 在x 轴的正半轴,且过点P (2,2),过F 的直线交抛物线于A ,B 两点.(1)求抛物线的方程;

(2)设直线l 是抛物线的准线,求证:以AB 为直径的圆与直线l 相切.

分析:可设抛物线方程为)0(22>=p px y .用待定系数法求得方程,对于第二问的证明只

须证明12

MM AB =,则以AB 为直径的圆,必与抛物线准线相切.

第5课 圆锥曲线的统一定义

【考点导读】

1. 了解圆锥曲线的第二定义.

2. 能用第二定义解决简单的圆锥曲线问题. 【基础练习】

1.抛物线2

6y x =的焦点的坐标是______, 准线方程是______

2..如果双曲线的两个焦点分别为)0,3(1-F 、)0,3(2F ,一条渐近线方程为x y 2=,那么

它的两条准线间的距离是______

3.若双曲线

2

21x y m

-=上的点到左准线的距离是到左焦点距离的13,则m = ______ 4.点M 与点F (4,0)的距离比它到直线:50x +=的距离小1,则点M 的轨迹方程是______ 【范例导析】

例1.已知双曲线的渐近线方程为023=±y x ,两条准线间的距离为

1313

16

,求双曲线标准方程. 分析:(可根据双曲线方程与渐近线方程的关系,设出双曲线方程,进而求出双曲线标准方

程.

解:∵双曲线渐近线方程为x y 32±=,∴设双曲线方程为

()01942

2≠=-λλ

λy x ①若0>λ,则λ42=a ,λ92

=b

∴准线方程为:λ131342±=±=c a x ,∴13

13

1613138=

λ,∴4=λ ②若0<λ,则λ92-=a ,λ42

-=b

∴准线方程为:131392λ-±=±=c a y ,∴13

13

16131318=

-λ,∴8164-=λ ∴所求双曲线方程为:

1361622=-y x 或1256

816492

2=-x y 点拨:求圆锥曲线方程时,一般先由条件设出所求方程,然后再根据条件列出基本的方程组

解方程组得出结果.

例2.已知点()03,A ,()02,F ,

在双曲线13

2

2

=-y x 上求一点P ,使PF PA 21+的值最小. 解:∵1=a ,3=b ,∴2=c ,∴2=e 设点P 到与焦点()02,F 相应准线的距离为d 则

2=d

PF

d PF =21,∴d PA PF PA +=+2

1

至此,将问题转化成在双曲线上求一点P , 使P 到定点A 的距离与到准线距离和最小.

即到定点A 的距离与准线距离和最小为直线PA 垂直于准线时,

解之得,点???

?

??2321,P .

点拨:灵活巧妙地运用双曲线的比值定义于解题中,将会带给我们意想不到的方便和简单.教

学中应着重培养学生灵活运用知识的能力.

【反馈练习】

1.若双曲线

122

=-y m

x 上的点到左准线的距离是到左焦点距离的31,则=m ______ 2.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭

圆的离心率为______

3.已知双曲线)0( 12

22>=-a y a x 的一条准线为23=x ,则该双曲线的离心率为______

4 双曲线

19

162

2=-y x 右支点上的一点P 到右焦点的距离为2,则P 点到左准线的距离为 ______

第6课 圆锥曲线综合

【考点导读】

1. 在理解和掌握圆锥曲线的定义和简单几何性质的基础上,把握有关圆锥曲线的知识内在

联系,灵活地运用解析几何的常用方法解决问题.

2. 通过问题的解决,理解函数与方程、等价转化、数形结合、分类讨论等数学思想.

3.

能够抓住实际问题的本质建立圆锥曲线的数学模型,实现实际问题向数学问题的转化,

并运用圆锥曲线知识解决实际问题. 【基础练习】

1. 给出下列四个结论:

①当a 为任意实数时,直线012)1(=++--a y x a 恒过定点P ,则过点P 且焦点在y 轴上的抛物线的标准方程是y x 3

4

2

=

; ②已知双曲线的右焦点为(5,0),一条渐近线方程为02=-y x ,则双曲线的标准方程是

120

52

2=-y x ; ③抛物线a

y a ax y 41)0(2

-

=≠=的准线方程为; ④已知双曲线142

2=+m

y x ,其离心率)2,1(∈e ,则m 的取值范围是(-12,0)。 其中所有正确结论的个数是______

2.设双曲线以椭圆

19

252

2=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为______

3.如果椭圆

19

362

2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是______ 【范例导析】

例1. 已知抛物线2

4x y =的焦点为F ,A 、B 是热线上的两动点,且(0).AF FB λλ=>过

A 、

B 两点分别作抛物线的切线,设其交点为M 。 (I )证明.FM AB 为定值;

(II )设ABM ?的面积为S ,写出()S f λ=的表达式,并求S 的最小值。

解:(1)F 点的坐标为(0,1)设A 点的坐标为2

11,

4x x ?? ??? B 点的坐标为2

22,

4x x ?? ???

由(0).AF FB λλ=>可得22

1212,1,144x x x x λ??

??--=- ? ?????

因此12

22121(1)44

x x x x λλ-=???-=-?? 过A 点的切线方程为211

1()42

x x y x x -=- (1) 过B 点的切线方程为2222()42

x x

y x x -=- (2) 解(1)( 2)构成的方程组可得点M 的坐标,从而得到FM AB =0 即为定值 (2)FM AB =0可得FM AB ⊥三角形面积()2

FM AB

S f λ=

=

2FM AB ==

所以3311()242

22FM AB

S f λ==

=≥?= 当且仅当1λ=时取等号

点拨:本题主要考察共线向量的关系,曲线的切线方程,直线的交点以及向量的数量积等知识点

涉及均值不等式,计算较复杂.难度很大

【反馈练习】

1.已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42

=的准线重合,则该双曲线与抛物线x y 42

=的交点到原点的距离是______

2.设12F F ,分别是双曲线2

2

19

y x +=的左、右焦点.若点P 在双曲线上,且120PF PF =,则12PF PF +=______

3.设P 是椭圆22

194

x y +=上一点,1F 、 2F 是椭圆的两个焦点,则12cos F PF ∠的最小值是______

4.已知以F 1(2,0),F 2(

2,0)为焦点的椭圆与直线40x +=有且仅有一个交点,则椭圆的长轴长为72

5. 双曲线C 与椭圆22

14924

x y +=的焦点相同,离心率互为倒数,则双曲线C 的渐近线的方程是______

6.已知椭圆

221259x y +=与双曲线22

197

x y -=在第一象限内的交点为P ,则点P 到椭圆右焦点的距离等于________ _

7.如图,点A 是椭圆C :)0(122

22>>=+b a b

y a x 的短轴位于x 轴下方的端点,过A 作斜率

为1的直线交椭圆于B 点,点P 在y 轴上,且BP ∥x 轴,?=9,若点P 的坐标为(0,1),求椭圆C 的方程.

8.在平面直角坐标系xoy

中,已知圆心在第二象限、半径为C 与直线y x =相切

于坐标原点O .椭圆22

219

x y a +=与圆C 的一个交点到椭圆两焦点的距离之和为10.求圆C

的方程.

9.已知动圆过定点,02p ??

???

,且与直线2p x =-相切,其中0p >,求动圆圆心C 的轨迹的方

程.

解:如图,设M 为动圆圆心,,02p ??

???

为记为F ,过点M 作直线2

p

x =-的垂线,垂足为N ,由题

意知:MF MN =即动点M 到定点F 与定直线

2

p

x =-

的距离相等 由抛物线的定义知,点M 的轨迹为抛物线,其中

,02p F ??

???

为焦点,2p x =-为准线

所以轨迹方程为2

2(0)y px P =>;

x =

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高中数学人教版选修1-1(文科) 第二章 圆锥曲线与方程 2.2.1 双曲线及其标准方程(I)卷

高中数学人教版选修1-1(文科)第二章圆锥曲线与方程 2.2.1 双曲线及其标准方 程(I)卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共8题;共16分) 1. (2分)过已知双曲线-=1(b>0)的左焦点F1作⊙O2:x2+y2=4的两条切线,记切点为A,B,双曲线的左顶点为C,若∠ACB=120°,则双曲线的离心率为() 【考点】 2. (2分)(2018·石嘴山模拟) 已知双曲线的左、右焦点分别为,以 为直径的圆与双曲线渐近线的一个交点为,则双曲线的方程为() A . B . C . D . 【考点】 3. (2分) (2019高二上·四川期中) 已知圆:(为圆心),点,点 是圆上的动点,线段的垂直平分线交线段于点,则动点的轨迹是() A . 两条直线 B . 椭圆 C . 圆 D . 双曲线 【考点】 4. (2分) (2017高二下·新疆开学考) 过椭圆的左焦点F1作直线l交椭圆于A,B两点,F2是椭圆右焦点,则△ABF2的周长为() A . 8

B . 4 C . 4 D . 【考点】 5. (2分)(2017·常德模拟) 已知双曲线C: =1(a>0,b>0)的渐近线方程为y=± x,则双曲线C的离心率为() A . B . C . D . 【考点】 6. (2分)“”是“直线与圆相切”的() A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件 【考点】 7. (2分)双曲线的渐近线方程是() 【考点】 8. (2分) (2019高二下·南山期末) 直线l过点且与双曲线仅有一个公共点,这样的直线有()条. A . 1 B . 2

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

(新)高中数学圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程 1. 椭圆方程的第一定义:平面内与两个定点F 1,F 2的距离的和等于定长(定长通常等于2a ,且2a >F 1F 2) 的点的轨迹叫椭圆。 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ (1)①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 22 2 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . 注:A.以上方程中,a b 的大小0a b >>,其中2 2 2 b a c =-; B.在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2 x 和 2y 的分母的大小。 ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为???==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵椭圆的性质 ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e = .【∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆。当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为2 2 2 x y a +=。】 ⑦焦(点)半径: i. 设),(00y x P 为椭圆)0(12222 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+上的一点,21,F F 为上、下焦点,则 ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

高考文科数学真题大全圆锥曲线老师版

试题解析:(Ⅰ)椭圆C 的标准方程为2 213x y +=.所以3a =,1b =,2c =.所以椭圆C 的 离心率6 3 c e a = = . (Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -. 直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -. 所以直线BM 的斜率11 2131 BM y y k -+= =-. 17.(2015年安徽文)设椭圆E 的方程为22 221(0),x y a b a b +=>>点O 为坐标原点,点A 的坐标 为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 的斜率为510 。 (1)求E 的离心率e; (2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB 。 ∴a b 3 231=5525451511052 222222=?=?=-?=?e a c a c a a b (Ⅱ)由题意可知N 点的坐标为(2,2b a -)∴a b a b a a b b K MN 56 65232213 1==-+=

a b K AB -= ∴1522-=-=?a b K K AB MN ∴MN ⊥AB 18.(2015年福建文)已知椭圆22 22:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线 :340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于 4 5 ,则椭圆E 的离心率的取值范围是( A ) A . 3(0, ]2 B .3(0,]4 C .3[,1)2 D .3[,1)4 1 19.(2015年新课标2文)已知双曲线过点() 4,3,且渐近线方程为1 2 y x =±,则该双曲线的标 准方程为 .2 214 x y -= 20.(2015年陕西文)已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( B ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【解析】试题分析:由抛物线22(0)y px p =>得准线2 p x =- ,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程. 21.(2015年陕西文科)如图,椭圆22 22:1(0)x y E a b a b +=>>经过点(0,1)A -,且离心率为22. (I)求椭圆E 的方程;2 212 x y +=

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

高中数学圆锥曲线解题技巧方法总结

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数 2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝 对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|, 则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方 程8=表示的曲线是_____(答:双曲线的左支) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时1 22 22=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1 (0a b >>)。方程22 Ax By C +=表示椭圆的充要条 件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2 y x +的最小值是___ ) (2)双曲线:焦点在x 轴上: 2 2 22b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴 上,离心率2= e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时2 2(0)y px p =>,开 口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在 分母大的坐标轴上。 如已知方程1212 2=-+-m y m x 表示焦点在y 轴 上的椭圆,则m 的取值范围是__(答:)2 3 ,1()1,( --∞) (2)双曲线:由x 2,y 2 项系数的正负决定,焦 点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长 为2a ,短轴长为2b ;④准线:两条准线2 a x c =± ; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆 越圆;e 越大,椭圆越扁。 如(1)若椭圆152 2 =+m y x 的离心率510 = e ,则m 的值是__(答:3或 3 25); (2)以椭圆上一点和椭圆两焦点为顶点的三角 形的面积最大值为1时,则椭圆长轴的最小值为__(答: 22) (2)双曲线(以22 22 1x y a b -=(0,0a b >>)为 例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等 时,称为等轴双曲线,其方程可设为 2 2 ,0x y k k -=≠;④准线:两条准线2 a x c =±; ⑤ 离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大; ⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围: 0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几 何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线: 一条准线2 p x =-; ⑤离心率:c e a =,抛物线 ?1e =。 如设R a a ∈≠,0,则抛物线2 4ax y =的焦点坐标为 ________(答:)161 , 0(a ); 5、点00(,)P x y 和椭圆122 22=+b y a x (0a b >>)的 关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>;(2) 点00(,)P x y 在椭圆上?220 220b y a x +=1;(3)点 00(,)P x y 在椭圆内?2200 221x y a b +< 6.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交; 0?>?直线与双曲线相交,但直线与双曲线相交不一定有0?>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0?>是直线与双曲线相交的充分条件,但不是必要条件;0?>?直线与抛物线相交,但直线与抛物线相交不一定有0?>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0?>也仅是直线与抛物线相交的充分条件,但不是必要条件。 (2)相切:0?=?直线与椭圆相切;0?=?直线与双曲线相切;0?=?直线与抛物线相切; (3)相离:0?中, 以00(,)P x y 为中点的弦所在直线的斜率k=0 p y 。 提醒:因为0?>是直线与圆锥曲线相交于两点的必要 条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 11.了解下列结论 (1)双曲线1 2 222 =-b y a x 的渐近线方程为0=±b y a x ; (2)以x a b y ±=为渐近线(即与双曲线 12222=-b y a x 共渐近线)的双曲线方程为λ λ(22 22=-b y a x 为参数,λ≠0)。 (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为2 2 1mx ny +=; (4)椭圆、双曲线的通径(过焦点且垂直于对称 轴的弦)为2 2b a ,焦准距(焦点到相应准线的距离) 为2b c ,抛物线的通径为2p ,焦准距为p ; (5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛物线2 2(0)y px p =>的焦点弦为AB , 1122(,),(,)A x y B x y ,则①12||AB x x p =++; ②2 21212,4 p x x y y p ==- (7)若OA 、OB 是过抛物线2 2(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 12.圆锥曲线中线段的最值问题: 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)

(完整word版)高中数学圆锥曲线结论(最完美版本)

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦 点在直线PT 上的射影H 点的轨迹是以 长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过 Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点 分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆 22 22 1x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、 Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于 两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴 的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >

高中数学圆锥曲线解题技巧方法总结7558

圆锥曲线 1、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。 在椭圆122 22=+b y a x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-0 202y a x b ; 在双曲线22 221x y a b -=中,以00(,)P x y 为中点的弦所在直线的斜率k=0 202y a x b ;在抛物线 22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率k=0 p y 。 提醒:因为0?>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 2.了解下列结论 (1)双曲线1222 2=-b y a x 的渐近线方程为02222 =-b y a x ; (2)以x a b y ±=为渐近线(即与双曲线12222=-b y a x 共渐近线)的双曲线方程为λλ(2222 =-b y a x 为参数,λ≠0)。 (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为22 1mx ny +=; (4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为2 2b a ,焦准距(焦点到相应准线 的距离)为2 b c ,抛物线的通径为2p ,焦准距为p ; (5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛物线2 2(0)y px p =>的焦点弦为AB ,1122(,),(,)A x y B x y ,则①12||AB x x p =++; ②2 21212,4 p x x y y p ==- (7)若OA 、OB 是过抛物线2 2(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 3、解析几何与向量综合时可能出现的向量内容: (1)在ABC ?中,给出() 12 AD AB AC =+u u u r u u u r u u u r ,等于已知AD 是ABC ?中BC 边的中线; (2)在ABC ?中,给出2 22OC OB OA ==,等于已知O 是ABC ?的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点); (3)在ABC ?中,给出=++,等于已知O 是ABC ?的重心(三角形的重心是三角形三条中线的交点); (4)在ABC ?中,给出?=?=?,等于已知O 是ABC ?的垂心(三角形的垂心是三角形三条高的交点); (5) 给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=r r 使;③若存在实数 ,,1,OC OA OB αβαβαβ+==+u u u r u u u r u u u r 且使,等于已知C B A ,,三点共线. (6) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?m ,等于已 知AMB ∠是钝角, 给出0>=?m ,等于已知AMB ∠是锐角,

高二数学圆锥曲线专题((文科)

高二数学(文科)专题复习(十二)圆锥曲线 一、选择题 1. 设双曲线以椭圆19 252 2=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A.2± B.34± ?C.2 1± D.4 3 ± 2. 过抛物线x y 42 =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ) A.有且仅有一条 B.有且仅有两条 C.有无穷多条 D.不存在 3.从集合{1,2,3…,11}中任选两个元素作为椭圆方程122 22=+n y m x 中的m 和n,则能组 成落在矩形区域B ={(x ,y)| |x |<11且|y|<9}内的椭圆个数为( )?? A.43 B. 72 C. 86 D. 90 4. 设椭圆的两个焦点分别为F 1、、F2,过F 2作椭圆长轴的垂线交椭圆于点P,若△F 1P F2 为等腰直角三角形,则椭圆的离心率是( ) (A) 2 (B )12 (C)2 1 5. 已知双曲线22 163 x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直 线2F M 的距离为( ) (A) ?(B ) (C) 65?(D) 5 6 6.已知双曲线22a x -22 b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A, △OAF的面积为2 2 a (O 为原点),则两条渐近线的夹角为( )

7.直线y=x +b (b ≠0)交抛物线2 12 y x =于A、B 两点,O 为抛物线的顶点,OA OB ?=0,则b =_______. 8.椭圆22 1mx ny +=与直线10x y +-=相交于,A B 两点,过AB 中点M与坐标原点的 直线的斜率为 2,则m n 的值为 9.过抛物线2 4y x =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,若 12y y +=则AB 的值为 10.以下四个关于圆锥曲线的命题中: ①设A 、B为两个定点,k 为非零常数,||||PA PB k -=,则动点P的轨迹为双曲线; ②过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若1 (),2 OP OA OB =+则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率; ?④双曲线 135 192522 22=+=-y x y x 与椭圆有相同的焦点. ?其中真命题的序号为 (写出所有真命题的序号) 三、解答题 11.抛物线顶点在原点,它的准线过双曲线22 221(0,0)x y a b a b -=>> 的一个焦点,且抛 物线与双曲线的一个交P( 3 2 点,求抛物线和双曲线方程。 12.已知抛物线y2 =2px (p>0)的焦点为F,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B,OB 的中点为M.

高考数学圆锥曲线综合题型归纳解析

圆锥曲线综合题型归纳解析 【知识点精讲】 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量——函数——定值”,具体操作程序如下: (1)变量——选择适当的量为变量; (2)函数——把要证明为定值的量表示成变量的函数; (3)定值——化简得到函数的解析式,消去变量得到定值。 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,在证明定值与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定值。 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形的性质来解决。 (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,在求该函数的最值。求函数的最值常见的方法有基本不等式法、单调性法、导数法、和三角换元等,这是代数法。 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的应用(优先考虑); (2)重视曲线的几何特征特别是平面几何的性质与方程的代数特征在解题中的作用; (3)重视根与系数的关系(韦达定理)在解题中的应用(涉及弦长、中点要用)。 四、求参数的取值范围 根据已知条件及题目要求建立等量或不等量关系,再求参数的范围。 题型一、平面向量在解析几何中的应用 【思路提示】解决平面向量在解析几何中的应用问题要把几何特征转化为向量关系,并把向量用坐标表示。常见的应用有如下两个: (1)用向量的数量积解决有关角的问题: ①直角12120a b x x y y ?=+=r r g ; ②钝角10||||a b a b ?-<= == r r r r g r r g 。

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

高考文科数学圆锥曲线专题复习

高三文科数学专题复习之圆锥曲线 知识归纳: 名 称 椭圆 双曲线 图 象 x O y x O y 定 义 平面内到两定点21,F F 的距离的和为 常数(大于21F F )的动点的轨迹叫椭 圆即a MF MF 221=+ 当2a ﹥2c 时,轨迹是椭圆, 当2a =2c 时,轨迹是一条线段 21F F 当2a ﹤2c 时,轨迹不存在 平面内到两定点21,F F 的距离的差的绝 对值为常数(小于21F F )的动点的轨 迹叫双曲线即122MF MF a -= 当2a ﹤2c 时,轨迹是双曲线 当2a =2c 时,轨迹是两条射线 当2a ﹥2c 时,轨迹不存在 标准 方 程 焦点在x 轴上时: 122 22=+b y a x 焦点在y 轴上时:122 22=+b x a y 注:根据分母的大小来判断焦点在哪一 坐标轴上 焦点在x 轴上时:122 22=-b y a x 焦点在y 轴上时:122 22=-b x a y 常数 c b a ,,的关 系 2 22b c a +=,0>>b a , a 最大, b c b c b c ><=,, 222b a c +=,0>>a c c 最大,可以b a b a b a ><=,, 渐近线 焦点在x 轴上时: 0x y a b ±= 焦点在y 轴上时:0y x a b ±= 抛物线:

图形 x y O F l x y O F l 方程 )0(22 >=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x 焦 点 )0,2 (p )0,2(p - )2,0(p )2,0(p - 准 线 2 p x -= 2p x = 2p y -= 2 p y = (一)椭圆 1. 椭圆的性质:由椭圆方程)0(122 22>>=+b a b y a x (1)范围:a x b -a ,x a ≤≤≤≤-,椭圆落在b y ±=±=a ,x 组成的矩形中。 (2)对称性:图象关于y 轴对称。图象关于x 轴对称。图象关于原点对称。原点叫椭圆的对称中心, 简称中心。x 轴、y 轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点 椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -。加两焦点)0,(),0,(21c F c F -共有六个特殊点。21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。长分别为b a 2,2。b a ,分别为椭圆的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。a c e = ?2)(1a b e -=。10<

相关文档
相关文档 最新文档