文档库 最新最全的文档下载
当前位置:文档库 › 初三数学数学总复习系列-圆(一)-609

初三数学数学总复习系列-圆(一)-609

初三数学数学总复习系列-圆(一)-609
初三数学数学总复习系列-圆(一)-609

初三数学数学总复习系列-圆(一)-609

圆 综合练习

【例题精选】:

例1、已知PA 切⊙O 于A , AB ⊥OP 于B , PO = 12cm, OB

= 3cm, 求PA 长。

分析: 因为有PA 切⊙O 于A , 根据切线的性质, 切线

垂直于过切点的半径, 可以得到直角三角形, 又因为AB ⊥PO 于B , 可以利用相似三角形的知识去进行计算, 再利用直角三角形去计算。

解: 连接OA

∵PA 切⊙O 于A ,

∴OA ⊥PA 于A , ∠PAO = 90?

又∵AB ⊥OP 于B

∴?ABO ∽?AOP

∴OA 2 = OB ·PO

∴OA 2 = 3×12

∴OA = 6

在Rt ?APO 中

PA OP AO =-=-==222212610863

说明: 有切线时, 经常加的辅助线是连切点与圆心, 也常利用直角三角形中的有关知识, 利用相似形的知识进行计算。

例2、PA 切⊙O 于A , 过O 的割线PO 交⊙O 于B , PA =

25, PB = 2, 求⊙O 的半径。

分析: 图中有圆O 的切线, 则可做过切点的半径, 则有直角三角形中的关系, 可设半径为x , 那么其它各直角边可用含

有x 的式子表示, 再利用方程思想, 找到等量关系列出方程, 可以求出未知数的值。

解: 连接OA ,

∵PA 切⊙O 于A ,

∴OA ⊥PA

设⊙O 的半径为R

∵PB = 2, 则PO = 2 + R

在Rt ?PAO 中, OP OA PA 222=+

∴()()R R +=+225222

∴R R R 224420++=+

解得R = 4

∴圆的半径为

4

说明: 方程思想是一种重要的数学思想, 将已知数, 未知数找到等量关系, 列出方程, 求出未知数的值, 要学会构通已知与未知的联系, 利用方程思想考虑问题。

例3、已知OA 为⊙O 的半径, C 是⊙O 上一点, CD ⊥OA

于D , B 是OA 延长线上一点, CA 平分∠BCD , 求证: BC 是⊙

O 的切线。

分析: 要证BC 是⊙O 的切线, 根据判定定理可以证BC 是切线, 因为圆上有点, 属于圆上有点, 可以连结圆心与圆上点, 证明垂直。

证明: 连结OC ,

∵CA 平分∠BCD , ∠BCA = ∠ACD ,

∵OA = OC , ∴∠OAC = ∠OCA , ∵CD ⊥AO 于D

∴∠OAC + ∠2 = 90?

又∵∠1 = ∠2

∴∠1 + ∠OCA = 90?

∴OC ⊥BC

∴BC 为⊙O 的切线。

说明: 切线的判定要看所证直线是否与圆有交点, 当有交点时, 可以用判定定理证, 因此辅助线是连接圆心与已知点, 再证明垂直关系, 若没有已知点时, 可以做垂线, 证明垂线长等于圆的半径, 即利用圆心到直线距离等于半径而判定直线与圆相切。

例4、已知?ABC 的内切圆分别与AB 、BC 、AC

内切于D 、E 、F , ∠A = 60?, BC = 6, ?ABC 周长为

16, 求DF 。

分析: 已知条件中知⊙O 与三角形三边相切, 切

点为D , E , F , 已知?ABC 周长为16, 求的DF 线段要

找到与三角形其它边的关系。可以由切线长定理找到关系。

解: ∵AB 切⊙O 于D , AC 切⊙O 于F ,

∴AD = AF ,

又∵∠A = 60?

∴?ADF 为等边三角形

∴AD = DF = AF

又∵⊙O 为?ABC 的内切圆

AB , BC , AC 切⊙O 于D , E , F

∴BD = BE , CF = CE

又∵AB + BC + AC = 16

∴AD + BD + AF + FC

+ 6 = 16

∴2DF + BD + FC = 10

∴2DF + BE + EC = 10

∴2DF = 4 ∴DF = 2

例5、直角三角形的两直角边长为a , b , 求直角三角形的内切圆半径。 分析: 直角三角形的内切圆半径与三边都垂直, 可以

利用面积的求法去求内切圆的半径, 也可以由切线长定理

分析边之间的关系而求。特别要能观察到的图形是从圆心

向两条直角边所引的垂线段中, 构成一个正方形的图形,

这对找到内切圆半径与边的关系也很重要。

解法一: 如图, Rt ?ABC 中, ∠C = 90?, AB , BC , AC 切⊙

O 于D , E , F 。设BC = a , AC = b , 连接OD , OE , OF , 设

内切圆半径为R ,

∴OD ⊥AB , OE ⊥BC , OF ⊥AC

根据面积的计算公式

()1212BC OE AC OF AB OD ab ···++=

又∵OE = OF = OD = R

∴(a + b + AB )·R = ab

AB a b =+22 ∴R ab a b a b =+++22

解法二:

∵AB , BC , AC 切⊙O 于D , E , F

由切线长定理

∴AD = AF , BD = BE , CE = CF

又∵OE = OF = R ∠FCE = 90? ∠OFC = ∠OEC = 90?

∴OECF 为正方形,

∴EC = FC = R

AB = BD + AD = BE + AF = a -R + b -R

a b a b R 222+=+- ∴222R a b a b =+-+ ∴R a b a b =+-+222

说明: 直角三角形的内切圆半径计算是很有用的, 可以记住本题的推导方法, 也可以记住有关的结论, 对于解决直角三角形内切圆的问题很有帮助。运用面积去思考问题, 是个很好的思路, 因为内切圆半径是分割成的三角形的高, 因此可以用面积去思考。

例6、等腰三角形ABC 内接于⊙O , AB = AC , 过B , C 分别作⊙O 的切线, 这两切线相交于D , 若∠BDC = 100?, 求∠ABC 的度数

分析: 由切线长定理, 可知BD = CD , 则可求得∠CBD ,

∠BCD 度数, ∵∠CBD 为弦切角, 根据弦切角定理的推论, 可求

得∠BAC 的度数, 则可求得∠ABC 的度数。

解: ∵BD 、DC 为⊙O 的切线,

∴DB = DC

又∵∠BDC = 100?,

∴∠CBD = ∠BCD = 40?

∴∠BAC = ∠CBD = 40?

又 、∵AB = AC ∴()∠=?-?=?ABC 12

1804070

例7、已知, 如图, 菱形ABCD 的边长为5, 对角线AC ,

BD 交于O , 且AO , BO 长分别是方程

()()x m x m 221410--+-=的两个根。求m 的值及菱形ABCD

内切圆的面积。 分析: 这是一道代数, 几何知识的综合题, 若求内切圆

的面积, 应当求出内切圆的半径, 菱形的对角线互相垂直, ∠AOB = 90?, 连圆心与切点后, 根据切线的性质, 又与切线垂直, 这样根据这些关系可求出圆的半径, 进而求出圆的面积。

解: ∵AO , BO 长是()()x m x m 221410--+-=的根

∴AO + BO = 2m -1

AO ·BO = 4(m -1)

又∵∠AOB = 90? ∴AO BO AB 222+=

∴()AO BO AO BO +-=2225·

∴()()21241252m m --?-=

解得m 1 = -1, m 2 = 4

∵当m = -1时, AO + BO < 0不合题意舍去。

∴m = 4

设切点为E , 连OE , ∴OE ⊥AB

∴AB ·OE = AO ·BO ∴OE AO BO AB ==·125

∴S ⊙O = πππOE 2212514425=??? ???=。

初三数学圆的经典讲义

圆 目录 圆的定义及相关概念 垂经定理及其推论 圆周角与圆心角 圆心角、弧、弦、弦心距关系定理 圆内接四边形 会用切线, 能证切线 切线长定理 三角形的内切圆 了解弦切角与圆幂定理(选学) 圆与圆的位置关系 圆的有关计算 一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法:

求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆: 锐角三角形的外心在,直角三角形的外心在,钝角三角形的外心在。 考点5 点和圆的位置关系设圆的半径为r,点到圆心的距离为d, 则点与圆的位置关系有三种。 ①点在圆外?d>r;②点在圆上?d=r;③点在圆内? d<r; 【典型例题】 例1 在⊿ABC中,∠ACB=90°,AC=2,BC=4,CM是AB边上的中线,以点C为圆心,以5为半径作圆,试确定A,B,M三点分别与⊙C有怎样的位置关系,并说明你的理由。 例2.已知,如图,CD是直径,? = ∠84 EOD,AE交⊙O于B,且AB=OC,求∠A的度数。 M A B C

初三圆经典练习题

圆的概念和性质例2.已知,如图,CD是直径,? = ∠84 EOD,AE交⊙O于B,且AB=OC,求∠A的度数。 例3 ⊙O平面内一点P和⊙O上一点的距离最小为3cm。例4 在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm 例6.已知:⊙O的半径0A=1,弦AB、AC的长分别为3 ,2 【考点速练】 1.下列命题中,正确的是() A.三点确定一个圆B.任何一个三角形有且仅有一个外接圆 C.任何一个四边形都有一个外接圆 D.等腰三角形的外心一定在它的外部 2.如果一个三角形的外心在它的一边上,那么这个三角形一定是() A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形 3.圆的内接三角形的个数为()A.1个B.2 C.3个D.无数个 4.三角形的外接圆的个数为()A.1个B.2 C.3个D.无数个 5.下列说法中,正确的个数为() ①任意一点可以确定一个圆;②任意两点可以确定一个圆;③任意三点可以确定一个圆;④经过任一点可以作圆;⑤经过任意两点一定有圆. A.1个 B.2个 C.3个 D.4个 6.与圆心的距离不大于半径的点所组成的图形是( ) A.圆的外部(包括边界); B.圆的内部(不包括边界); C.圆; D.圆的内部(包括边界) 7.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长( ) A.等于6cm B.等于12cm; C.小于6cm D.大于12cm 8.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数, 则满足条件的点P有( ) A.2个 B.3个 C.4个 D.5个 9.如图,A是半径为5的⊙O内一点,且OA=3,过点A且长小于8的弦有( ) A.0条 B.1条 C.2条 D.4条 11.如图,已知在ABC ?中,? = ∠90 A,A为圆心,AC长为半径画弧交CB的延长线于点D,求CD的长. 12、如图,有一圆弧开桥拱,拱的跨度AB= 13、△ABC中,AB=AC=10,BC=12 14、如图,点P是半径为5的⊙O内一点,且OP=3,在过点P 条数为__。 1、在半径为2的圆中,弦长等于的弦的弦心距为 ____ B P A O

人教版初三数学圆的测试题及答案

九年级圆测试题 一、选择题(每题3分,共30分) 1.如图,直角三角形A BC 中,∠C =90°,A C =2,A B =4,分别以A C 、BC 为直径作半圆,则图中阴影的面积为 ( ) A 2π- 3 B 4π-4 3 C 5π-4 D 2π-23 2.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶ 2∶3 C 3∶2∶1 D 3∶2∶1 3.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定 4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90° 5.在Rt △A BC 中,已知A B =6,A C =8,∠A =90°,如果把此直角三角形绕直线A C 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线A B 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶12 6.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216° 7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352 =+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含 8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对 9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么

初中圆教学设计

初中圆教学设计 蕲春思源学校王礼斌 教学目的:理解圆的定义,掌握点与圆的位置关系,培养学生用数形结合思想方法分析解决问题的能力 教学重点、难点:圆的定义的理解 教学关键:理解两点:①在圆上的点,都满足到定点(圆心)的距离等于定长(半径); ②满足到定点(圆心)的距离等于定长(半径)的点,在以定点为圆心,定长为半径的圆上。 教学过程: 一、复习旧知: 1、角平分线及中垂线的定义(用集合的观点解释) 2、在一张透明纸上画半径分别1cm,2cm,3.5cm的圆,同桌的两个同学将所画的圆的大小分别进行比较(分别对应重合)。并回答:这些圆为什么能够分别重合?并体会圆是怎样形成的? 二、讲授新课: 1、让学生拿出准备好的木条照课本演示圆的形成,用圆规再次演示圆的形成。

分析归纳圆定义: 在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定的端点叫做圆心,线段叫做半径。 注意:“在平面内”不能忽略,以点O为圆心的圆,记作:“⊙O”,读作:圆O 2、进一步观察,体会圆的形成,结合园的定义,分析得出: ①圆上各点到定点(圆心)的距离等于定长(半径) ②到定点的距离等于定长的点都在以定点为圆心, 定长为半径的圆上。由此得出圆的定义: 圆是到定点的距离等于定长的点的集合。 例如,到平面上一点O距离为1.5cm的点的集合是以O为圆心,半径为1.5cm的一个圆。 3、在画圆的过程中,还体会到圆内各点到圆心的距离都小于半径,到圆心的距离小于半径的点都在圆内。 圆的内部是到圆心的距离小于半径的点的集合。同样有:圆的外部是到圆心的距离大于半径的点的集合。 4、初步掌握圆与一个集合之间的关系: ⑴已知图形,找点的集合 例如,如图,以O为圆心,半径为2cm的圆,

初三数学圆经典例题

一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法: 求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆: 锐角三角形的外心在,直角三角形的外心在 ,钝角三角形的外心在。 考点5 点和圆的位置关系设圆的半径为r,点到圆心的距离为d,

则点与圆的位置关系有三种。 ①点在圆外?d >r ;②点在圆上?d=r ;③点在圆? d <r ; 【典型例题】 例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。 例2.已知,如图,CD 是直径,?=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。 例3 ⊙O 平面一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。 例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少? 例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长. 例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数. A B D C O · E

初中数学圆 经典练习题(含答案)

圆的相关练习题(含答案) 1、已知:弦AB 把圆周分成1:5的两部分,这弦AB 所对应的圆心角的度数为 。 2、如图:在⊙O 中,∠AOB 的度数为1200,则 的长是圆周的 。 3、已知:⊙O 中的半径为4cm ,弦AB 所对的劣弧为圆的3 1,则弦AB 的长为 cm , AB 的弦心距为 cm 。 4、如图,在⊙O 中,AB ∥CD , 的度数为450,则∠COD 的度数为 。 5、如图,在三角形ABC 中,∠A=700,⊙O 截△ABC 的三边所得的弦长相等,则 ∠BOC=( )。 A .140° B .135° C .130° D .125° (第2题图) (第4题图) (第5题图) 6、下列语句中,正确的有( ) (1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦; (3)长度相等的两条弧是等弧; (4) 圆是轴对称图形,任何一条直径都是对称轴 A .0个 B .1个 C .2个 D .3个 7、已知:在直径是10的⊙O 中, 的度数是60°,求弦AB 的弦心距。 8、已知:如图,⊙O 中,AB 是直径,CO ⊥AB ,D 是CO 的中点,DE ∥AB , 求证:

600 9. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么? 10. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm ,求油面的最大深度。 11. 如图所示,AB 是圆O 的直径,以OA 为直径的圆C 与圆O 的弦AD 相交于点E 。你认为图中有哪些相等的线段?为什么? 答案:1.60度 2. 3 2 3. 1 3 4 4.90度 5.D 6.A 7.2.5 8.提示:连接OE ,求出角COE 的度数为60度即可 9.略 10.100毫米 11.AC=OC , OA=OB , AE=ED B

初三圆的典型例题

圆典型例题精选 【例题1】如图所示,AB 是圆O 的一条弦,OD AB ⊥,垂足为C ,交圆O 于点D ,点E 在圆O 上.(1)若52AOD ∠=,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长. 【例题2】如图,线段AB 经过圆心O ,交圆O 于点A,C ,点D 在圆O 上,连接AD ,BD , ∠A=∠B=30度.BD 是圆O 的切线吗?请说明理由. 【例题3】已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)请说明:∠ACO=∠BCD . (2)若EB=8cm ,CD=24cm ,求⊙O 的直径. 【例题4】如图,梯形ABCD 内接于⊙O , BC ∥AD ,AC 与BD 相交于点E ,在不添加 任何辅助线的情况下: (1) 图中共有几对全等三角形,请把它们一一写出来,并选择其中 一对全等三角形进行证明. (2) 若BD 平分∠ADC ,请找出图中与△ABE 相似的所有三角形 (全等三角形除外). 【例题5】如图,在Rt △ABC 中,∠C=90°,AC=5,BC=12,⊙O 的半径为3. (1)若圆心O 与C 重合时,⊙O 与AB 有怎样的位置关系? (2)若点O 沿线段CA 移动,当OC 等于多少时,⊙O 与AB 相切? E B D C A O 第 1 题图 图9 E D B A O C

【例题6】推理运算:如图,AB 为圆○直径,CD 为弦,且CD AB ⊥,垂足为H .OCD ∠的平分线CE 交圆○于E ,连结OE . (1)请说明:E 为弧ADB 的中点; (2)如果圆○的半径为1,3CD =,①求O 到弦AC 的距离;②填空:此时圆周上存在 个点到直线AC 的距离为 12 . 【例题7】已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,与AC ?交于点E ,请说明:△DEC 为等腰三角形. 【例题8】如图,已知⊙O 是△ABC 的外接圆,AB 为直径,若PA ⊥AB ,PO 过AC 的中点M .试说明:PC 是⊙O 的切线. 【例题9】已知:如图,AB 是⊙O 的切线,切点为A ,OB 交⊙O 于C 且C 为OB 中点,过C 点的弦CD 使∠ACD =45°,弧AD 的长为2 2 π, 求弦AD 、AC 的长. 【例题10】如图所示,ABC △是直角三角形,90ABC ∠=,以AB 为直径的圆○交AC 于点 E ,点D 是BC 边的中点,连结DE . (1)请说明:DE 与圆○相切; (2)若圆O 的半径为3,3DE =,求AE . A B O C P M 图4 A B C D ·O 45° A B D E O C H B D C E A O

新初中数学圆的经典测试题含答案

新初中数学圆的经典测试题含答案 一、选择题 1.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆. 下列说法中错误的是( ) A .勒洛三角形是轴对称图形 B .图1中,点A 到?BC 上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等 【答案】C 【解析】 【分析】 根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误. 【详解】 鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确; 点A 到?BC 上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误; 鲁列斯曲边三角形的周长=3×60180DE DE ππ?=? ,圆的周长=22 DE DE ππ?=? ,故说法正确. 故选C. 【点睛】 主要考察轴对称图形,弧长的求法即对于新概念的理解. 2.如图,在ABC ?中,90ABC ∠=?,6AB =,点P 是AB 边上的一个动点,以BP 为

(完整)初三数学有关圆的经典例题

初三数学 有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE = == = 32322 2 ∵,∴∠,OA OAD AD OA == =132 cos cos ∠OAE AE OA = = 22 ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形; ()22 求的值AD BC 分 析 : ()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;

(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF ∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC 2 2 122=== 解:(1)证明,作直径DE 交AB 于F ,交圆于E ∵为的中点,∴⊥,D AB AB DE AF FB ? = 又∵AD=DC ∴∥,DF BC DF BC = 12 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA ∴ ,即·AD DE DF AD AD DE DF ==2 ∵,DE R DF BC ==21 2 ∴·,故AD BC R AD BC R 2 2 == 例3. 如图,在⊙O 中,AB=2CD ,那么( ) A A B CD B AB CD ..?>? ?

九年级上册圆经典题型汇编

九年级上册圆经典题汇总 1、(2013泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是 的中点,则下列结论不成立的是() A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 2、(2013?黔西南州)如图所示,线段AB是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()

3、(2013?毕节地区)在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为() A.2,22.5°B.3,30°C.3,22.5°D.2,30° 4. (2013台湾、17)如图,圆O与正方形ABCD的两边AB、AD相切,且DE 与圆O相切于E点.若圆O的半径为5,且AB=11,则DE的长度为何?() A.5 B.6 C. D. 5、(2013?苏州)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧

的弧长为.(结果保留π) 6、(2013?天津)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C 的大小为(度). 7、(2013年广东省9分、24)如题24图,⊙O是Rt△ABC的外接 圆,∠ABC=90°,弦BD=BA,AB=12,BC=5, BE⊥DC交DC的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE的长; (3)求证:BE是⊙O的切线. 8. (2013?湖州)如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB. (1)求BC的长; (2)求证:PB是⊙O的切线.

(完整word)初三圆的典型例题.docx

圆典型例题精选 【例题 1 】如图所示, AB 是圆 O 的一条弦, OD AB ,垂足为 C ,交圆 O 于点 D ,点 E 在 圆 O 上.(1)若 AOD 52o ,求 DEB 的度数; E ( 2 )若 OC 3 , OA 5 ,求 AB 的长. O AC B D 【例题 2 】如图,线段 第 1 题图 AB 经过圆心 O ,交圆 O 于点 A,C ,点 D 在圆 O 上,连接 AD , BD , ∠ A= ∠ B=30 度. BD 是圆 O 的切线吗?请说明理由. 【例题 3 】已知 AB 为 ⊙ O 的直径, CD 是弦,且 AB ⊥ CD 于点 E .连接 AC 、 OC 、 BC . A ( 1 )请说明: ∠ ACO= ∠ BCD . ( 2 )若 EB=8cm , CD=24cm ,求 ⊙ O 的直径. O E C D B 【例题 4 】如图,梯形 ABCD 内接于 ⊙ O , BC ∥ AD , AC 与 BD 相交于点图E 9 ,在不添加任何辅助线的情况下: (1) 图中共有几对全等三角形,请把它们一一写出来,并选择其中 一对全等三角形进行证明. (2) 若 BD 平分 ∠ ADC ,请找出图中与 △ ABE 相似的所有三角形 (全等三角形除外) . 【例题 5 】如图,在 Rt △ ABC 中, ∠ C=90°, AC=5 ,BC=12 , ⊙ O 的半径为 3. ( 1 )若圆心 O 与 C 重合时, ⊙O 与 AB 有怎样的位置关系? ( 2 )若点 O 沿线段 CA 移动,当 OC 等于多少时, ⊙ O 与 AB 相切?

人教版九年级上数学教案:24.1 圆 第一课时

24.1 圆 第一课时 教学内容 1.圆的有关概念. 2.垂径定理:平分弦(不是直径)的直径垂直于弦,?并且平分弦所对的两条弧及其它们的应用. 教学目标 了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解. 重难点、关键 1.重点:垂径定理及其运用. 2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题. 教学过程 一、复习引入 (学生活动)请同学口答下面两个问题(提问一、两个同学) 1.举出生活中的圆三、四个. 2.你能讲出形成圆的方法有多少种? 老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆. 二、探索新知 从以上圆的形成过程,我们可以得出: 在一个平面内,线段OA绕它固定的一个端点O旋转一周,?另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”. 学生四人一组讨论下面的两个问题: 问题1:图上各点到定点(圆心O)的距离有什么规律? 问题2:到定点的距离等于定长的点又有什么特点? 老师提问几名学生并点评总结. (1)图上各点到定点(圆心O)的距离都等于定长(半径r); (2)到定点的距离等于定长的点都在同一个圆上. 因此,我们可以得到圆的新定义:圆心为O,半径为r的圆可以看成是所有到定点O 的距离等于定长r的点组成的图形. 同时,我们又把 ①连接圆上任意两点的线段叫做弦,如图线段AC,AB; ②经过圆心的弦叫做直径,如图24-1线段AB; AC ③圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作”,读作“圆

初三圆经典例题新

有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。 132O AB AC BAC 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE === =323222 ∵,∴∠,OA OAD AD OA == =132cos cos ∠OAE AE OA ==22 ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形; ()22 求的值AD BC 解:(1)证明,作直径DE 交AB 于F ,交圆于 E ∵为的中点,∴⊥,D AB AB DE A F FB ? = 又∵AD=DC ∴∥,DF BC DF BC =1 2 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA ∴ ,即·AD DE DF AD AD DE DF ==2∵,DE R DF BC ==21 2

∴·,故AD BC R AD BC R 2 2 == 例3. 如图,在⊙O 中,AB=2CD ,那么( ) A A B CD B AB CD ..?>??AB ∴,∴,∴,∴22 22AF AB AF AB AF CD AF CD >>>?>? ∴AB CD ?>?2 ∴选A 。 解法(二),如图,作弦DE=CD ,连结CE 则DE CD CE ?=?=?12 在△CDE 中,有CD+DE>CE ∴2CD>CE ∵AB=2CD ,∴AB>CE ∴,∴AB CE AB CD ?>??>? 2∴选A 。 例4. 如图,四边形内接于半径为的⊙,已知,ABCD 2O AB BC AD == =1 4 1 求CD 的长。 解:延长AB 、DC 交于E 点,连结BD ∵AB BC AD == =1 4 1

初三圆的经典例题

有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意A B与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC在圆心O 的异侧时,如下图所示, 过O作OD ⊥AB 于D,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE = == =323222 ∵,∴∠,OA OAD AD OA ===13 2 cos cos ∠OAE AE OA ==2 2 ∴∠OAD=30°,∠OA E=45°,故∠BA C=75°, 当A B、A C在圆心O同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BA C=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D, 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形;

()22 求的值AD BC 分析:()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB,OD ⊥AB ,可证DF 是△A BC的中位线; (2)延长DO 交⊙O 于E,连接A E,由于∠DA E=90°,D E⊥AB ,∴△ADF ∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC 2 2 122=== 解:(1)证明,作直径DE 交AB 于F,交圆于E ∵为的中点,∴⊥,D AB AB DE AF FB ? = 又∵AD=DC ∴∥,DF BC DF BC = 12 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△E DA ∴ ,即·AD DE DF AD AD DE DF ==2 ∵,DE R DF BC ==21 2 ∴·,故AD BC R AD BC R 2 2== 例3. 如图,在⊙O 中,AB =2CD ,那么( ) A A B CD B AB CD ..?>??

人教版初中数学圆的经典测试题附答案

人教版初中数学圆的经典测试题附答案 一、选择题 1.如图,在矩形ABCD 中,6AB =,对角线10AC =,O e 内切于ABC ?,则图中阴影部分的面积是( ) A .24π- B .242π- C .243π- D .244π- 【答案】D 【解析】 【分析】 先根据勾股定理求出BC ,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设 O e 的半径为r ,利用面积法求出r=2,再利用三角形ABC 的面积减去圆O 的面积得到阴 影的面积. 【详解】 ∵四边形ABCD 是矩形, ∴∠B=90°, ∵6AB =,10AC =, ∴BC=8, 连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC , 设O e 的半径为r , ∵O e 内切于ABC ?, ∴OH=OE=OF=r , ∵11 ()22 ABC S AB BC AB AC BC r =?=++?V , ∴ 11 68(6108)22r ??=++?, 解得r=2, ∴O e 的半径为2, ∴21 68-2 224-4ABC O S S S ππ=-=???=V e 阴影, 故选:D .

【点睛】 此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键. 2.在Rt△ABC中,∠ACB=90°.AC=8,BC=3,点D是BC边上动点,连接AD交以CD为直径的圆于点E,则线段BE长度的最小值为( ) A.1 B.3 2 C.3D. 5 2 【答案】A 【解析】 【分析】 根据直径所对的圆周角为直角可知∠CED=90°,则∠AEC=90°,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,根据直角三角形斜边上的中线等于斜边的一半可得 OE=1 2 AC=4,在Rt△OBC中,根据勾股定理可求得OB=5,即可得解. 【详解】 解:连接CE, ∵E点在以CD为直径的圆上, ∴∠CED=90°, ∴∠AEC=180°-∠CED=90°, ∴E点也在以AC为直径的圆上, 设以AC为直径的圆的圆心为O,若BE最短,则OB最短,∵AC=8, ∴OC=1 2 AC=4, ∵BC=3,∠ACB=90°, ∴22 OC BC ,

初三数学圆的概念和性质

?考点链接 1. 圆上各点到圆心的距离都等于. 2. 圆是________ 对称图形,任何一条直径所在的直线都是它的 ____________ ;圆又 是对称图形,是它的对称中心. 3. 垂直于弦的直径平分_________ ,并且平分_________________ ;平分弦(不是直径)的 垂直于弦,并且平分__________ . 4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一 组量_____ ,那么它们所对应的其余各组量都分别__ 5. 同弧或等弧所对的圆周角_________ ,都等于它所对的圆心角的_____ __ 6. 直径所对的圆周角是__________ ,90°所对的弦是. ?典例精析 例1如图,在Rt△ ABC中,/ C= 90°, AB= 10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,贝U AC的长等于( ) 5.2 CD= 10,弦AB= 8, AB丄CD垂足为M贝U DM勺长为 例3 (贵州贵阳)如图,已知AB是OO的直径,点C在OO上, 且AB=13, BC=5. (1)求sin / BAC 的值; (2)如果ODLAC,垂足为点D,求AD的长; (3)求图中阴影部分的面积. 初三数学同步训练圆的有关概念与性质zha ng 例2如图,O O的直径 B. 5

6. 一根水平放置的圆柱形输水管 道横截面如图所示,其中有水部分水面宽 0.8米,最深处 ?迎考精练 、选择题 1.如图,O O 是厶ABC 的外接圆,已知/ B = 60°,则/ CAO 勺度数是() 1, AB 是O 0的一条弦,且 AB= 3,则弦AB 所对圆周角的度数 为 3.如图,O P 内含于O 0,0 0的弦AB 切O P 于点C ,且AB// 0P. 若阴影部分的面积为 9 ,则弦AB 的长为( A . 3 B 4. 如图, △ ABC 内接于O 若/ 0AB= 28 ° , 则/ C 的大小为( A. 28° 56° C. 60° .62° △ ABC 内接 于O 0 连结0A 0B 若/ AB0= 25° ,则/C 的度数为( ) 5.如图, B . 60° C . 65° .70° C . 45° D . 60° C.30 或 150° D.60 °或 120° .30° ()

初三数学圆经典例题

.圆的定义及相关概念 【考点速览】 考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆; 考点3:弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的 弦。 弦心距:圆心到弦的距离叫做弦心距。弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法: 求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆:

例 2 .已知,如图, CD 是直径, EOD 84 ,AE 交⊙ O 于 B ,且 AB=OC ,求∠ A 的度数。 例 3 ⊙O 平面内一点 P 和⊙O 上一点的距离最小为 ________ cm 。 例 4 在半径为 5cm 的圆中,弦 AB ∥CD ,AB=6cm , CD=8cm ,则 AB 和 CD 的距离是多 少? 例 5 如图 , ⊙ O 的直径 AB 和弦 CD 相交于点 E ,已知 AE=6cm , EB=2cm, CEA 30 , 求 CD 的长. 例 6. 已知:⊙ O 的半径 0A=1,弦 AB 、 AC 的长分别为 2, 3 ,求 BAC 的度数. 锐角三角形的外心在 ,直角三角形的外心在 , 钝角三角形的外心在 考点 5 点和圆的位置关系 设圆的半径为 r ,点到圆心的距离为 d , 则点与圆的位置关系有三种。 ① 点在圆外 d > r ;②点在圆上 d=r ;③点在圆内 d

初三数学-有关圆的经典例题

初三数学有关圆的经典例题 1. 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB与AC有不同的位置关系。 解:由题意画图,分AB、AC在圆心O的同侧、异侧两种情况 讨论, 当AB、AC在圆心O的异侧时,如下图所示, 过O作OD⊥AB于D,过O作OE⊥AC于E, ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB、AC在圆心O同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC的顶点A、B在⊙O上,⊙O的半径为R,⊙O与AC交于D, (1)求证:△ABC是直角三角形; 分析: 则AF=FB,OD⊥AB,可证DF是△ABC的中位线;

(2)延长DO交⊙O于E,连接AE,由于∠DAE=90°,DE⊥AB,∴△ADF 解:(1)证明,作直径DE交AB于F,交圆于E 又∵AD=DC ∴AB⊥BC,∴△ABC是直角三角形。 (2)解:连结AE ∵DE是⊙O的直径 ∴∠DAE=90° 而AB⊥DE,∴△ADF∽△EDA 例3. 如图,在⊙O中,AB=2CD,那么() 分析: 解:解法(一),如图,过圆心O作半径OF⊥AB,垂足为E,

∵ 在△AFB中,有AF+FB>AB ∴选A。 解法(二),如图,作弦DE=CD,连结CE 在△CDE中,有CD+DE>CE ∴2CD>CE ∵AB=2CD,∴AB>CE ∴选A。 例 4. 求CD的长。 分析:连结BD,由AB=BC,可得DB平分∠ADC,延长 AB、DC交于E,易得△EBC∽△EDA,又可判定AD是⊙O 的直径,得∠ABD=90°,可证得△ABD≌△EBD,得DE=AD,利用△EBC∽△EDA,可先求出CE的长。 解:延长AB、DC交于E点,连结BD

(完整版)很全面的初三数学上册圆的知识点总结(1),推荐文档

《圆》章节知识点 一、圆的概念 集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 二、点与圆的位置关系 1、点在圆内 点在圆内;?d r ?A 三、直线与圆的位置关系 1、直线与圆相离无交点; 2、直线与圆相切有一个交点;?d r >??d r =? 3、直线与圆相交有两个交点; ?d r +??d R r =+相交(图3) 有两个交点;内切(图4) 有一个交点;??R r d R r -<<+??d R r =-内含(图5) 无交点 ; ??d R r <-周1 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; A

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①是直径 ② ③ ④ 弧弧 ⑤ 弧弧AB AB CD ⊥CE DE =BC =BD AC =AD 中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。 即:在⊙中,∵∥O AB CD ∴弧弧AC =BD 六、圆心角定理 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1 推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论,即:①;②; AOB DOE ∠=∠AB DE =③;④ 弧弧OC OF =BA =BD 七、圆周角定理 1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 即:∵和是弧所对的圆心角和圆周角AOB ∠ACB ∠AB ∴2AOB ACB ∠=∠2、圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙中,∵、弧都是所对的圆周角O C ∠D ∠AB ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在⊙中,∵是直径 或∵O AB 90C ∠=? ∴ ∴是直径 90C ∠=?AB 推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在△中,∵ABC OC OA OB == ∴△是直角三角形或ABC 90C ∠=? 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.八、圆内接四边形 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 D B A B A

初三圆经典例题

有关圆的经典例题 1.在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2.如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , (1)求证:△ABC 是直角三角形; 分析:()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线; (2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF 解:(1)证明,作直径DE 交AB 于F ,交圆于E 又∵AD=DC ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA 例3.如图,在⊙O 中,AB=2CD ,那么() 分析:要比较与的大小,可以用下面两种思路进行:AB CD ??2 解:解法(一),如图,过圆心O 作半径OF ⊥AB ,垂足为E , ∵AF FB AF FB ?=?=,∴ 在△AFB 中,有AF+FB>AB ∴选A 。 解法(二),如图,作弦DE=CD ,连结CE 在△CDE 中,有CD+DE>CE ∴2CD>CE ∵AB=2CD ,∴AB>CE ∴选A 。 例4.如图,四边形内接于半径为的⊙,已知,ABCD 2O AB BC AD ===141 求CD 的长。 分析:连结BD ,由AB=BC ,可得DB 平分∠ADC ,延长AB 、DC 交于E ,易得△EBC ∽△EDA ,又可判定AD 是⊙O 的直径,得∠ABD=90°,可证得△ABD ≌△EBD ,得DE=AD ,利用△EBC ∽△EDA ,可先求出CE 的长。 解:延长AB 、DC 交于E 点,连结BD ∵⊙O 的半径为2,∴AD 是⊙O 的直径 ∴∠ABD=∠EBD=90°,又∵BD=BD ∴△ABD ≌△EBD ,∴AB=BE=1,AD=DE=4 ∵四边形ABCD 内接于⊙O , ∴∠EBC=∠EDA ,∠ECB=∠EAD 例5.如图,、分别是⊙的直径和弦,为劣弧上一点,⊥AB AC O D AC DE AB ? 于H ,交⊙O 于点E ,交AC 于点F ,P 为ED 的延长线上一点。

相关文档
相关文档 最新文档