文档库 最新最全的文档下载
当前位置:文档库 › 中考数学专题训练—几何图形动点问题分类

中考数学专题训练—几何图形动点问题分类

中考数学专题训练—几何图形动点问题分类
中考数学专题训练—几何图形动点问题分类

中考数学专题训练—几何图形动点问题分类

类型一 圆的动点问题

1.如图,在平面直角坐标系中,直线y =-x +3与x 轴、y 轴分别交于

3

4A 、B 两点,点P 、Q 同时从点A 出发,运动时间为t 秒.其中点P 沿射线AB 运动,速度为每秒4个单位长度,点Q 沿射线AO 运动,速度为每秒5个单位长度.以点Q 为圆心,PQ 为半径作⊙Q .(1)求证:直线AB 是⊙Q 的切线;

(2)过点A 左侧x 轴上的任意一点C (m ,0),作直线AB 的垂线CM ,垂足为点M ,若CM 与⊙Q 相切于点D ,求m 与t 的函数关系式(不需写出自变量的取值范围);

(3)在(2)的条件下,是否存在点C ,直线AB 、CM 、y 轴与⊙Q 同时相切,若存在,请直接写出此时点C 的坐标,若不存在,请说明理由.

第1题图

(1)证明:如解图,连接QP ,

∵y =-x +3交坐标轴于A ,B 两点,

3

4∴A (4,0),B (0,3),

∴OA =4,OB =3,AB =22OB OA =5,∵AQ =5t ,AP =4t ,在△APQ 与△AOB 中,==t ,==t ,AQ AB 5t 5AP AO 4t

4∴

=,AQ AB AP

AO

又∵∠PAQ =∠OAB ,∴△APQ ∽△AOB ,∴∠APQ =∠AOB =90°,又∵PQ 为⊙Q 的半径,∴AB 为⊙Q

的切线;

第1题解图①

(2)解:①当直线CM 在⊙Q 的左侧与⊙Q 相切时,如解图①,连接DQ ,∵AP ⊥QP ,AP =4t ,AQ =5t ,∴PQ =3t ,

∴易得四边形DQPM 为正方形,∴MP =DQ =QP =3t ,∴cos ∠BAO ===,

MA AC PA QA 4

5又∵MA =MP +PA =3t +4t =7t ,AC =AO -CO =4-m ,∴

=,∴m ==-t +4;7t 4-m 4516-35t 4354

②当直线CM 在⊙Q 的右侧与⊙O 相切时,如解图②,连接DQ ,PQ ,由①易得MA =PA -PM =4t -3t =t ,

第1题解图②

AC =4-m ,∴=,

t 4-m 45∴m =-t +4;

5

4

综上所述,m 与t 的函数关系式为m =-t +4或m =-t +4;

3545

4(3)解:存在,点C 的坐标为(-,0)或(,0)或(-,0)或(,0).

382782723

2【解法提示】①如解图③,当⊙Q 在y 轴的右侧与y 轴相切,∴OQ =QP =3t ,

∴OA =OQ +QA =3t +5t =8t =4,∴t =,

1

2

第1题解图③

则m =-t +4=-,

3543

8∴C 1(-,0);

3

8m =-t +4=,

54278∴C 2(,0);

27

8

②如解图④,当⊙Q 在y 轴的左侧与y 轴相切,OA =AQ -OQ =5t -3t =2t =4,

∴t =2,

第1题解图④

则m =-

t +4=-,354272

∴C 3(-

,0);27

2

m =-t +4=,

5432∴C 4(,0).

3

2

综上所述,点C 的坐标为(-,0)或(,0)或(-,0)或(,0).

382782723

2

类型二 特殊四边形的动点问题

2.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB =8,∠BAD =60°.点E 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.当点E 不与点A 重合时,过点E 作EF ⊥AD 于点F ,作EG ∥AD 交AC 于点G ,过点G 作GH ⊥AD 交AD (或AD 的延长线)于点H ,得到矩形EFHG .设点E 运动的时间为t 秒.(1)求线段EF 的长(用含t 的代数式表示);(2)求点H 与点D 重合时t 的值;

(3)设矩形EFHG 与菱形ABCD 重叠部分图形的面积为S 平方单位,求S 与t 之间的函数关系式.

第2题图

解:(1)由题意可知AE =2t ,0≤t ≤4,∵EF ⊥AD ,∠BAD =60°,∴sin ∠BAD ==,

EF

AE 32∴EF =

AE =t ;

32

3(2)如解图①,∵点H 与点D 重合,菱形ABCD 中,∠DAC =∠BA =

1

230°,AD =AB =8,

∴在Rt △ADG 中,DG =AD ·tan30°=8×=,

3383

3∴在矩形FEGD 中,EF =DG =,

8

33由(1)知EF ==t ,

83

33∴t =;

83

第2题解图①

(3)①当0

8

3∵AE =2t ,∠BAD =60°,∠DAC =30°,∴EF =t ,AH =HG =EF =3t ,AF =t ,333∴FH =AH -AF =2t ,∴S =EF ·FH =t ·2t =2t 2;

33②如解图②,当

8

3设GH 与CD 交于点M ,由(2)知∠DAC =30°,∴在菱形ABCD 中,∠BAC =30°,∵EG ∥AD ,

∴∠AGE =∠DAC =30°,∴∠BAC =∠AGE ,∴AE =EG ,

∵AE =2t ,EF =t ,∠BAD =60°,3∴在Rt △AFE 中,AF =AE ·cos60°=2t ×=t ,

1

2∴DF =8-t ,

∵AE =EG =FH =2t ,∴DH =2t -(8-t )=3t -8,∵AB ∥CD ,

∴∠HDM =∠BAD =60°,

∴在Rt △DHM 中,HM =DH ·tan60°=(3t -8),3则DH =3t -8,HM =(3t -8),

3第2题解图②

∴S =S 矩形HGEF -S △DHM =EF ·FH -DH ·HM =2t 2-(3t -8)·(3t -8)

1231

23=2t 2-

(9t 2-48t +64)

3

32

=2t 2-

t 2

+24t -323

932

33=-t 2

+24t -32,

53

233∴

S 与t 之间的函数关系为

S

=?<≤??

?

?+-<≤??2

2

80)3

8

3(4).

3

t t t

3.如图,在矩形ABCD 中,点E 在BC 边上,动点P 以2厘米/秒的速度从点A 出发,沿△AED 的边按照A →E →D →A 的顺序运动一周.设点P 从点A 出发经x (x >0)秒后,△ABP 的面积是y .

(1)若AB =8厘米,BE =6厘米,当点P 在线段AE 上时,求y 关于x 的函数表达式;

(2)已知点E 是BC 的中点,当点P 在线段ED 上时,y =x ;当点P 在线

12

5段AD 上时,y =32-4x .求y 关于x 的函数表达式.

第3题图

解:(1)∵四边形ABCD 是矩形,∴∠ABE =90°,又∵AB =8,BE =6,

∴AE =22BE AB +=2268+=10,如解图①,过点B 作BH ⊥AE 于点H ,

第3题解图①

∵S △ABE =AE ·BH =AB ·BE ,

121

2

∴BH =,

24

5又∵AP =2x ,

∴y =AP ·BH =x (0

1224

5(2) ∵四边形ABCD 是矩形,∴∠B =∠C =90°,AB =DC , AD =BC ,∵E 为BC 中点,∴BE =EC ,

∴△ABE ≌△DCE (SAS),∴AE =DE ,

∵y =x (P 在ED 上), y =32-4x (P 在AD 上),

12

5当点P 运动至点D 时,可联立得,,

{y =12

5x y =32-4x

)

解得x =5,

∴AE +ED =2x =10,

∴AE =ED =5,

当点P 运动一周回到点A 时,y =0,∴y =32-4x =0, 解得x =8,∴AE +DE +AD =16,∴AD =BC =6,∴BE =3,在Rt △ABE 中,AB =2

2

-BE AE =4,

如解图②,过点B 作BN ⊥AE 于N ,则BN =

,125

第3题解图②

∴y =x (0

12

5∴y =.

{12

5x (0

)

4.如图,四边形ABCD 是边长为1的正方形,点E 在AD 边上运动,且不与点A 和点D 重合,连接CE ,过点C 作CF ⊥CE 交AB 的延长线于点F ,EF 交BC 于点G .

(1)求证:△CDE ≌△CBF ;(2)当DE = 时,求CG 的长;

1

2

(3)连接AG ,在点E 运动过程中,四边形CEAG 能否为平行四边形?若能,求出此时DE 的长;若不能,说明理由.

第4题图

(1)证明:如解图,在正方形ABCD 中,DC =BC ,∠D = ∠CBA = ∠CBF = ∠DCB = 90°,

第4题解图

∴∠1+∠2= 90°,∵CF ⊥CE ,∴∠2+∠3= 90°,∴∠1= ∠3,在△CDE 和△CBF 中,

,{

∠D = ∠CBF DC =BC ∠1= ∠3

)

∴△CDE ≌△CBF (ASA);

(2)解:在正方形ABCD 中,AD ∥BC ,∴△GBF ∽△EAF ,∴

= ,BG AE BF AF

由(1)知,△CDE ≌△CBF ,∴BF = DE = ,

12∵正方形的边长为1,∴AF =AB +BF = ,

3

2AE =AD -DE = ,

1

2∴=,BG 121232∴BG =,

1

6

∴CG =BC -BG = ;

5

6(3)解:不能.

理由:若四边形CEAG 是平行四边形,则必须满足AE ∥CG ,AE = CG ,

∴AD-AE=BC-CG,

∴DE=BG,

由(1)知,△CDE≌△CBF,

∴DE=BF,CE=CF,

∴△GBF和△ECF是等腰直角三角形,

∴∠GFB=45°,∠CFE=45°,

∴∠CFA=∠GFB+∠CFE=90°,

此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.

5. 如图,在正方形ABCD中,点E,G分别是边AD,BC的中点,AF=1 4

AB.

(1)求证:EF⊥AG;

(2)若点F,G分别在射线AB,BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EF⊥AG是否成立(只写结果,不需说明理由)? (3)正方形ABCD的边长为4,P是正方形ABCD内一点,当S△PAB=S△OAB 时,求△PAB周长的最小值.

第5题图

(1)证明:∵四边形ABCD 是正方形,∴AD =AB =BC ,∠EAF =∠ABG =90°,

∵点E ,G 分别是边AD ,BC 的中点,AF =AB ,

1

4∴=,=,AE AB 12AF BG 12∴

=,AE AB AF BG

又∵∠EAF =∠ABC =90°,∴△AEF ∽△BAG ,∴∠AEF =∠BAG ,又∵∠BAG +∠EAO =90°,∴∠AEF +∠EAO =90°,∴∠EOA =90°,即EF ⊥AG ;(2)解:EF ⊥AG 仍然成立;

(3)解:如解图,过点O 作MN ∥AB 分别交AD 、BC 于点M ,N ,连接PA ,

第5题解图

∵P 是正方形ABCD 内一点,当S △PAB =S △OAB ,∴点P 在线段MN 上(不含端点),

作点A 关于MN 的对称点A ′,连接BA ′交MN 于点P ,此时PA +PB =PA ′+PB =BA ′最小,即△PAB 的周长最小.∵正方形ABCD 的边长为4,∴AE =AD =2,AF =AB =1,

121

4∴EF =22AF AE =,5OA ==,

AE ·AF EF 25

5

∵∠AMO =∠EOA ,∠EAO =∠EAO ,∴△EOA ∽△OMA ,∴

=,AE OA OA AM

∴OA 2=AM ·AE ,

∴AM =AE OA 2=,

2

5

∴A ′A =2AM =,

4

5

∴BA ′=2

2

'AB A A =,

426

5

故△PAB 周长的最小值为4+.

426

5

类型三 三角形的动点问题

6.如图,在Rt △ABC 中,∠ACB =90°,∠A =45°,AB =4cm.点P 从点A 出发,以2cm/s 的速度沿边AB 向终点B 运动.过点P 作PQ ⊥AB 交折线ACB 于点Q ,D 为PQ 中点,以DQ 为边向右侧作正方形DEFQ .设正方形DEFQ 与△ABC 重叠部分图形的面积是y (cm 2),点P 的运动时间为x (s).(1)当点P 不与点B 重合时,求点F 落在边BC 上时x 的值;(2)当0

(3)直接写出边BC 的中点落在正方形DEFQ 内部时x 的取值范围.

第6题图

解:(1)如解图①,延长FE 交AB 于点G ,由题意,得AP =2x ,

∵D 为PQ 中点,∴DQ =DP =x ,

∵四边形DEFQ 为正方形,∴DQ =DE =GP =x ,∵FG ⊥AB ,∠B =45°,∴△FGB 是等腰直角三角形,∴BG =FG =PQ =2x ,∴AP +PG +BG =AB ,即2x +x +2x =4,∴x =,

4

5

第6题解图①

(2)当0

4

5∴y =x 2,(0<x ≤

)45

如解图②,当

4

5作CH ⊥AB 于点H ,交FQ 于点K ,则CH =2,∵PQ =AP =2x ,

∴CK =2-2x ,∴MQ =2CK =4-4x ,∴FM =x -(4-4x )=5x -4,

∴y =S 正方形DEFQ -S △MNF =DQ 2-FM 2,

1

2∴y =x 2-(5x -4)2=-x 2+20x -8,

1223

2∴y =-x 2+20x -8 (<x ≤1) ,

2324

5

第6题解图②

如解图③,当1

12∴y =(x -2)2,

1

2

∴y =x 2-2x +2(1<x <2),

1

2

第6题解图③

(3)1

3

2

【解法提示】当Q 与C 重合时,E 为BC 的中点,2x =2,∴x =1;当Q 为BC 的中点时,BQ =,PB =1,∴AP =3,∴2x =3,∴x =,∴x 的

23

2取值范围是1

3

2

7.如图,已知△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm.如果点P 由B 出发沿BA 向点A 匀速运动,同时点Q 由A 出发沿AC 向点C 匀速运动,它们的速度均为2 cm/s.连接PQ ,设运动的时间为t (单位:s)(0≤t ≤4).

第7题图

(1)当t 为何值时,PQ ∥BC ;

(2)设△AQP 的面积为S (单位:cm 2),当t 为何值时,S 取得最大值,并求出最大值;

(3)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在,求出此时t 的值;若不存在,请说明理由.解:(1)由题意知BP =2t ,AP =10-2t ,AQ =2t ,∵PQ ∥BC ,∴△APQ ∽△ABC ,

人教七数上册几何图形初步专题训练.doc

2.(2015?甘孜州)如图所示的几何体,从正面看的平面图形是(A ) 3.(2015-通辽)如图,由几个相同的小正方体搭成的一个几何体 , < D ) 5.下面的图形'是由A 、B 、C 、D 中的哪个图旋转形成的 (A ) 第四章《几何图形初步》章末专题训练 类型1:立体图形的三种视图及展开图 1.(2015-黄石)下列四个立体图形中'从左面看为长方形的是(B ) S ? A 3 ①正方体 ②球 ③国锥 ④国柱 A.①③ B.①④ C.②③ D.③④ B C. B. 4?在下面的图形中是正方体的展开图的是(B ) B. C.

6.(2015-茂名)如囹是一个正方体的平面展开图,折盏成正方体后与“建”字所在面 相对的面的字是(C ) A-创 B.教 C.强 D.市 7.如图,在平整的地面上,有若干个完全相同的棱长为10cm 的小正方体堆成一个几何体. (1)这个几何体由10个小正方体组成. (2)如果在这个几何体的表面喷上黄色的赧,则在所有的小正方体中,有1个正方 体只有一个面是黄色,有2个正方体只有两个面是黄色,有3个正方体只有三个 <3)这个几何体喷糠的面积为3200 cm2. 8.(2015-随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体 的体积是24 cm3. 9.以长为24皿,赏为10cm的长方形的一边所在直线为旋转轴,旋转一周形成一个圆柱.贝U这个圆柱的底面半径是24或10 cm. 10.(2015-牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和俯视 图,如图所示,则搭成该几何体的小正方体最多是7个. 主视图俯视图类型2:线段的和、差、倍、分的计算 1?如图,点C为线段局的中点'点D为线段AC的中点、已知AB=8,则BD= ( C )

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

中考数学动点问题专题练习(含答案)

动点专题 一、应用勾股定理建立函数解析式 例1(2000年2上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 二、应用比例式建立函数解析式 例2(2006年2山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A E D C B 图2 H M N G P O A B 图1 x y

C 三、应用求图形面积的方法建立函数关系式 例4(2004年2上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y . (1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积. 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. A B C O 图8 H

七年级上册数学 几何图形初步专题练习(word版

一、初一数学几何模型部分解答题压轴题精选(难) 1.探究题 学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题。 (1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B 的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=________. (2)如图2,若AC∥BD,点P在AB、CD外部,∠A,∠B,∠APB的数量关系是否发生变化?请你补全下面的证明过程. 过点P作PE∥AC. ∴∠A=________ ∵AC∥BD ∴________∥________ ∴∠B=________ ∵∠BPA=∠BPE-∠EPA ∴________. (3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题: 已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°. 【答案】(1)∠APB=∠A+∠B (2)∠1;PE;BD;∠EPB;∠APB=∠B -∠1 (3)证明:过点A作MN∥BC

∴∠B= ∠1 ∠C= ∠2 ∵∠BAC+∠1+∠2=180° ∴∠BAC+∠B+∠C=180° 【解析】【解答】解:(1)如图: 由平行线的性质可得:∠1=∠A, ∠2=∠B, ∴∠1+∠2=∠A+∠B 即APB=∠A+∠B ⑵解:过点P作PE∥AC. ∴∠A=∠1 ∵AC∥BD ∴ PE ∥ BD ∴∠B=∠EPB ∵∠APB=∠BPE-∠EPA ∴∠APB=∠B -∠1 【分析】根据图形做出平行辅助线,探究角度关系。此类做辅助线的方法变式多,是考试热点问题。 2.如图1,直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

初三数学动点问题

数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的面积问题是动态几何中的基本类型,包括单动点形成的面积问题,双(多)动点形成的面积问题,线动形成的面积问题,面动形成的面积问题。本专题原创编写单动点形成的面积问题模拟题。 在中考压轴题中,单动点形成的面积问题的重点和难点在于应用数形结合的思想准确地进行分类。 原创模拟预测题1.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE. (1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值. (2)分别连接AD、DF、AF, AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中, PQ 的中点O所经过的路径的长。

(专题精选)初中数学几何图形初步难题汇编含答案

(专题精选)初中数学几何图形初步难题汇编含答案 一、选择题 1.如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是() A.∠1=1 2 (∠2﹣∠3)B.∠1=2(∠2﹣∠3) C.∠G=1 2 (∠3﹣∠2)D.∠G= 1 2 ∠1 【答案】C 【解析】 【分析】 根据角平分线得,∠1=∠AFE,由外角的性质,∠3=∠G+∠CFG=∠G+∠1,∠1=∠2+∠ G,从而推得∠G=1 2 ?(∠3﹣∠2). 【详解】 解:∵AD平分∠BAC,EG⊥AD, ∴∠1=∠AFE, ∵∠3=∠G+∠CFG,∠1=∠2+∠G,∠CFG=∠AFE, ∴∠3=∠G+∠2+∠G,∠G=1 2 ?(∠3﹣∠2). 故选:C. 【点睛】 本题考查了三角形中角度的问题,掌握角平分线的性质、三角形外角的性质是解题的关键. 2.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为() A.1 B.2 C.3 D.4 【答案】C

试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P. ∴EP+FP=EP+F′P. 由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时 EP+FP=EP+F′P=EF′. ∵四边形ABCD为菱形,周长为12, ∴AB=BC=CD=DA=3,AB∥CD, ∵AF=2,AE=1, ∴DF=AE=1, ∴四边形AEF′D是平行四边形, ∴EF′=AD=3. ∴EP+FP的最小值为3. 故选C. 考点:菱形的性质;轴对称-最短路线问题 3.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于() A.38°B.104°C.142°D.144° 【答案】C 【解析】 ∵∠AOC=76°,射线OM平分∠AOC, ∴∠AOM=1 2 ∠AOC= 1 2 ×76°=38°, ∴∠BOM=180°?∠AOM=180°?38°=142°, 故选C. 点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键. 4.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=() A.35°B.45°C.55°D.65° 【答案】A 【解析】

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

几何图形初步专项训练

几何图形初步专项训练 一、选择题 1.如图,在Rt ABC V 中,90ACB ∠=?,3tan 4B = ,CD 为AB 边上的中线,CE 平分ACB ∠,则AE AD 的值( ) A .35 B .34 C .45 D .67 【答案】D 【解析】 【分析】 根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE =37 AB ,再由点D 为AB 中点得AD = 12AB ,进而可求得AE AD 的值. 【详解】 解:∵CE 平分ACB ∠, ∴点E 到ACB ∠的两边距离相等, 设点E 到ACB ∠的两边距离位h , 则S △ACE =12AC·h ,S △BCE =12 BC·h , ∴S △ACE :S △BCE = 12AC·h :12 BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE , ∴AE :BE =AC :BC , ∵在Rt ABC V 中,90ACB ∠=?,3tan 4B = , ∴AC :BC =3:4, ∴AE :BE =3:4 ∴AE =37 AB , ∵CD 为AB 边上的中线, ∴AD =12 AB ,

∴3 6717 2 AB AE AD AB ==, 故选:D . 【点睛】 本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE :BE =AC :BC 是解决本题的关键. 2.一副直角三角板如图放置,其中∠C =∠DFE =90°,∠A =45°,∠E =60°,点F 在CB 的延长线上.若DE ∥CF ,则∠BDF 等于( ) A .30° B .25° C .18° D .15° 【答案】D 【解析】 【分析】 根据三角形内角和定理可得45ABC ∠=?和30EDF ∠=?,再根据平行线的性质可得45EDB ABC ==?∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数. 【详解】 ∵∠C =90°,∠A =45° ∴18045ABC A C =?--=?∠∠∠ ∵//DE CF ∴45EDB ABC ==?∠∠ ∵∠DFE =90°,∠E =60° ∴18030EDF E DFE =?--=?∠∠∠ ∴15BDF EDB EDF =-=?∠∠∠ 故答案为:D . 【点睛】 本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键. 3.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?( )

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

最新中考数学复习专题《几何图形中的动点问题》

运动型问题 第17课时 几何图形中的动点问题 (58分) 一、选择题(每题6分,共18分) 1.[·安徽]如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △ PAB =S 矩形ABCD ,则点P 到A ,B 两点距离之和PA +PB 的最小值为( D )13A. B. C.5 D. 2934241 图6-1-1 第1题答图 【解析】 令点P 到AB 的距离为h ,由S △PAB =S 矩形ABCD ,得×5h =×5131213 ×3,解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时PA +PB 最小,根据勾股定理求得最小值为=,选D. 52+42412.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩 形边上一动点P 沿A →B →C →D 的路径移动.设点P 经 过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的 函数关系的图象是 ( D )【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP = x ,∴y =x 2+a 2;② 图6-1-2

当2a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x , ∴PD 2=y =(5a -x )2,y =∴能大致反映y {x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a

新人教版七年级几何图形初步练习专题(一)---三视图、展开图专题

- 1 - / 3 三视图、展开图专题 【题型一】从不同方向看几何体 1、如图所示的立体图形从上面看到的图形是( ) 2、从左面看图中四个几何体,得到的图形是四边形的几何体共有( ) A. 1个 B. 2个 C. 3个 D. 4个 3、从不同方向看一只茶壶,如图,下列选项中从上往下看的效果图是( )。 4、从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )。 A. 圆柱 B. 三棱锥 C. 球 D. 圆锥 5、由四个相同的小正方体搭建了一个积木,它的左视图和主视图均如图所示,则这堆积木不可能是( ) 6、由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( ) A . 从正面看面积最大 B . 从左面看面积最大 C . 从上面看面积最大 D . 三个视图的面积一样大 A B C D 从左面看 从上面看 从正面看 A B C D

- 2 - / 3 7、5个棱长为1的正方体组成图所示的几何体. (1)该几何体的体积是 (立方单位),表面积是 (平方单位). (2)画出从正面看和从左面看到的平面图形. 8、如图,这个图形从正面看是__________,从左面看是__________,从上面看是__________. 【题型二】正方体的展开与折叠 1、如图是一个长方体包装盒,则它的平面展开图是( ) A . B . C . D . 2、下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是( ) A . B . C . D . 3、把如图中的三棱柱展开,所得到的展开图是( ) A . B . C . D . 4、下列四个图形中,是三棱柱的平面展开图的是( ) A . B . C . D .

中考数学压轴题专题

中考数学压轴题专题Prepared on 21 November 2021

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-=。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

几何图形初步培优专题

几何图形初步培优专题 1. 已知线段AB 的长度为a ,点C 是线段AB 上的任意一点,M 为AC 中点,N 为BC 的中点,求MN 的长。 2 .已知,线段AB=10cm ,直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,求线段AM 的长。 3. 点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是线段AC 、BC 的中点. (1)求MN 的长; (2)若点C 为线段AB 上任意一点,k CB AC =+,其他条件不变,则MN 的长度为多少? 4. 已知B 、C 是线段AD 上任意两点,M 是AB 中点,N 是CD 中点,若.,b BC a MN ==求AD. 5. 如图,已知线段AB 和CD 的公共部分,4 1 31CD AB BD ==线段AB ,CD 的中点E 、F 的距离是12cm ,求AB ,CD 的长。 6. 在数轴上有两个点A 和B ,A 在原点左侧到原点的距离为6,B 在原点右侧到原点的距离为4,M ,N 分别是线段AO 和BO 的中点,写出A 和B 表示的数;求线段MN 的长度。

7. (1)如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长; (2)若C 为线段AB 上任一点,满足AC + CB = a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由。 (3)若C 在线段AB 的延长线上,且满足AC -BC = b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,并说明理由。 A B C M N 8. 已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……, n A 平分1n AA -, 则n AA =_________cm. 9. 过两点最多可画1条直线(1= 212?);过三点最多可画3条直线(3=2 2 3?);过同一平面内四点最多可画______________条直线;过同一平面内n点最多可画______________条直线; 10. 在一条直线上取两上点A 、B,共得几条线段?在一条直线上取三个点A 、B 、 C,共得几条线段?在一条直线 上取A 、B 、C 、D 四个点时,共得多少条线段? 在一条直线上取n 个点时,共可得多少条线段? 11. 如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm/s 、2 cm/s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上) (1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置: (2)在(1)的条件下,Q 是直线AB 上一点,且AQ -BQ=PQ ,求 AB PQ 的值。 (3)在(1)的条件下,若C 、D 运动5秒后,恰好有AB CD 2 1 =,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM -PN 的值不变;②AB MN 的值不变,可以说明, 只有一个结论是正确的,请你找出正确的结论并求值。 C A

人教版七年级上册数学:第章《几何图形初步》专项练习(含标准答案)

人教版七年级上册数学:第章《几何图形初步》专项练习(含答案)

————————————————————————————————作者:————————————————————————————————日期: 2

七年级期末总复习图形的初步专项 1.如图,该几何体的展开图是( ) A. B. C. D. 2.左图中的图形绕虚线旋转一周,可得到的几何体是() A. (A) B. (B) C. (C) D. (S) 3.下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是() A. B. C. D. 4.如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的() A. B. C. D. 5.用一副三角尺画角,不能画出的角的度数是() A. 15o B. 75o C. 145o D. 165o 6.n棱柱的棱数与面数之和等于( ) . A. 3n B. 4n+2 C. 3n+2 D. 2n+2

7.将正方体展开后,不能得到的展开图是( ). A. (A ) B. (B ) C. (C ) D. (D ) 8.如图,是由几个相同的大小的正方体搭成的几何体从不同方向看到的形状图,该几何体最多是用( )个小正方体搭成的. A. 3 B. 4 C. 5 D. 6 9.一个正方体的平面展开图如图所示,则正方形3的对面是正方形_________. 10.一个棱柱有21条棱,则它有_______个面. 11.如图,该图中不同的线段共有_______条. 12.如图,AB∥CD,∠1=64°,FG 平分∠EFD,则∠2=___________度. 13.如图, B 、C 、D 依次是AE 上的三点,已知8.9cm AE =, 3cm BD =,则图中以A 、B 、C 、D 、E 这5个点为端点的所有线段长度的和为_______ cm . 14.如图,OA 的方向是北偏东15°,OB 的方向是北偏西40°,若∠AOC =∠AOB ,则OC 的方向是______________.

中考数学压轴题专题训练

2018中考数学压轴专题一、动点与面积问题 例1 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (-1, 0),B (4, 0)两点,与y 轴交于点C (0, 2).点M (m , n )是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上.过点M 作x 轴的平行线交y 轴于点Q ,交抛物线于另一点E ,直线BM 交y 轴于点F . (1)求抛物线的解析式,并写出其顶点坐标; (2)当S △MFQ ∶S △MEB =1∶3时,求点M 的坐标. 例2如图,已知抛物线2 12 y x bx c = ++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0). (1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示); (2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围; ②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个. 例3如图,已知二次函数的图象过点O (0,0)、A (4,0)、B (43 2,3 -),M 是OA 的中点. (1)求此二次函数的解析式; (2)设P 是抛物线上的一点,过P 作x 轴的平行线与抛物线交于另一点Q ,要使四边形PQAM 是菱形,求点P 的坐标; (3)将抛物线在x 轴下方的部分沿x 轴向上翻折,得曲线OB ′A (B ′为B 关于x 轴的对称点),在原抛物线x 轴的上方部分取一点C ,连结CM ,CM 与翻折后的曲线OB ′A 交于点D ,若△CDA 的面积是△MDA 面积的2倍,这样的点C 是否存在?若存在求出点C 的坐标;若不存在,请说明理由. 例4如图,直线l 经过点A (1,0),且与双曲线m y x = (x >0)交于点B (2,1).过点(,1)P p p -(p >1)作x 轴的平 行线分别交曲线m y x =(x >0)和m y x =-(x <0)于M 、N 两点. (1)求m 的值及直线l 的解析式; (2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;

相关文档
相关文档 最新文档