文档库 最新最全的文档下载
当前位置:文档库 › 直升飞机原理

直升飞机原理

直升飞机原理
直升飞机原理

直升飞机飞行原理

直升飞机飞行原理 直升机的机翼与固定翼飞机一样,当气流从机翼前缘流向机翼后缘,从上翼面流过的气流比下翼面走过的路程长,为避免出现真空,上翼面的气流流速比下翼面的大。根据伯努利方程,相同条件下,气流的静压与动压的和恒定,因为上翼面的气流的流速大,导致动压大,所以其静压就小,机翼收到来自上翼面的压力小于来自下翼面的压力,大气对机翼的总压力向上,这个压力就是升力,有了升力直升机就能飞起来,但机翼旋转会对机身产生扭矩,为了不使机身旋转,通过加尾浆的方式平衡掉这个扭矩,所以直升机都是有尾浆的。直升机的机翼旋转面和轴的夹角可以通过杠杆机构来调整,通过调整这个夹角使升力与直升机的重力同轴或不同轴,同轴时,直升机悬停,不同轴时,直升机前飞 直升机升空的原理和竹蜻蜓是一样的,主桨桨叶上产生升力。至于你说的玩具有两个桨,而真机只有一个,应该是上下两层吧,总共四片桨叶,而真机只有一层。都知道,主桨高速转动,会给机身一个反方向的扭矩,如果不加以平衡,机身就会沿着和主桨转动方向相反的方向高速自旋,这样的直升机能飞么?玩具的两层桨叶就是平衡这个扭矩的,你仔细观察下,上下桨的转动方向一定是相反的,也就是靠两对桨叶给机身的扭矩来平衡机身,它们给机身的扭矩方向是相反的,如果大小也相同,那么机身就能保持稳定。但是真机,或者真正的航模直升机,都是单层桨叶的,因为它们都带尾桨,靠尾桨产生的推力来稳住机身。主桨产生的扭矩如果会使机尾顺时针旋转,那么就让尾桨产生逆时针的推力,平衡这个顺时针的扭矩。

一、直升机与普通飞机区别及飞行简单原理:不可否认,直升机和飞机有些共同点。比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。(1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。(2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。(3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。(4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。二、平衡分析(对单旋翼式):(1)直升飞机的大螺旋桨旋转产生升力平衡重力。直升飞机的桨叶大概有2—3米长,一般有5叶组成。普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。(2)直升飞机的横向稳定。因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。三、能量方式分析。根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。在低速流动的空气中,参与转换的能量只有压力能和动能。一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。而空气的流速只有来自于发动机所带的螺旋桨对空气的作用,当然从这里分析 能量也是守衡的

直升机原理图

1动压

科技名词定义 中文名称:动压 英文名称:dynamic pressure 其他名称:速压 定义:总压与静压之差,运动流体密度和速度平方积之半。 所属学科:航空科技(一级学科);飞行原理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 物体在流体中运动时,在正对流动运动的方向的表面,流体完全受阻,此处的流体速度为0,其动能转变为压力能,压力增大,其压力称为全受阻压力(简称全压或总压,用P表示),它与未受扰动处的压力(即静压,用P静表示)之差,称为动压(用P动表示)。即: P动 = P - P静 = ρ*V*V*1/2 其中:ρ为密度,V为速度 推导: 先看看势能的推导 势能=F*S=m*g*h=ρ*Q*g*h=ρ*g*h*Q F为力大小,S为面积,m为质量,g为重力加速度,h为高度,Q为体积 即势能=压强*体积 动能=m*V*V*1/2=ρ*Q*V*V*1/2=ρ*V*V*Q*1/2=动压*体积 体积为Q,所以动压为1/2*ρ*V*V 即证。 飞机飞行的原理就是运用机翼上下气流速度是不一样而产生的压力差托起飞机的,注意机翼上下的空气速度是不一样的,它是由机翼的结构和飞机的迎角所决定的。 2 L=CρV^2/2,L是升力,C为升力系数,ρ是标准大气密度为一恒量,V是飞机的指示空速 3直升机是怎样改变方向的

陀螺效应这是一个很奇妙的物理现象,如下图,一个转动的物体,当在某一点施力,施力的效果会出现在沿转动方向90 度的地方出现,而且转动的物体会有保持原来状态,抗拒外来力量的倾向,也就是转动中物体的轴心会极力保持在原来所指的方向。像枪管中的膛线使子弹高速旋转以保持直进性就是运用陀螺效应,直升机高速旋转的主旋翼同样的也会有陀螺效应产生,控制方式也必须考虑这种力效应延后90 度出现的陀螺效应。 陀螺仪的功用 直升机飞行的基本原理是利用主旋翼可变角度产生反向推力而上升,但对机身会产生扭力作用,于是需要加设一个尾旋翼来抵消扭力,平衡机身,但怎样使尾旋翼利用合适的角度,来平衡机身呢?这就用到陀螺仪了,它可以根据机身的摆动多少,自动作出补偿讯号给伺服器,去改变尾旋翼角度,产生推力平衡机身。以前,模型直升机是没有陀螺仪的,油门、主旋翼角度和尾旋翼角度很难配合,起动后便尽快往上空飞(因为飞行时较易控制),如要悬停就要控制杆快速灵敏的动作,所以很容易撞毁,现在已有多中直升机模型使用的陀螺仪,分别有机械式、电子式、电子自动锁定式。 直升机的抬头现象 当直升机快速前进时,旋翼一偏离6 点和12 点钟方向时,两支旋翼对空气速度就会不一样,而在 3 点和9 点钟方向产生最大速度差,假设旋翼翼端转速300km/h,机体前进速度100km/h 时,以R/C 直升机顺时钟方向转动的旋翼来讲,3 点钟方向对空气速度200km/h ( 后退旋翼),9 点钟方向对空气速度400km/h(前进旋翼),产生 3 点和9 点钟方向的升力差,因陀螺效应的关系,力效应发生在 6 点和12 点钟方向产生抬头现象,此种抬头现象不论主旋翼是顺时针或逆时针转动皆会发生。 翼端速度与离心力 直升机靠著主旋翼高速回转时所产生的离心力来悬住机体。离心力是水平方向的力而机体重力是垂直方向的力,实№飞行时两者几乎呈90 度,所以直升机飞行时其主旋翼所产生的速度和离心力是非常大的。 在这里有一个公式可算出翼端速度和离心力: 翼端速度: V = 2 * 圆周率* R * 60 * RPM V = 旋翼翼端速度(公尺/小时) 圆周率= 3.14(大约值) R = 旋翼头中心到翼端距离(公尺) RPM = 旋翼每分钟转速 以30级来算 停悬1500 RPM 翼端速度= 2 * 3.14 * 0.625 * 60 * 1500 = 353km/h

直升机飞行原理(图解)

飞行原理(图解) 直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。 直升机主旋翼反扭力的示意图 没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法 直升机抵消反扭力的方案有很多,最常规的是采用尾桨。主旋翼顺时针转,对机身就产生逆

时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。 抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。

各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。即使不算战损情况,平时使用中,尾桨对地面人员的危险很大,一不小心,附近的人员和器材就会被打到。在居民区或林间空地悬停或起落时,尾桨很容易挂上建筑物、电线、树枝、飞舞物品。 尾桨可以是推式,也可以是拉式,一般认为以推式的效率为高。虽然不管推式还是拉式,气流总是要流经尾撑,但在尾桨加速气流前,低速气流流经尾撑的动能损失较小。尾桨的旋转方向可以顺着主旋翼,也就是说,对于逆时针旋转的主旋翼,尾桨向前转(或者说,从右

直升机旋翼头工作原理

解读直升机旋翼头的奥秘 遥控直升机可说是所有遥控模型里头最为复杂的一个项目,各细节的关连性更是环环相扣,其中最复杂的结构莫过於旋翼头的设计,旋翼头也是性能的主要取决性,本章针对於主旋翼结构对性能的影响作深入的分析,直升机迷们不可错过! 决定性能的旋翼头 决定遥控直升机机体特性的几个要素里项,旋翼头所占的比例相当高。要如何分辨机体特性呢?遥控直升机不像飞机一样,可以从外形上直接分辨出特级机、练习机、象真机,直升机可就不一样了,同样的旋翼头,经过不同的设定与调整,可以让性能有截然不同的表现,就算是相同的直升机,也可以安稳的适合初学者,也可以灵活的对应3D飞行,旋翼头的变化可说是相当大的。相信有许多直升机模友们从直升机的种类,即使不曾亲身试飞过,就可以大约知道飞行的特征,对直升机性能的推断依据多半也是来自于旋翼头的造型设计,但是相信也有更多的朋友们对旋翼头的性能会有著『为什么不一样』的想法?但是想要深入研究,却又被复杂的结构打败。这一次我们就来说明一下关於旋翼头的性能取决做一个研究。 决定性能的四大要素 1、三角补偿角 2、贝尔希拉比率 3、修正率 4、避震橡胶 这四个要素的搭配,可决定大多数直升机的性格。实际上有人测试过,将J牌的旋翼头装在H牌的直升机上面,整体飞行起来的感觉就会比较接近於J牌的感觉。 一、三角补正角 一般玩家可以比较简单变更的一项。请参考图一,以目前市面上多数韵.型态多半是主旋翼夹片球头臂在主旋翼後方(三角补正角为正角度),接著要注意的是夹片球头的部分(图二) ,当夹片球头臂太短的时候,三角补偿角便会增加,当主旋翼高转速运转时执行动作,整体旋翼面的倾斜会使的旋翼夹片会受到三角补偿角的影响增大螺距角度,使的直升机的反应迅速加快执行动作,虽然这样可以增加机体的灵活度,但是你也会同时发现直升机变的更加难以操纵,因为既使是简单的停悬动作,只要风轻轻的吹向旋翼面,直升机主旋翼会做出些微的摆荡运动,但是很容易因为三角补偿角的关系而自行产生螺距角度的变化,造成直升机会出现类似打舵的现象,因此会变的难以控制。 以主旋翼相同的旋转方向来说(顺时针) ,三角补正角的正数值(+)越大,机体越灵敏,但也越不安定。三角补正角负数值(-)越大则越安定,但反应也越迟钝。然而要获得一个折衷的办法,就是让三角补正角度为0度,三角补正角为0度的直升机最好掌握而且不失灵活度。而调整三角补正角的方式也很简单,只需要加长旋翼夹片上的球头长度就可以了,但是要注意旋翼夹片的强度喔!如果是塑胶品的话,建议用新品来改装,免得发生断裂的危险。 每一家厂牌的直升机旋翼头的支点不太一样,以遥控直升机为例,大约有五种型式的旋翼头,所以先确定好支点旋翼头的种类的位置,再来做相关的测量。这样才能够有效的发挥三角补正角的效果。

图解直升机原理

图解直升机原理之一---涡轮轴发动机工作 原理 航空涡轮轴发动机 航空涡轮轴发动机,或简称为涡铀发动机,是一种输出轴功率的涡轮喷气发动机。法国是最先研制涡轴发动机的国家。50年代初,透博梅卡公司研制成一种只有一级离心式叶轮压气机、两级涡轮的单转于、输出轴功率的直升机用发动机,功率达到了206kW(280hp),成为世界上第一台直升机用航空涡轮轴发动机,定名为“阿都斯特—l”(Artouste—1)。首先装用这种发动机的直升机是美国贝尔直升机公司生产的Bell 47(编号为X H—13F),于1954年进行了首飞。 涡轴发动机的主要机件 与一般航空喷气发动机一样,涡轴发动机也有进气装置、压气机、燃烧室、涡轮及排气装置等五大机件,涡轴发动机典型结构如下图所示。

进气装置 由于直升机飞行速度不大,一般最大平飞速度在3 50km/h以下,故进气装置的内流进气道采用收敛形,以便气流在收敛形进气道内作加速流动,以改善气流流场的不均匀性。进气装置进口唇边呈圆滑流线,适合亚音速流线要求,以避免气流在进口处突然方向折转,引起气流分离,为压气机稳定工作创造一个好的进气环境。有的涡轴发动机将粒子分离器与进气道设计成一体,构成“多功能进气道”,以防止砂粒进入发动机内部磨损机件或者影响发动机稳定工作,这种多功能进气道利用惯性力场,使含有砂粒的空气沿着一定几何形状的

通道流动。由于砂粒质量较空气大,在弯道处使砂粒获得较大的惯性力,砂粒便聚集在一起并与空气分离,排出机外(见下图)。 压气机 压气机的主要作用是将从进气道进入发动机的空 气加以压缩,提高气流的压强,为燃烧创造有利条件。根据压气机内气体流动的特点,可以分为轴流式和离心式两种。轴流式压气机,面积小、流量大;离心式结构简单、工作较稳定。涡轴发动机的压气机,其结构形式几经演变,从纯轴流式、单级离心、双级离心到轴流与离心混装一起的组合式压气机。当前,直升机的

直升机原理详解真实完整版

发一套最完整的直升机原理(绝对完整,绝对精华) 这是我找到的最完整,最系统介绍直升机的原理及发展史的文章。转到这里,送给论坛里喜欢飞行,向往蓝天的朋友!! 自从莱特兄弟发明飞机以来,人们一直为能够飞翔蓝天而激动不已,同时又受起飞、着落所需的滑跑所困扰。在莱特兄弟时代,飞机只要一片草地或缓坡就可以起飞、着陆。不列颠之战和巴巴罗萨作战中,当时最高性能的“ 喷火 ”战斗机和 Me 109 战斗机也只需要一片平整的草地就可以起飞,除了重轰炸机,很少有必须用“正规”的混凝土跑道起飞、着陆的。今天的飞机的性能早已不能为这些飞机所比,但飞机的滑跑速度、重量和对跑道的冲击,使对起飞、着陆的跑道的要求有增无减,连简易跑道也是高速公路等级的。现代战斗机和其他高性能军用飞机对平整、坚固的长跑道的依赖,日益成为现代空军的致命的软肋。为了摆脱这一困境,从航空先驱的时代开始,人们就在孜孜不倦地研制能够象鸟儿一样腾飞的具有垂直/短距起落能力的飞机。 自从人们跳出模仿飞鸟拍翅飞行的谜思之后,依据贝努力原理的空气动力升力就成为除气球和火箭外所有动力飞行器的基本原理。机翼前行时,上下翼面之间的气流速度差造成上下翼面之间的压力差,这就是升力。所谓“机翼前行”,实际上就是机翼和空气形成相对速度。既然如此,和机身一起前行时,机翼可以造成升力,机身不动而机翼像风车叶一样打转转,和空气形成相对速度,也可以形成升力,这样旋转的“机翼”就成为旋翼,旋翼产生升力就是直升机可以垂直起落的基本原理。

中国小孩竹蜻蜓玩了有2,000 年了,流传到西方后,成为现代直升机的灵感/ 达·芬奇设计的直升机,到底能不能飞起来,很是可疑 旋翼产生升力的概念并不新鲜,中国儿童玩竹蜻蜓已经有2,000 多年了,西方也承认流传到西方的中国竹蜻蜓是直升机最初的启示。多才多艺的达·芬奇在15 世纪设计了一个垂直的螺杆一样的直升机,不过没有超越纸上谈兵的地步。1796 年,英国人George C ayley 设计了第一架用发条作动力、能够飞起来的直升机,50 年后的1842 年,英国人W.H. Philips 用蒸气机作动力,设计了一架只有9 公斤重的模型直升机。1878 年,意大利人Enrico Forlanini 用蒸气机制作了一架只有3.5 公斤重的模型直升机。1880 年,美国发明家托马斯·爱迪生着手研制用电动机驱动的直升机,但最后放弃了。法国人Paul C ornu 在1907 年制成第一架载人的直升机,旋翼转速每分钟90 转,发动机是一台24 马力的汽油机。Cornu 用旋翼下的“舵面”控制飞行方向和产生前进的推力,但Cornu 的直升机的速度和飞行控制能力很可怜。

航模的基本原理和基本知识

航模的基本原理和基本 知识 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

一、航空模型的基本原理与基本知识 1)航空模型空气动力学原理 1、力的平衡 飞行中的飞机要求手里平衡,才能平稳的飞行。如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称 x 及 y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。 图1-1 弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。 图1-2 2、伯努利定律 伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力越小,速度越小,静压力越大,流体一般是指空气或水,在这里当然是指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力﹝如图1-3﹞,于是机翼就被往上推去,然后飞机就飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应

在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。 图1-3 图1-4 图1-5 3、翼型的种类 1全对称翼:上下弧线均凸且对称。 2半对称翼:上下弧线均凸但不对称。 3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y 翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。 4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。 5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。 基本航模的翼型选测规律: 1薄的翼型阻力小,但不适合高攻角飞行,适合高速机。 2厚的翼型阻力大,但不易失速。

飞机各个系统的组成及原理

一、外部机身机翼结构系统 二、液压系统 三、起落架系统 四、飞机飞行操纵系统 五、座舱环境控制系统 六、飞机燃油系统 七、飞机防火系统 一、外部机身机翼结构系统 1、外部机身机翼结构系统组成:机身机翼尾翼 2、它们各自的特点和工作原理 1)机身 机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。 2)机翼 机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。 机翼通常有平直翼、后掠翼、三角翼等。机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。 即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。 3)尾翼 尾翼分垂直尾翼和水平尾翼两部分。 1.垂直尾翼 垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。 通常垂直尾翼后缘设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。 2.水平尾翼 水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生

直升机飞行原理

直升机与旋翼机的飞行原理 直升机的飞行原理 1. 概况 与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。桨叶片的数量随着直升机的起飞重量而有所不同。重型直升机的起飞重量在20t以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在以下,一般只有两片桨叶。 直升机飞行的特点是: (1) 它能垂直起降,对起降场地要求较低; (2) 能够在空中悬停。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势; (3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。 2. 直升机旋翼的工作原理 直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个机翼。旋翼的截面形状是一个翼型,如图所示。翼型弦线与垂直于桨毂旋转轴平面(称为桨毂旋转平面)之间的夹角称为桨叶的安装角,以表示,有时简称安装角或桨距。各片桨叶的桨距的平均值称为旋翼的总距。驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2o~14o。

气流V 与翼弦之间的夹角即为该剖面的迎角。显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。 旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头转向(转弯)操纵。 3. 直升机旋翼的操纵 直升机的飞行控制与飞机的飞行控制不同,直升机的飞行控制是通过直升机旋翼的倾斜实现的。直升机的控制可分为垂直控制、方向控制、横向控制和纵向控制等,而控制的方式都是通过旋翼实现的,具体来说就是通过旋翼桨毂朝相应的方向倾斜,从而产生该方向上的升力的水平分量达到控制飞行方向的目的。 直升机体放在地面时,旋翼受其本身重力作用而下垂。发动机开车后,旋翼开始旋转,桨叶向上抬,直观地看,形成一个倒立的锥体,称为旋翼锥体,同时在桨叶上产生向上的升力。随着旋翼转速的增加,升力逐渐增大。当升力超过重力时,直升机即铅垂上升(图;若升力与重力平衡,则悬停于空中;若升力小于重力,则向下降落。 旋转旋翼桨叶所产生的拉力和需要克服阻力产生的阻力力矩的大小,不仅取决于旋翼的转速,而且取决于桨叶的桨距。从原理上讲,调节转速和桨距都可以调节拉力的大小。但是 桨毂旋转面 桨毂旋转轴线 前缘 后缘 b ? α V 图 直升机的旋翼 (a) (b)

直升机原理章节1

Introduction A helicopter is an aircraft that is lifted and propelled by one or more horizontal rotors, each rotor consisting of two or more rotor blades. Helicopters are classified as rotorcraft or rotary-wing aircraft to distinguish them from fixed-wing aircraft because the helicopter derives its source of lift from the rotor blades rotating around a mast. The word “helicopter” is adapted from the French hélicoptère, coined by Gustave de Ponton d’Amécourt in 1861. It is linked to the Greek words helix/helikos (“spiral” or “turning”) and pteron (“wing”). Introduction to the Helicopter Chapter 1

Figure 1-1.Search and rescue helicopter conducting a pinnacle approach. Figure 1-2. Search and rescue helicopter landing in a confined area. As an aircraft, the primary advantages of the helicopter are due to the rotor blades that revolve through the air, providing lift without requiring the aircraft to move forward. This creates the ability of the helicopter to take off and land vertically without the need for runways. For this reason, helicopters are often used in congested or isolated areas where fixed-wing aircraft are not able to take off or land. The lift from the rotor also allows the helicopter to hover in one area and to do so more efficiently than other forms of vertical takeoff and landing aircraft, allowing it to accomplish tasks that fixed-wing aircraft are unable to perform. [Figures 1-1 and 1-2] Piloting a helicopter requires a great deal of training and skill, as well as continuous attention to the machine. The pilot must think in three dimensions and must use both arms and both legs constantly to keep the helicopter in the air. Coordination, control touch, and timing are all used simultaneously when flying a helicopter. Although helicopters were developed and built during the first half-century of flight, some even reaching limited production; it was not until 1942 that a helicopter designed by Igor Sikorsky reached full-scale production, with 131 aircraft built. Even though most previous designs used more than one main rotor, it was the single main rotor with an antitorque tail rotor configuration design that would come to be recognized worldwide as the helicopter. Turbine Age In 1951, at the urging of his contacts at the Department of the Navy, Charles H. Kaman modified his K-225 helicopter with a new kind of engine, the turbo-shaft engine. This adaptation of the turbine engine provided a large amount of horsepower to the helicopter with a lower weight penalty than piston engines, heavy engine blocks, and auxiliary components. On December 11, 1951, the K-225 became the first turbine-powered helicopter in the world. Two years later, on March 26, 1954, a modified Navy HTK-1, another Kaman helicopter, became the first twin-turbine helicopter to fly. However, it was the Sud Aviation Alouette II that would become the first helicopter to be produced with a turbine engine. Reliable helicopters capable of stable hover flight were developed decades after fixed-wing aircraft. This is largely due to higher engine power density requirements than fixed-wing aircraft. Improvements in fuels and engines during the first half of the 20th century were a critical factor in helicopter development. The availability of lightweight turbo-shaft engines in the second half of the 20th century led to the development of larger, faster, and higher-performance helicopters. The turbine engine has the following advantages over a reciprocating engine: less vibration, increased aircraft performance, reliability, and ease of operation. While smaller and less expensive helicopters still use piston engines, turboshaft engines are the preferred powerplant for helicopters today.

直升机的操纵原理

第六章 直升机的操纵原理
直升机不同于固定翼飞机,一般都没有在飞行中 供操纵的专用活动舵面。这是由于在小速度飞行 或悬停中,其作用也很小,因为只有当气流速度 很大时舵面或副翼才会产生足够的空气动力。单 旋翼带尾桨的直升机主要靠旋翼和尾桨进行操纵, 而双旋翼直升机靠两副旋翼来操纵。由此可见, 旋翼还起着飞机的舱面和副翼的作用。

直升机操纵原理
旋翼不仅提供升力同时也是直升机的主要操 纵面。
总距操纵杆:通过自动倾斜器改变旋翼桨叶 总距,控制直升机的升降运动。提杆,增大 总距,升力增大,直升机上升;压杆,减小 总距,直升机下降。
周期变距操纵杆:操纵周期变距操纵杆,使 自动倾斜器相应的倾斜,从而使桨叶的桨距 作每周一次的周期改变,造成旋翼拉力矢量 按相应的方向倾斜,达到控制直升机的前、 后(左、右)和俯仰(或横滚)运动。

直升机操纵原理
脚蹬:控制尾桨,实现航向操纵。 尾桨:平衡旋翼反扭矩、航向操纵。 垂尾:增加航向稳定性。 平尾:增加俯仰稳定性。

直升机操纵原理(续)

6.1 直升机操纵特点
直升机驾驶员座舱 操纵机构及配置直 升机驾驶员座舱主 要的操纵机构是: 驾驶杆(又称周期 变距杆)、脚蹬、 油门总距杆。此外 还有油门调节环、 直升机配平调整片 开关及其他手柄.

驾驶杆和脚蹬
驾驶杆位于驾驶员座椅前面,通过操纵线系与旋翼 的自动倾斜器连接。驾驶杆偏离中立位置表示:
向前——直升机低头并向前运动; 向后——直升机抬头并向后退; 向左——直升机向左倾斜并向左侧运动; 向右——直升机向右倾斜并向右侧运动。 脚蹬位于座椅前下部,对于单旋翼带尾桨的直升机
来说,驾驶员蹬脚蹬操纵尾桨变距改变尾桨推(拉) 力,对直升机实施航向操纵。

直升机飞行操控的基本原理

直升机飞行操控的基本原理

图 1 直升机飞行操纵系统- 概要图 (a)

(b) 图2 直升机操纵原理示意图 1.改变旋翼拉力的大小 2.改变旋翼拉力的方向 3.改变尾桨的拉力 飞行操纵系统包括周期变距操纵系统、总距操纵系统和航向操纵系统。如图2所示,周期变距操纵系统控制直升机的姿态(横滚和俯仰),总距操纵系统控制直升机的高度,航向操纵系统控制直升机的航向。 一、周期变距操纵系统 周期操纵系统用于操纵旋翼桨叶的桨距周期改变。当桨距周期改变时,引起桨叶拉力周期改变,而桨叶拉力的周期改变,又引起桨叶周期挥舞,最终使旋翼锥体相对于机身向着驾驶杆运动的方向倾斜,从而实现直升机的纵向(包括俯仰)及横向(包括横滚)运动。 纵向和横向操纵虽然都通过驾驶杆进行操纵,但二者是各自独立的。 周期变距操纵系统(见图3)包括右侧和左侧周期变距操纵杆(1)和(3)、可调摩擦装置(2)、橡胶波纹套(4)、俯仰止动件(5)、横滚连杆(7)、俯仰连杆(8)、横滚止动件及中立位置定位孔(9)、横滚拉杆(10)、横滚协调拉杆(11)、俯仰扭矩管轴组件(12)、总距拉杆(13)、与复合摇臂相连接的拉杆(14)、伺服机构(15)、伺服机构(横滚+总距)

(16)、伺服机构(俯仰+总距)(17)和可调拉杆(18)等组件。 1.右侧周期变距操纵杆3.左侧周期变距操纵杆 2.可调摩擦装置4.橡胶波纹套5.俯仰止动件6.复合摇臂 7.横滚连杆8.俯仰连杆9.横滚止动件及中立位置定位孔10.横滚拉杆11.横滚协调拉杆12.俯仰扭矩管轴组件1 3.总距拉杆1 4.与复合摇臂相连接的拉杆1 5.伺服机构1 6.伺服机构(横滚+总距)1 7.伺服机构(俯仰+总距)1 8. 可调拉杆 图 3 直升机周期变距操纵系统 (一)纵向操纵情况 当前推驾驶杆时,通过俯仰扭矩管轴组件(9)及俯仰连杆(8),使复合摇臂(6)上的纵向摇臂逆时针转动,通过其后的拉杆、摇臂,使左前侧纵向伺服机构下移,自动倾斜器固

直升机的发展历史

直升机的发展历史 人类有史以来就向往着能够自由飞行。古老的神话故事诉说着人类早年的飞行梦,而梦想的飞行方式都是原地腾空而起,像现代直升机那样既能自由飞翔又能悬停于空中,并且随意实现定点着陆。例如哪阿拉伯人的飞毯,希腊神的战车,都是垂直起落飞行器。其中最有价值、最具代表性的是中国古代玩具“竹蜻蜓”和意大利人达·芬奇关于垂直起降航空器的画作。 竹蜻蜓有据可查的历史记载于晋朝(265年—420年)葛洪所著的《抱朴子》一书中。它利用螺旋桨的空气动力实现垂直升空,演示了现代直升机旋翼的基本工作原理。《简明不列颠百科全书》第9卷写道:“直升机是人类最早的飞行设想之一,多年来人们一直相信最早提出这一想法的是达·芬奇,但现在都知道,中国人比中世纪的欧洲人更早做出了直升机玩具。”这种玩具于14世纪传到欧洲。“英国航空之父”乔治·凯利(1773年-1857年)曾制造过几个竹蜻蜓,用钟表发条作为动力来驱动旋转,飞行高度曾达27米。 随着生产力的发展和人类文明的进步,直升机的发展史由幻想时期进入了探索时期。欧洲产业革命之后,机械工业迅速倔起,尤其是本世纪初汽车和轮船的发展,为飞

行器准备了发动机和可供借鉴的螺旋桨。经过航空先驱者们勇敢而艰苦的创造和试验,1903年莱特兄弟(Wright brothers)制造的固定翼飞机飞行成功。在此期间,尽管在发展直升机方面,航空先驱们付出了相当的艰辛和努力,但由于直升机技术的复杂性和发动机性能不佳,它的成功飞行比飞机迟了30多年。 20世纪初为直升机发展的探索期,多种试验性机型相继问世。试验机方案的多样性表明了探索阶段的技术不成熟性。经过多年实践,这些方案中只有纵列式和共轴双旋翼式保留了下来,至今仍在应用。双桨横列式方案未在直升机家族中延续,但在倾转旋翼飞机中得到了继承和发展。 俄国人尤利耶夫另辟捷径,提出了利用尾桨来配平旋翼反扭矩的设计方案并于1912年制造出了试验机。这种单旋翼带尾桨式直升机成为至今最流行的形式。 20世纪初的努力探索为直升机发展积累了宝贵的经验并使直升机的设计取得了显著进展,有多架试验机实现了短暂的垂直升空和短距飞行,但离实用还有很大距离。 飞机工业的发展,使航空发动机的性能迅速提高,这为直升机设计的成功提供了重要条件。旋翼技术的第一次突破,归功于西班牙人Ciervao,他为了解决固定翼飞机的安全问题创造了“不失速”的飞机,这种飞机采用自转旋

直升机制造原理

直升机制造原理 作为一种特殊的飞行器,直升机的升力和推力均通过螺旋桨的旋转获得,这就决定了其动力和操作系统必然与各类固定机翼飞机有所不同。一般固定翼飞机的飞行原理从根本上说是对各部位机翼的状态进行调节,在机身周围制造气压差而完成各类飞行动作,并且其发动机只能提供向前的推力。但直升机的主副螺旋桨可在水平和垂直方向上对机身提供动力,这使其不需要普通飞机那样的巨大机翼,二者的区别可以说是显而易见。下面我们便对直升机的操控系统做一个简单的剖析。 操纵系统 直升机的操纵系统可分为三大部分: 踏板在直升机驾驶席的下方通常设有两块踏板,驾驶员可以通过它们对尾螺旋桨的输出功率和桨叶的倾角进行调节,这两项调整能够对机头的水平方向产生影响。 周期变距杆位于驾驶席的中前方,该手柄的控制对象为主螺旋桨下方自动倾斜器的不动环。不动环可对主螺旋桨的旋转倾角进行调整,决定机身的飞行方向。

总距杆位于驾驶席的左侧,该手柄的控制对象为主螺旋桨下方自动倾斜器的动环。动环通过对主螺旋桨的桨叶倾角进行调节来对调整动力的大小。另外,贝尔公司生产的系列直升机在总距杆上还集成有主发动机功率控制器,该控制器可根据主螺旋桨桨叶的旋转倾角自动对主发动机的输出功率进行调整。 飞行操作 升降有些读者可能会认为,直升机在垂直方向上的升降是通过改变主螺旋桨的转速来实现的。诚然,改变主螺旋桨的转速也不失为实现机体升降的方法之一,但直升机设计师们很早之前便发现,提升主螺旋桨输出功率会导致机身整体负荷加大。所以,目前流行的方法是在保持主螺旋桨转速一定的情况下依靠改变主螺旋桨桨叶的倾角来调整机身升力的大小。驾驶员可通过总距杆完成这项操作。当把总距杆向上提时,主螺旋桨的桨叶倾角增大,直升机上升;反之,直升机下降。需要保持当前高度时,一般将总距杆置于中间位置。 平移直升机最大飞行优势之一是:可以在不改变机首方向的情况下,随时向各个方向平移。这种移动是通过改变主螺旋桨的旋转倾角来实现的。当驾驶员向各个方向扳动周期变距杆时,主螺旋桨的主轴也会发生相应的倾斜。此时,主螺旋桨所产生的推力分解为垂直和水平两个方向的分力,垂直方向的分力依旧用于保持飞行高度,水平方向上的分力可使机身在该方向上产生平移。 需要指出的是,以上分析是将主螺旋桨看作一个整体而得出的。如果我们把目光投向每一片桨叶的受力情况,将呈现出更为复杂的情况。直升机螺旋桨的横截面与普通飞机机翼的横截面类似,均为头粗尾尖的纺锤型或半纺锤型。当桨叶划过空气时的切入角度发生变化时,桨叶所产生的升力也会随之改变。而在直升机主螺旋桨的旋转面偏离水平面的情况下,单片桨叶划过空气的切入角度将随着螺旋桨的转动而发生周期

相关文档