文档库 最新最全的文档下载
当前位置:文档库 › 潮汐推算

潮汐推算

潮汐推算
潮汐推算

潮汐推算

潮汐的发生和太阳,月球都有关系,也和我国传统农历对应。在农历每月的初一即朔点时刻处太阳和月球在地球的一侧,所以就有了最大的引潮力,所以会引起“大潮”,在农历每月的十五或十六附近,太阳和月亮在地球的两侧,太阳和月球的引潮力你推我拉也会引起“大潮”;在月相为上弦和下弦时,即农历的初八和二十三时,太阳引潮力和月球引潮力互相抵消了一部分所以就发生了“小潮”,故农谚中有“初一十五涨大潮,初八二十三到处见海滩”之说。另外在第天也有涨潮发生,由于月球每天在天球上东移13度多,合计为50

分钟左右,即每天月亮上中天时刻(为1太阴日=24时50分)约推迟50分钟左右,(下中天也会发生潮水每天一般都有两次潮水)故每天涨潮的时刻也推迟50分钟左右。我国劳动人民在千百年来总结经验出来许多的算潮方法(推潮汐时刻)如八分算潮法就是其中的一例:简明公式为:

高潮时=0.8h×[农历日期-1(或16)]+高潮间隙

上式可算得一天中的一个高潮时,对于正规半日潮海区,将其数值加或减12时25分(或为了计算的方便可加或减12时24分)即可得出另一个高潮时。若将其数值加或减6时12

分即可得低潮出现的时刻——低潮时。但由于,月球和太阳的运动的复杂性,大潮可能有时推迟一天或几天,一太阴日间的高潮也往往落后于月球上中天或下中天时刻一小时或几小时,有的地方一太阴日就发生一次潮汐。故每天的涨潮退潮时间都不一样,间隔也不同。

潮汐能是以位能的形态出现的海洋能,是指海水潮涨和潮落形成的水的势能。海水涨落的潮汐现象是由地球和天体运动以及它们之间的相互作用而引起的。在海洋中,月球的引力使地球的向月面和背月面的水位升高。由于地球的旋转,这种水位的上升以周期为12小时25分和振幅小于1m的深海波浪形式由东向西传播。太阳引力的作用与此相似,但是作用力小些,其周期为12小时。当太阳、月球和地球在一条直线上时,就产生大潮(spring tides);当它们成直角时,就产生小潮(neap tides)。除了半日周期潮和月周期潮的变化外,地球和月球的旋转运动还产生许多其他的周期性循环,其周期可以从几天到数年。同时地表的海水又受到地球运动离心力的作用,月球引力和离心力的合力正是引起海水涨落的引潮力。

除月球、太阳外,其他天体对地球同样会产生引潮力。虽然太阳的质量比月球大得多,但太阳离地球的距离也比月球与地球之间的距离大得多,所以其引潮力还不到月球引潮力的一半。其他天体或因远离地球,或因质量太小所产生的引潮力微不足道。根据平衡潮理论,如果地球完全由等深海水覆盖,用万有引力计算,月球所产生的最大引潮力可使海水面升高0.563m,太阳引潮力的作用为0.246m,夏威夷等大洋处观测的潮差约1m,与平衡潮理论比较接近,近海实际的潮差却比上述计算值大得多。如我国杭州湾的最大潮差达8.93m,北美加拿大芬地湾最大潮差更达19.6m。这种实际与计算的差别目前尚无确切的解释。一般认为当海洋潮汐波冲击大陆架和海岸线时,通过上升、收聚和共振等运动,使潮差增大。潮汐能的能量与潮量和潮差成正比。或者说,与潮差的平方和水库的面积成正比。和水力发电相比,潮汐能的能量密度很低,相当于微水头发电的水平。世界上潮差的较大值约为13~15m,但一般说来,平均潮差在3m以上就有实际应用价值。

潮汐是因地而异的,不同的地区常有不同的潮汐系统,它们都是从深海潮波获取能量,但具有各自独特的特征。尽管潮汐很复杂,但对任何地方的潮汐都可以进行准确预报。海洋潮汐从地球的旋转中获得能量,并在吸收能量过程中使地球旋转减慢。但是这种地球旋转的减慢在人的一生中是几乎觉察不出来的,而且也并不会由于潮汐能的开发利用而加快。这种能量通过浅海区和海岸区的摩擦,以1.7TW的速率消散。只有出现大潮,能量集中时,并且在地理条件适于建造潮汐电站的地方,从潮汐中提取能量才有可能。虽然这样的场所并不是到处都有,但世界各国已选定了相当数量的适宜开发潮汐能的站址。据最新的估算,有开发潜力的潮汐能量每年约200TW·h。

能源储量

全世界潮汐能的理论蕴藏量约为3 ×10^9kw。我国海岸线曲折,全长约1.8×10^4km,沿海还有6000多个大小岛屿,组成1.4×10^4km的海岸线,漫长的海岸蕴藏着十分丰富的潮汐能资源。我国潮汐能的理论蕴藏量达1.1×10^8kw,其中浙江、福建两省蕴藏量最大,约占全国的80.9%,但这都是理论估算值,实际可利用的远小于上述数字。

开发利用

潮汐是由于日月引潮力的作用,使地球上的海水产生周期性的涨落现象。它不仅可发电、捕鱼、产盐及发展航运、海洋生物养殖,而且对于很多军事行动有重要影响。历史上就有许多成功利用潮汐规律而取胜的战例。

发电应用

世界各国已选定了相当数量的适宜开发潮汐能的站址。据最新的估算,有开发潜力的潮汐能量每年约200TW·h。1912年,世界上最早的潮汐发电站在德国的布斯姆建成。1966年,世界上最大容量的潮汐发电站在法国的朗斯建成。我国在1958年以来陆续在广东省的顺德和东湾、山东省的乳山、上海市的崇明等地,建立了潮汐能发电站。

世界三大著名潮汐电站简介

潮汐电站

1. 加拿大安纳波利斯潮汐电站

加拿大安纳波利斯潮汐电站座落在芬地湾口安纳波利斯-罗亚尔。该地潮差为4.2~8.5米。电站采用全贯流水轮发电机组。全贯流式水轮机安装在水平的水流通道中,发电机转子固定在水轮机桨叶周边组成旋转体,定子安装在水轮机转轮外边,构成没有传动轴的直接耦合机组。由于发电机的尺度不受限制,可以采用最优的转子直径,得到较高的转子转动惯量,以改进电网发生意外事故的动力稳定性,较易解决通风,检查、维修也方便。这些都是优于灯泡式机组之处。全贯流机组由于其结构紧凑,可以比采用灯泡式机组,工程造价低。但其难点在能经受推力和转子飞逸时保持稳定和转子轴承的安全运行,以及转子轮缘和壳体中间

的密封。该电站所采用的受力轴承是常规的水动力套筒式。密封由特殊的合成材料弯曲压贴在构件上,用水作润滑。该电站安装机组一台,额定功率为2万千瓦。转子直径7.6米,4个叶轮叶片,18个导叶,定子直径13米,设计水头5.5米,流量378米3/秒,额定转速50转/分,年发电量5000万千瓦小时。机组由对河川小型全贯流机组有经验的瑞士设计、加拿大制造。该电站利用现成控制洪水的堤坝,包括一条长225米的堆石坝,一个人工岛,和另一侧控制水量有两个闸门的建筑和一小堤道。机房设在人工岛上,由100公里外的一座水电站遥控。该电站在1984年投入运行。

2. 法国朗斯潮汐电站

法国朗斯潮汐电站建于法国朗斯河口,该站址潮差最大13.4米,平均8米。单库面积最高海平面时为22平方公里,平均海平面时为12平方公里。大坝高12米,宽25米。总长度750米。坝上有公路沟通朗斯河两岸。1966年投入运行,是第一个商业化电站。该电站装机24台,每合1万千瓦,共24万千瓦。设计年平均发电量5.44亿度。机组为灯泡贯流式,转轮直径5.3米,可作六种工况运行。

除正向发电、反向发电、正向排水、反向排水外,还能正向泵水和反向泵水。各种工况的优化运行,用计算机进行控制。这种多功能机组在当时是一项重大的技术成就。大坝两端建有船闸和浅水闸门,中段设置电站厂房。这段是空腹混凝土坝,顶部做成拱形以承受水压力。全部建筑是用围堰法抽干水后进行施工的。共浇注混凝土35万米2,用了钢材1.6万吨。建设年限6年。

工程最困难和最重要的是主坝海侧围堰,朗斯工程用直径9米的钢筋混凝土圆柱形沉箱作围堰的支撑件,用钢筋混凝土迭梁截流,模型试验精确地预测工程应于何时如何施工。电站对金属部件的防腐蚀成功地采用涂料、不锈钢和阴极保护等措施。水工建筑采用几项防水处理方法:用柔性材料浇注裂缝、用胶粘水泥填塞接缝、用环氧树脂基材料作表面一般处理。

3. 基斯拉雅潮汐电站

基斯拉雅潮汐电站建于摩尔曼斯克附近的基斯拉雅湾。电站成功地采用沉箱法建造堤坝和厂房。钢筋混凝土动力房沉箱长36米、宽18.3米、高15米,能容纳两台400千瓦容量的灯泡式水轮发电。机组和进出水道,重5200吨。沉箱在干船坞建造并装上一台机组,然后浮运到电站现场,沉在准备好的砂源基础上。动力房安放的垂直和水平位置偏差只有几毫米。

沉箱底部的钢片伸到其下沿以下,使底层免受波浪冲刷。由于前苏联有利于建站的坝址均位于严寒地带,不便于现场施工,促使采用这样新的厂房结构和施工方法。同样的理由,对各种材料除了防蚀防污外,还须抵抗温度应力,方法是对建筑物进行热绝缘,在混凝土上补上加强的环氧树脂板。该电站1968年投入运行。

军事应用

1661年4月21日,郑成功率领两万五千将士从金门岛出发,到达澎湖列岛,进入台湾攻打赤嵌城。郑成功的大军舍弃港阔水深、进出方便、但岸上有重兵把守的大港水道,而选

择了鹿耳门水道。鹿耳门水道水浅礁多,航道不仅狭窄且有荷军凿沉的破船堵塞,所以荷军此处设防薄弱。郑成功率领军队乘着涨潮航道变宽且深时,攻其不备,顺流迅速通过鹿耳门,在禾寮港登陆,直奔赤嵌城,一举登陆成功。1939年,德国布置水雷,拦袭夜间进出英吉利海峡的英国舰船。德军根据精确计算潮流变化的大小及方向,确定锚雷的深度、方位,用漂雷战术取得较大战果。1950年朝鲜战争初期,朝鲜人民军如风卷残石,长驱直入打到釜山一带。美国急忙纠集联合国多国部队,气势汹汹杀到朝鲜,但在选定登陆地点时犯了难——适合登陆的港口都有朝鲜人民军重兵把守,强行登陆必然代价巨大。经过慎重考虑,最终美军司令麦克阿瑟指挥美军于仁川成功登陆。原来,仁川港位于朝鲜的西海岸,离首都汉城西28公里,起着汉城关门的作用。海面是亚洲潮差最大的,最高达9.2米,退潮时近岸淤泥滩长5000余米,登陆舰船、两栖车辆和登陆兵极易搁浅;沿岸筑有4米高的石质防波堤,构成登陆兵和两栖车辆的障碍;进入港口的船只,只有一条飞鱼峡水道,倘若有一艘舰船沉没,就堵塞了航道;岸上炮兵可将近岸的舰船、两栖车辆和登陆兵全部摧毁。朝鲜人民军认为美军不可能从仁川登陆,加之战线拉得太长,所以对仁川港疏于防守,兵力薄弱。然而,仁川港地区每年有3次最高的大潮,最高时潮差可达9.2米,其中就有9月15日。经过分析计算,美军于9月15日利用大潮高涨,穿过了平时原本狭窄、淤泥堆积的飞鱼峡水道和礁滩,出人意料地在仁川港登陆。朝鲜人民军因此被拦腰截断,前线后勤完全失去保障,腹背受敌,损失惨重,几乎陷入绝境。麦克阿瑟指挥的美军和联合国军,仅用1个月,几乎席卷朝鲜半岛,兵临鸭绿江边,取得空前胜利。

但这次成功的登陆范例也有败笔,美军算错了仁川港当天涨潮时刻,真正的涨潮提前到来。因此,尽管前方美军已经提前登陆成功,炮兵却按预定时间进行登陆前的轰炸,结果将已登陆的军队炸得血肉横飞,白白损失了一营的官兵。

世界名潮

在我国,有闻名中外的钱塘江暴涨潮和深入内陆六百多公里的长江潮。主要是由于潮流沿着入海河流的河道溯流而上形成的。当潮流涌来时,潮端陡立,水花四溅,象一道高速推进的直立水墙,形成"滔天浊浪排空来,翻江倒海山为摧"的壮观景象。

据现代科学发现太阳和月球引力还可能对人体或生物体中的液体等会发生作用,形成神秘的“生物潮”和“人体潮”,有日本科学家正对此问题在作研究。我国古代有一句谚语“逃过初一,也逃不过十五”也是对这种神秘的生物潮和人体潮可能会引发人或其它生物的病情加重,或精神上的变化的生动写照。

太阳和月球引力对地球上的水(液体)起作用如此大,对地壳的固体大陆也起作用会发生“陆潮”,“陆潮”可能会促使引发地震,所以在作地震预报时应虑月相。

太阳和月球引力对地球上的大气(气体)也会发生很大的作用,发生“大气潮”,引起大气对流和大气运动上的变化,会引起气候上的变化。(这和认为气候的变化与月亮无关的传统观点是抵触的。)故气象专家建议在作天气预报时应考虑月相。不论什么时刻,地球面向月亮的一侧比其对面一侧更靠近月亮,其差大约是地—月间距离的7%。这就意味着,前者受到月亮的吸引力大于后者受到的吸引力。地球在这个吸引力和离心力的共同作用下,将在地—月连线上的长度加长。因此,我们能在地球的这条线的两端发现隆起的现象。对于地球上的固态物质而言(如陆地),它在上述位置时的隆起并不明显,然而,对于聚集力低

于固态物质的海水而言,隆起的程度就明显地大多了。海水若在上述位置时,两面却有隆起现象发生,其中一面朝向月亮,而另一面背向月亮。当地球自转时,地球表面上的各个点陆续地进入这个位置,而后又离开了它。人们站在陆地上观看海面,似乎水面升高了,直至最高潮,然后又开始回落,直至最低潮。这样的起伏每天要反复两次。月亮在其轨道上运行时,伴随着地球的自转,地球上的各部位都有两次涨潮,间隔约12.5小时。对于这一事实,人类从远古时代就把海水的涨落——潮汐现象和月亮联系起来了,只是实际情况比他们想象的要复杂得多。太阳对地球也会产生潮汐作用,只是比月亮造成的潮汐高度小。当太阳、地球和月亮处于同一条直线上,即满月和新月时,产生的潮汐比往常的潮汐剧烈得多,海水涨得也高,回落得也低;但当太阳和月亮间的位置关系是以地球为顶点的直角关系,即逢“半月”时,潮汐的强度就低于平时。不过,对某地来说,潮汐是否出现,以及出现的时间和强度,还与地理位置、海岸线形状有关。早期的欧洲人大多聚集于地中海地区,这个地区是一个几乎被陆地所包围的港口。涨潮的时候,来自大西洋的海水通过直布罗陀海峡流入港口,但还没等潮汐过程全部结束,退潮就开始了,海水开始从港口涌出。可还没等海水完全退去,下一次涨潮又开始了。最终结果是地中海的水位几乎没有什么变化。大约在公元前300年时,古希腊探险家费萨斯驾船驶出地中海,他横渡了大西洋、不列颠群岛,然后到达斯堪的纳维亚。航行过程中,他亲眼目睹了一些潮汐现象,对此他做了详细的记录,并进一步提出这种现象的产生与月亮有关。但是他的观点几乎没得到任何重视。当儒略·恺撒率领一支偷袭军队进入不列颠时,他把船队停泊在离岸上稍高一点的地方,后来不期而遇的涨潮来临时,几乎将他的船只全部卷走。作为恺撒大帝,他很快纠正了自己的错误。如果缺乏对万有引力的理解,是很难接受潮汐现象与月亮有关这一事实的。比如说伽利略,在多数方面,他是一个不折不扣的思想家,居然也对月亮对地球有一定的影响这一事实嗤之以鼻,他认为潮汐现象是因为地球自转时海洋的海水晃动而引起的。直到后来牛顿于1687年发现了宇宙间万有引力的存在,人们才完全弄懂潮汐现象的起因。固体潮汐;海水推波助澜,迅猛上涨,达到高潮;过后一些时间,上涨的海水又自行退去,留下一片沙滩,出现低潮。如此循环重复,永不停息。海水的这种运动现象我们天天可见。然而,地壳每天也有规律的升降其幅度可达80cm,但是我们无法感觉到。固体潮汐能引起一系列连锁反应,导致地球每天都有上万次地震发生并且还引起地球差旋转等等。德国耶拿大学研究地球潮汐的专家格哈德·詹希最近发表论文称,月球引力对地球的影响不仅会产生潮汐现象,而且会导致地球的地面每天有规律地升降。根据詹希的论文结果,欧洲的地面每天升降约80厘米。詹希是德国耶拿大学的应用地球物理学专家,从2003年起担任国际大地测量学协会潮汐委员会的主席,他也是本周在耶拿召开的4年一次“国际潮汐研讨会”的组织者。地面的升降对居住在地球上的人来说并没有直接的感觉。詹希解释说,由于月球引力对地壳运动的作用非常小,所以潮汐运动不会对地球上的地震、火山喷发等地质现象产生影响。他认为,月球的作用加剧地壳的张力并导致地震的可能性是:当地壳的张力方向与潮汐产生的运动方向相同,但这种可能性迄今并没有具体数据加以证实。詹希称,产生潮汐的原理现在已经非常清楚,当月球直接处于地球上方位置的时候,就会出现潮汐的最大值。月球围绕地球的旋转关系可以设想为一个转动的哑铃,一头是地球,另一头是月球,当月球的离心力超过地球的引力时就形成涨潮,低于地球的引力时就形成落潮,潮汐作用存在于地球引力和离心力之间的差别。

开放分类:

地理,自然,地质,潮汐,物理海洋学

上海潮汐表

上海潮汐表 Prepared on 22 November 2020

上海潮汐表 农历涨潮落潮涨潮落潮 初九、二十四 07:12 13:24 19:36 01:48 初十、二十五 08:00 14:12 20:24 02:36 初十一、二十六 08:48 15:00 21:12 03:24 初十二、二十七 09:36 15:48 22:00 04:12 初十三、二十八 10:24 16:36 22:48 05:00 初十四、二十九 11:12 17:24 23:36 05:48 初十五、三十 12:00 18:12 00:24 06:36 初一、十六 00:48 07:00 13:12 19:24 初二、十七 01:36 07:48 14:00 20:12 初三、十八 02:24 08:36 14:48 21:00 初四、十九 03:12 09:24 15:36 21:48 初五、二十 04:00 10:12 16:24 22:36 初六、二十一 04:48 11:00 17:12 23:24 初七、二十二 05:36 11:48 18:00 00:12 初八、二十三 06:24 12:36 18:48 01:00 以上数据会有些许误差,但基本准确,红色为最大潮时间(鱼进来机率最大),紫色为小潮时间(鱼进来机率最小) 潮汐时间计算解析:

1.地球各点地方时与太阳的关系:由于地球一刻不停地自西向东自转,一般来说,东边比西边先看到日出,也就是东边的时刻比西边时刻早。古时候,各地都把当地太阳高度最大时刻定为12 点,因此各地的地方是不同的。如右图,在此光照图上我们可以确定此图中任一点的地方时。 2.潮汐与太阳和月球的关系:海洋的潮汐现象是因月球和太阳的引力在地球上分布不均造成的。引潮力是在地球朝向月球(或太阳)的一面和背向月球(或太阳)的一面同时发生的。朝向月球和太阳一面形成的潮汐称顺潮,背向月球和太阳一面形成的潮汐称对潮。据科学推测是:当月、日、地三者成一直线时引力最大,潮涨落的最大,形成大潮,这时是新月和望月(初一、十五)的时候;当日、月、地三者成直角三角形时引力最小,潮涨落的最小,形成小潮,这时是月上弦(初七、八)和下弦(廿二、廿三)的时候。 根据万有引力定律,月球的引潮力是太阳的 2.17 倍,可见,海洋潮汐主要是由月球引潮力引起的。如右图所示:(在一个周期的时间内,最常见到的是两涨两落)但在实际上形成大潮和小潮的时间,并不正好是上述时间,为方便起见,本文只从理论上探讨形成大潮和小潮的时间以及一日内潮汐涨落(高潮和低潮)时间。 3.从上可以看出,地球上各个地方的地方时当地与由太阳的相互位置所决定,而一个地方海水的涨落(潮汐)主要由此地与月球的相互位置决定。潮汐高潮的时间,在理论上应该在月亮的上、下中

潮汐简便计算法

潮汐简便计算法 人们通过长期的实践、观察,发现海水有规律的涨落,而涨落的时间和高度又有着周期性的变化,由此人们把这种海水涨落的现象叫潮汐。而随着海水的涨落、水位的升降,出现了海水的水平流动,这种海水流动的现象叫潮流。海水有周期性涨落规律,如在每日里出现两次大潮和两次小潮。通过长期实践、观察、发现每日的高潮大多出现在月亮的上、下中天(即过当地子午线时1前后。低潮时间则在月出月落前后,并且每日的高(低)潮时间逐日后程约48分钟,即每天晚48分钟(0.8小时)。每月的两次大潮是农历初一、十五附近几天,两次小潮是在农历的初七、八和甘二、廿三附近几天。人们还发现,潮汐现象同月亮、太阳、地球的相对运动有密切的关系。地球在一定轨道上绕太阳运转,月亮又在一定轨道上绕地球运转,它们之间有一定的吸引力和离心力,这种力就是产生潮汐现象的基本因素。但实际潮汐涨落的主要成因却是月球对地球(表层)的吸引力,其次是太阳对地球的吸引力,太阳的乍用较小,约为月球的2/5,因月球离 地球较近,故此月球的乍用较大。 据科学推测是:月球绕地球转,每一个月(29.5天多一点)转一圈,当月、日、地三者成一直线时,潮涨落的最大,这时是新月和望月(初一、十五)的时候,当日、月、地三者成直角三角形时潮涨落的最小,这是月上弦(初七、八)和下弦(廿二、廿三)的时候。但在实际上形成大潮和小潮的时间,并不正好是上述时间,因为地球形状很复杂,所以各地发生最大潮和最小潮的时间要比理论上拖后几天。如:山东半岛沿海每月的初三和十八潮的涨落最大,而初十和廿五前后潮的涨落又最小。由于地球本身的自转,使地球上某点与月球的相对位置随时发生变化,这种变化每天(太阳约24时48分)为一周期。每24时48分,发生两次高潮和两次低潮。由高潮到低潮约经过6时12分,由第一个高潮到第 二个高潮约经过12时24分。 潮汐的时间,在理论上应该与月球的上中天或下中天的时刻相符合,但实际上常常推迟。发生高潮和月球上中天相差的时间叫高潮间隙。但各地的高潮间隙又大不相同。如:威海是10时50分,烟台是10时25分,龙口是10时20分,足见地理位置的不同,而导致高潮间隙的差目。高潮时和低潮时的大概计算法:高潮时=(日差)0 8×(阴历日子)7-16(上半月-下半月-1,16)+高潮间隙,低潮时=高潮时-6时12分,如计算威海阴历初五的潮时如下:高潮时=0.8)×(5-1)+10:50′=3:12′+10:50′=14:02′(即为第二个高潮)14:02′-12:24′=1:38′(即为第一个高潮)低潮时=14:02′-6:12′=7:50′(即为第一个低潮)以上这样的算法固然)准确,但很繁琐,很难开口就说出来,我们经过多年的海上实践,验证,摸索出一种很有规律的简易计算法。其方法是阴历日子(上半月-3,下半月-18)x0.8,即为当日的高潮潮时。如计算威海阴历初五的潮时如下:高潮时=(5-3)×0.8=1:36′(即第一个高潮)。低潮时=1:36′+6:12′=7:48′(则则第一个低潮)。如计算威海阴历量五的潮时:高潮时=(25-18)×0.8=5:36′(则是第一个高潮)。低潮时=5:36′+6:12′=11:48′(则是第一个低潮)潮流也叫潮汐流,这是水位升降起伏的潮信现象,是由于海水受到引潮力的作用发生了水平流动后所导致的结果。因此潮流和潮汐一样具有周期性的变化规律,但海水流动受到地形条件的影响,故常呈现两种状态,一种是往复性,

潮汐的类型

一、潮汐的类型 潮汐现象非常复杂。仅以海水涨落的高低来说,各地就很不一样。有的地方潮水几乎察觉不出,有的地方却高达几米。在我国台湾省基隆,涨潮时和落潮时的海面只差0.5米,而杭州湾的潮差竟达8.93米。在一个潮汐周期(约24小时50分钟,天文学上称一个太阴日,即月球连续两次经过上中天所需的时间)里,各地潮水涨落的次数、时刻、持续时间也均不相同。潮汐现象尽管很复杂,但大致说来不外三种基本类型。 半日潮型:一个太阴日内出现两次高潮和两次低潮,前一次高潮和低潮的潮差与后一次高潮和低潮的潮差大致相同,涨潮过程和落潮过程的时间也几乎相等(6小时12.5分)。我国渤海、东海、黄海的多数地点为半日潮型,如大沽、青岛、厦门等。 全日潮型:一个太阴日内只有一次高潮和一次低潮。如南海汕头、渤海秦皇岛等。南海的北部湾是世界上典型的全日潮海区。 混合潮型:一月内有些日子出现两次高潮和两次低潮,但两次高潮和低潮的潮差相差较大,涨潮过程和落潮过程的时间也不等;而另一些日子则出现一次高潮和一次低潮。我国南海多数地点属混合潮型。如榆林港,十五天出现全日潮,其余日子为不规则的半日潮,潮差较大。 从各地的潮汐观测曲线可以看出,无论是涨、落潮时,还是潮高、潮差都呈现出周期性的变化,根据潮汐涨落的周期和潮差的情况,可以把潮汐大体分为如下的4种类型: 正规半日潮:在一个太阴日(约24时50分)内,有两次高潮和两次低潮,从高潮到低潮和从低潮到高潮的潮差几乎相等,这类潮汐就叫做正规半日潮。 不正规半日潮:在一个朔望月中的大多数日子里,每个太阴日内一般可有两次高潮和两次低潮;但有少数日子(当月赤纬较大的时候),第二次高潮很小,半日潮特征就不显著,这类潮汐就叫做不正规半日潮。 正规日潮:在一个太阴日内只有一次高潮和一次低潮,像这样的一种潮汐就叫正规日潮,或称正规全日潮。 不正规日潮:这类潮汐在一个朔望月中的大多数日子里具有日潮型的特征,但有少数日子(当月赤纬接近零的时候)则具有半日潮的特征。 凡是一天之中两个潮的潮差不等,涨潮时和落潮时也不等,这种不规则现象称为潮汐的日不等现象。高潮中比较高的一个叫高高潮,比较低的叫低高潮;低潮中比较低的叫低低潮,比较高的叫高低潮。 不论那种潮汐类型,在农历每月初一、十五以后两三天内,各要发生一次潮差最大的大潮,那时潮水涨得最高,落得最低。在农历每月初八、二十三以后两三天内,各有一次潮差最小的小潮,届时潮水涨得不太高,落得也不太低。 二、潮汐要素 涨潮时潮位不断增高,达到一定的高度以后,潮位短时间内不涨也不退,称之为平潮,平潮的中间时刻称为高潮时。 平潮的持续时间各地有所不同,可从几分钟到几十分钟不等。平潮过后,潮位开始下降。 当潮位退到最低的时候,与平潮情况类似,也发生潮位不退不涨的现象,叫做停潮,其中间时刻为低潮时。 停潮过后潮位又开始上涨,如此周而复始地运动着。从低潮时到高潮时的时间间隔叫做涨潮时,从高潮时到低潮时的时间间隔则称为落潮时。

上海潮汐表

上海潮汐表 农历涨潮落潮涨潮落潮 初九、二十四07:12 13:24 19:36 01:48 初十、二十五08:00 14:12 20:24 02:36 初十一、二十六08:48 15:00 21:12 03:24 初十二、二十七09:36 15:48 22:00 04:12 初十三、二十八10:24 16:36 22:48 05:00 初十四、二十九11:12 17:24 23:36 05:48 初十五、三十12:00 18:12 00:24 06:36 初一、十六00:48 07:00 13:12 19:24 初二、十七01:36 07:48 14:00 20:12 初三、十八02:24 08:36 14:48 21:00 初四、十九03:12 09:24 15:36 21:48 初五、二十04:00 10:12 16:24 22:36 初六、二十一04:48 11:00 17:12 23:24 初七、二十二05:36 11:48 18:00 00:12 初八、二十三06:24 12:36 18:48 01:00 以上数据会有些许误差,但基本准确,红色为最大潮时间(鱼进来机率最大),紫色为小潮时间(鱼进来机率最小) 潮汐时间计算解析:

1.地球各点地方时与太阳的关系:由于地球一刻不停地自西向东自转,一般来说,东边比西边先看到日出,也就是东边的时刻比西边时刻早。古时候,各地都把当地太阳高度最大时刻定为12 点,因此各地的地方是不同的。如右图,在此光照图上我们可以确定此图中任一点的地方时。 2.潮汐与太阳和月球的关系:海洋的潮汐现象是因月球和太阳的引力在地球上分布不均造成的。引潮力是在地球朝向月球(或太阳)的一面和背向月球(或太阳)的一面同时发生的。朝向月球和太阳一面形成的潮汐称顺潮,背向月球和太阳一面形成的潮汐称对潮。据科学推测是:当月、日、地三者成一直线时引力最大,潮涨落的最大,形成大潮,这时是新月和望月(初一、十五)的时候;当日、月、地三者成直角三角形时引力最小,潮涨落的最小,形成小潮,这时是月上弦(初七、八)和下弦(廿二、廿三)的时候。 根据万有引力定律,月球的引潮力是太阳的 2.17 倍,可见,海洋潮汐主要是由月球引潮力引起的。如右图所示:(在一个周期的时间内,最常见到的是两涨两落)但在实际上形成大潮和小潮的时间,并不正好是上述时间,为方便起见,本文只从理论上探讨形成大潮和小潮的时间以及一日内潮汐涨落(高潮和低潮)时间。 3.从上可以看出,地球上各个地方的地方时当地与由太阳的相互位置所决定,而一个地方海水的涨落(潮汐)主要由此地与月球的相互位置决定。潮汐高潮的时间,在理论上应该在月亮的上、下中天

潮汐测量仪器分类(Ivy)

定点方式:一般选在码头或者岸边设立验潮站或者在测区的某一位置进行临时验潮,对于远离岸边的海域,也会选择临时海上定点验潮站。 缺点:受暗滩、河流、气候和海底地形等因素的影响,特别是在地理环境复杂地区,定点观测到的潮位数据不能很好地代表整个测区的水位特点。若离岸超过20km,则采用预报潮位,精度不高。 井式验潮:浮子式、引压钟式属于有井验潮仪 浮子式:利用一浮标在海面的浮子随海面上下浮动,其随动机构将浮子的上下运动转换为记录纸滚轴的旋转,从而记录笔在记录纸上留下潮汐变化的曲线。 引压钟式:将引压钟放置于水底,将海水压力通过管道引到海面以上,由自动记录器进行记录。 井式验潮仪:通过水面上随井内水面起伏的浮筒带动上面的记录滚筒转动,使得记录针在装有记录纸的滚筒上画线,来记录水面的变化,达到自动记录潮位的目的。 适用于:固定于岸边(港口、码头等)的观测站 优点:坚固耐用,滤波性能好,精度较高,维护方便 缺点:安装,成本较高,连通导管易阻塞,对环境要求高,机动性差 声学式验潮仪:固定在水位顶端的声学换能器向下发射声信号,信号遇到声管的校准孔和水面分别产生回波,同时记录发射接收的时间差,进而求的水面高度。 优点:使用方便,工作量小,滤波性能好 水压式验潮仪:通过测量水下或海水相连的水面以上的某一界面上由于海面变化引起的压力变化来测量水位。 机械式:坚固耐用,调整方便,成本低,滤波性良好 电子式:安装方便,精度高,携带方便,从观测数据到数据处理可由计算机自动化处理,效率高,滤波性良好 卫星潮汐遥感:通过卫星测高技术可以得到全球特别是深海和偏远地区所需海面的地形资料,从而获得改地区的潮汐资料。 优点:快速、经济、可靠 GPS:通过测得一段时间内水面载体上的GPS天线的系列高程值计算出潮位数据 优点:定位精度高、观测时间短、执行操作简便、抗干扰性好、保密性强,可以在测船走航的同时进行,节省人力资源,在条件恶劣的环境下,可以直接测量且确保精度。

潮汐现象的力学分析

潮汐现象的力学分析 地球上的海洋周期性的涨落称为海洋潮汐。我国自古有“昼涨称潮,夜涨称汐”的说法[1]。在公元前2世纪已记载月望(满月)之日可以看到十分壮观的海潮(枚乘:《七发》140 B.C ),东汉王充在《论衡》中已写道“涛之起也,随月盛衰,大小,满损不齐同”指出潮汐与月球的关系,其后更有余靖、张君房、燕肃、沈括、郭守敬等人对潮汐观测得到相当精确的结果[2],李约瑟(Joseph Needham,1900—1995)曾说:“ 近代以前,中国对潮汐现象的了解与兴趣总的来说是多余欧洲的”[3]。 古人称白天为“朝”, 晚上为“夕”, 所以以海洋潮汐为例, 白天海水上涨为“潮”, 晚上海水上涨为“汐”。潮汐现象是一种普遍的自然现象。有资料[4]称:“地球上海洋的周期性涨落称为潮汐”,并解释说是“一昼夜中两次潮水涨起,随之有两次跌落”。这一注解容易使人误认为海水的潮汐就是一昼夜的两涨两落现象。事实上潮汐有多种, 就海洋潮汐而言, 就有根据太阳、月亮、地球排列位置分的“大潮”和“小潮”;根据月球与地球距离分的“近地潮”和“远地潮”;根据引潮力方向分“顺潮”和“对潮”等。以一昼夜高、低潮出现的次数不同又可分为以下几类: 半日潮:是指一昼夜内出现两次高潮和两次低潮。 全日潮:是指一昼夜内只有一次高潮和一次低潮。 混合潮:是指一个月内有些日子出现两次高潮和两次低潮, 有些日子出现一次高潮和一次低潮[5]。 所以潮汐现象不仅仅是一昼夜中海水的两涨两落现象。下面以海水的半日潮为例分析其形成过程及物理本质。 1 潮汐现象的力学分析 1.1 引潮力产生的分析 月球对海水的引力是造成潮汐的主要原因,太阳的引力也起一定的作用。潮汐现象的特点(半日潮)是每昼夜有两次高潮。所以,在同一时刻,围绕地球的海平面总有两个突起部分,在理想的情况下它们分别出现在地表离月球最近和最远的地方。如果仅把潮汐看成是月球引力造成的,那么在离月球最近的地方海水隆起,是可以理解的。为什么离月球最远的地方海水也隆起呢? 如果说潮汐是万有引力引起的,潮汐力在大小就应该与质量成正比,与距离平方成反比。太阳的质量比月球大7 2.710 ?倍,而太阳到地球距离的平方只比月球的大5 1.510?倍[6],两者相除,似乎太阳对海水的引力比月球

船舶下水潮位位高度及浮船坞吃水计算(1)

1、浮船坞基本参数 a)船长Loa: 89.8 m b)船宽B: 34 m c)浮船坞路轨顶距外底板距离H: 5.036 m d)最大下沉深度H: 12.1 m e)浮船坞设计吃水: 4.2 m f)浮船坞日常吃水: 1.25 m g)浮船坞总体平面及剖面图参见附页《浮船坞总布置图》 2、浮船坞承载最大载重吨船舶下水时,相关数据计算: 备注:最大载重吨船舶下水(以承载4000t船舶下水为例): 1)本区域0潮位时珠基高度为:-1.11m,此时码头岸边距0潮位高度为4.77m; 2)浮船坞承载4000t船舶下水时,浮船坞吃水为: (4000×1.5)/(89.9×34)+1.25≈3.21m 3)船舶上浮船坞设计水面距码头距离: h= 5.036-3.21 =1.826m 4)船舶上浮船坞设计潮位: 4.77-1.826=2.944m(潮汐表读数) 5)船舶上浮船坞设计潮位的珠基高度为: -1.11+2.944=1.834m 6)具体参见下图 最大载重吨(4000t)船舶下水时 相关数据计算模拟图

3、浮船坞承载最小载重吨船舶下水时,相关数据计算: 备注:最小载重吨船舶下水(以承载307t船舶下水为例): 1)0潮位时珠基高度为:-1.11m,此时码头岸边距0潮位高度为4.77m; 2)浮船坞承载307t船舶下水时,浮船坞吃水为: (307×1.5)/(89.9×34)+1.25≈1.4m 3)船舶上浮船坞设计水面距码头距离: h= 5.036-1.4 =3.636m 4)船舶上浮船坞设计潮位: 4.77-3.636=1.134m(潮汐表读数) 5)船舶上浮船坞设计潮位的珠基高度为: -1.11+1.134=0.024m 6)具体参见下图 最小载重吨(307t)船舶下水时 相关数据计算模拟图

潮汐观测作业指导书

潮汐观测作业指导书 1.观测点的选择 观测点应选择在与外海畅通,水流平稳,不易淤积,波浪影响较小的海域;应避开冲刷严重、易坍塌的海岸;在理论最低潮时,水深应大于1m;尽可能利用防波堤、码头、栈桥等海上建筑物。 2.验潮井的设置 验潮井是为观测潮汐而专门设置的建筑物。它的设计,特别是进水管道必须使井内与井外潮位差小于1cm,并具有良好的消波性能。验潮井的设置应详细记载和归档。 3.水准系统的设置与水准测量 3.1水准点的设置 观测站应在适当位置设置一个基本水准点和一至两个校核水准点。基本水准点是观测站永久性的高程控制点。校核水准点是用于引测和检查水尺零点、读数指针高程的水准点。 基本水准点和校核水准点分别按基本水准标石和普通水准标石的埋设方法埋设,并应采取严格的保护措施,使之不易受到破坏。水准标石埋设的技术设计、选点、埋设方法和要求按GB12898的规定执行,并详细记载和归档。

3.2水准点的水准测量要求 3.2.1基本水准点应按国家三等水准测量要求与国家水准高程系统连测。 3.2.2校核水准点应按国家三等水准测量要求与基本水准点连测。 3.2.3基本水准点与校核水准点启用后每年应复测一次; 两年后若没有发现高程变动,基本水准点每隔四年应复测一次,校核水准点每隔二年应复测一次。 3.2.4水准点的测量按GB 1 2 8 9 8 的有关规定执行,并将各次测量及复测情况详细记载和归档。 3.3潮高基准面的确定 3.3.1测站潮高基准面宜采用当地理论最低潮面,简称测站基面。 3.3.2在未确定潮高基准面的测站,可用开始观测时的第一根水尺零点处的水平面或设定的某一水平面临时作为潮高基准面。在观测一年后,使用所测资料通过推算,确定当地理论最低潮面作为测站潮高基准面 3.3.3测站基面一经确定不应轻易变动,测站基面的高程应记载和归档。 3.3.4 测站基面确定后,测站的潮高资料必须订正到测站基面上。 4.井内、井外水尺的设置

英版《潮汐表》使用方法详解

英版《潮汐表》使用方法详解 《潮汐表》是船舶必备航海图书之一,是关系到船舶航行。特别是进出港安全的重要图书资料。目前,比较谨慎的船东或是船舶管理公司均为船舶配备了中英版《潮汐表》。其中,中版《潮汐表》为1~3册,覆盖了中国沿岸各港;英版《潮汐表》为vol l~4,覆盖了全世界沿海各港。并建议各轮,当航至中国沿海,使用中版《潮汐表》;于国外港口时,则使用英版《潮汐表》。这是考虑到中英版《潮汐表》对不同区域潮汐数据预报的精确度不同而作出的。不难理解,对于本国各港历年潮汐、潮流的监测,数据统计分析,规律总结,以及基于此对潮汐、潮流的预报,自然是由本国主管机构主导,占有资源优势,更具可信度。例如,中版《潮汐表》中第一部分就列出了许多港口的每日逐时潮高预报,在历年的应用中,被证实准确度较高;英版《潮汐表》vol1(United Kingdom and Ireland)中,partI a也列出了本国部分港口(Plymouth,Poole,Southampton etc.)每日逐时的潮高。 中版《潮汐表》4—6册刊载了国外部分港口的潮汐资料,与英版《潮汐表》相比,其资料来源的及时性和准确性较弱。对于附港而言,此点尤甚(主港的预报精度大致与英版潮汐表相当)。作为英版《潮汐表》的编制和出版机构——英国水道测量局(the United Kingdo m Hydrographic Office。简称UKHO),在获取潮汐预报资源方面.历史上与大多数表列诸港所属国家的主管当局保持着及时有效的交流和联系。同时,各港口当局和相关测量工程公司发现提供的数据有任何的不准确时,被要求及时通知英国水道测量局,并邀请他们对提高潮汐表的准确性和适用性提出建议。尤其是在下列方面,各港口当局和测量公司应当尽快告知英国水道测量局:①partI中的预报数据,partⅡ中的潮时潮高差,partⅢ中的调和常数在印刷上的错误;②观测与预报出现明显差异时;③有记录的意外高低潮详情;④设立新的自动潮汐测量仪时的详情;⑤新设立的潮汐测量仪的记录、数据分析。这些措施保证了英版《潮汐表》能够提供全球大部分港口比较准确的潮汐预报。 对于英版《潮汐表》出版后一些重要的改正。可在表列年份年初出版的《英版航海通告年度摘要》中查取,即英版潮汐表的补遗和勘误(admiralty tide tables-addenda and corrig enda)。 在实际应用中,多数驾驶员对中版《潮汐表》的使用可以达到熟练的程度,而对于英版《潮汐表》则存在一定程度的生疏,尤其是查取某一港口任意时的潮高或是任意潮高所对应的潮时时。 现对使用英版《潮汐表》进行潮汐推算介绍如下: 1.主港潮汐

潮汐要素复习整理

潮汐原理复习思考题整理 (第四章~第五章) 第四章 1.什么是中期观测资料分析和短期观测资料分析,以及调和常数求解的实际步骤 中期观测资料分析:属于不同群的分潮的会合周期最长为1个月,因此把长度长于一个月但不足一年的观测记录称为中期观测资料 短期观测资料分析:观测的时间长度只有一天或几天 调和常数求解的实际步骤: ?中期观测资料分析(TB P103-107) 1)区分主分潮和随从分潮2)取L 段观测记录,式(4.4)可以写为(4.6) 3)将式(4.6)的余弦函数展开得到(4.7) 4)式(4.7)是包含2(P+Q)+1个未知数的由 () 1 L l l M = ∑ 个方程组成的矛盾方程组 5)通过最小二乘法得到矛盾方程组的法方程(4.10) 6)当L=1时,法方程(4.10)变为TB P106 7)引入Q个随从分潮与相应的主分潮的差比关系后,将给出另外2Q个方程(4.11) 8)进一步求得(4.12) ?短期观测资料分析(TB P116-119) 1)潮汐调和常数的初算2)潮流调和常数的计算 3)噪声方差的估计4)不合理数据的舍弃 5)调和常数和余流的计算6)潮流椭圆要素的计算 2.短期资料观测引入的参数D 和d 代表什么含义,具有什么作用? 振幅系数D 和迟角订正d 用准调和分潮表达式比用调和分潮表达式要简单的多,不但可以简化许多分析过程,而 且对分析实际潮汐特征也能使得问题变得更容易。 3.什么是准调和分潮,它和调和分潮有什么区别 ?实际准调和分潮的振幅和相角与 A 小时前的引潮力准调和分潮相应量有关,与其余时刻,特别是与当时引潮力则没有关系,故A 叫做准调和分潮的潮龄 ?区别 4.了解潮汐和潮流的自报TB P119 第五章 1.潮汐特征值的含义TB P120-121 2.对于不同潮汐类型港口潮汐特征值的计算方法

上海潮汐表

上海潮汐表(总3页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

上海潮汐表 农历涨潮落潮涨潮落潮 初九、二十四 07:12 13:24 19:36 01:48 初十、二十五 08:00 14:12 20:24 02:36 初十一、二十六 08:48 15:00 21:12 03:24 初十二、二十七 09:36 15:48 22:00 04:12 初十三、二十八 10:24 16:36 22:48 05:00 初十四、二十九 11:12 17:24 23:36 05:48 初十五、三十 12:00 18:12 00:24 06:36 初一、十六 00:48 07:00 13:12 19:24 初二、十七 01:36 07:48 14:00 20:12 初三、十八 02:24 08:36 14:48 21:00 初四、十九 03:12 09:24 15:36 21:48 初五、二十 04:00 10:12 16:24 22:36 初六、二十一 04:48 11:00 17:12 23:24 初七、二十二 05:36 11:48 18:00 00:12 初八、二十三 06:24 12:36 18:48 01:00 以上数据会有些许误差,但基本准确,红色为最大潮时间(鱼进来机率最大),紫色为小潮时间(鱼进来机率最小) 潮汐时间计算解析:

1.地球各点地方时与太阳的关系:由于地球一刻不停地自西向东自转,一般来说,东边比西边先看到日出,也就是东边的时刻比西边时刻早。古时候,各地都把当地太阳高度最大时刻定为12 点,因此各地的地方是不同的。如右图,在此光照图上我们可以确定此图中任一点的地方时。 2.潮汐与太阳和月球的关系:海洋的潮汐现象是因月球和太阳的引力在地球上分布不均造成的。引潮力是在地球朝向月球(或太阳)的一面和背向月球(或太阳)的一面同时发生的。朝向月球和太阳一面形成的潮汐称顺潮,背向月球和太阳一面形成的潮汐称对潮。据科学推测是:当月、日、地三者成一直线时引力最大,潮涨落的最大,形成大潮,这时是新月和望月(初一、十五)的时候;当日、月、地三者成直角三角形时引力最小,潮涨落的最小,形成小潮,这时是月上弦(初七、八)和下弦(廿二、廿三)的时候。 根据万有引力定律,月球的引潮力是太阳的 2.17 倍,可见,海洋潮汐主要是由月球引潮力引起的。如右图所示:(在一个周期的时间内,最常见到的是两涨两落)但在实际上形成大潮和小潮的时间,并不正好是上述时间,为方便起见,本文只从理论上探讨形成大潮和小潮的时间以及一日内潮汐涨落(高潮和低潮)时间。 3.从上可以看出,地球上各个地方的地方时当地与由太阳的相互位置所决定,而一个地方海水的涨落(潮汐)主要由此地与月球的相互位置决定。潮汐高潮的时间,在理论上应该在月亮的上、下中

潮汐自动观测系统技术参数

潮汐自动观测系统技术参数 1、仪器设备名称: 潮汐自动观测系统 2、技术指标: ★潮汐自动观测系统要求与国家海洋局宁波海洋环境监测中心站现有的水文气象自动观测系统完全兼容;环境性能符合海洋行业标准《海洋仪器基本环境试验方法》(HY016—1992);数据记录及传输格式符合GB/T14914—2004《海滨观测规范》的规定。 配置要求: (1)水文数据采集器(浮子式水位计): 1.1测量范围:水位(0~1000)cm; 1.2准确度:水位±1cm; 1.3数据传输:可通过RS485、RS232、GSM或GPRS/CDMA等方式传输数据; 1.4工作方式:连续工作; 1.5工作温度:(-10~45) ℃; 1.6供电电源:DC12V; 1.7必须提供检定证书。 (2)温盐传感器: 2.1温度测量范围:-5~45℃;精度:±0.01℃(0~35℃);

2.2盐度测量范围:2~70mS/cm,精度:±0.01mS/cm(2~65mS/cm); 2.3电源电压:12V DC;工作电流≤60mA; 2.4使用水深: ≥50m; 2.5信号输出RS232接口; 2.6信号电缆:五芯水密电缆线。 2.7 要求传感器为国产。 2.8必须提供检定证书。 (3)数据接收机 3.1处理器:Intel I5-9500 3.2内存:8G 3.3存储:1T硬盘 3.4鼠标键盘:罗技光电键盘、鼠标套装 3.5显示器: 19寸液晶显示器 (4)多功能通讯控制箱 4.1实现前端采集器与数据处理计算机之间的网络、3G双通讯,预留第三种通讯(北斗)接口。 4.2单独直流供电(9-28V)。 (5)相关配件 码盘、电源供电系统、相关配件应与国家海洋局宁波海洋环境监测中心站现有型号的水文气象自动观测系统完全兼容。 3、数量(台/套) 如上,见表格。 4、到货地点: 浙江省宁波市象山县丹河东路878号水利和渔业局 收货人:包希伟 安装地点等具体事宜由采购方指定。 5、到货时间: 交货期:合同生效后30天内到货。 安装时间:合同生效后45天以内完成安装。 资金结算:合同生效后,全部设备到货由供应商负责安装调试正常后,经采购方组织现场验收,确认合格后采购方向供货商支付合同款95%的货款,质保期满后付清5%余款。 6、售后服务: (1)保修维修:卖方须对所提供的设备提供至少12个月的质保期,时间从设备验收合格、买方接受使用之日算起。并提供终身免费技术支持,如有必要,须提供现场免费维护和维修,零部件更换费用由买方承担。质保期内的工作应包括终身免费技术支持以及必要的设备免费维修和保养等工作,卖方须负责修理和替换任何由于设备自身的质量问题造成的损坏及故障,所发生的费用由卖方承担。具体的内容须在投标时说明。 (2)安装调试:由卖方派人负责完成自动观测系统的安装、调试,安装地点由买方指

潮汐的组成

潮汐的组成 潮汐的变化是多种不同周期活动最终的结果,这种影响称为潮汐的组成。 潮汐变化的时间尺度范围从数小时到一年,所以要在固定的观测站以潮汐表精确的纪录水位的高低变化,可以筛选出变化周期短于一分钟的水位变化。这些资料将会和参考值(或已知数),通常是平均海平面,做比较。 主太阴半日潮 因为地球自转快于月球公转, 涨潮会在月球至中天前到来(月球公转与地球自转方向相同),相差约3度[8]。月球与潮汐隆起(tidal bulge,或称隆堆)相互吸引,使得地球自转渐渐变慢,而月球公转渐快。这使得当前每一年月球轨道约推离地球38毫米,而地球的一日延长约23微秒。因为月球对地球万有引力的作用,地球视作一固态整体,较背对月球一侧的海水更被拉近月球,因此背对月球一侧的海水形同“升高”了。[9]这造成两端的潮汐隆起与每天两次的涨潮。 在大多数的地区,潮汐最主要的成分是主太阴半日潮,也称为M2,它的周期是12小时25.2分钟,正好是太阴潮汐日的一半,也是月球至下一次中天所需的一半时间,也是地球上同一个地点因为自转再一次正对着月球的周期。使用简单的潮汐钟就可以追踪这个成分的潮汐。因为月球以和地球公转相同的方向环绕着地球运转,因此太阴日比地球日长一点。以手表上的分针做比较就可以了解:分针与时针在12:00重合,但再次重合的时间是1:05,而不是1:00就可以了解了。 变动的范围:大潮和小潮 半日潮的潮差(在半天之内水域的最高和最低位置的变化)各自有两个星期或14天周期的不同变化。在新月和满月,当太阳、月球和地球的在一条线上,也就是朔望的时刻,太阳的潮汐力会加强月球的潮汐,潮汐的潮差会达到最大:称为大潮(英文为spring tide,但与春季无关,不能译为春潮,而是在字面上源自较古老的含义:跳跃、向前喷出、上升等水文学的自然现象)。当月球在上弦或下弦的位置,从地球看到的太阳和月球相距90度,太阳的力量抵销了部分的月球力量,使两者的合力效果最小。在月相周期的这种位置上,潮汐的潮差最小:称为小潮(英文neap tide的字源不清楚)。大潮的时候,高水位高于平均值,而低水位低于平均值,憩潮的时间比平均短,但潮流比平均值强大;小潮的结果是一切都小于平均值。大潮和小潮的时间间隔大约是7天。 月球与地球之间的距离变化也影响到潮汐的高度,当月球在近地点,潮汐的潮差会增加,而在远地点时潮汐的潮差会减少。每7.5个朔望月,新月或满月会和近点月重合,会造成近点月大潮使潮汐的潮差达到最大。如果在此时有风暴出现在沿海地区,其结果是造成的灾害(各种形式上的财物损失,等等)会特别的严重。 半日潮潮差的差异

潮汐

潮汐表表底部有一句"潮高基准面:在平均海面下255CM" 是什么意思 回复: 关于“潮高基准面:在平均海面下255cm”。 “潮高基准面”——潮汐表上预报潮位值的零点(可理解为零点“标高”)称为潮高基准面,一般位于平均海平面以下,水深图或海图(包括潮汐表)都是以当地理论深度基准面起计算的,该基面也是潮汐潮高的起算面。 在北海海域,其潮汐的起算面在平均海面下255cm位置,该位置也就是本地计算潮位的零点位置。 平均海平面简介 平均海平面(mean sea level),水位高度等于观测结果平均值的平静的理想海面。观测时间范围不同,有不同概念的平均海平面,如日平均海平面、年平均海平面和多年平均海平面等等。一些验潮站常用18.6年或19年里每小时的观测值求出平均值,作为该站的平均海平面。 海平面的年较差 因为观测值受天气状况而变,且具有季节性、周期性的变化。一年中月平均海平面的最大值与最小值之差,称为年较差。例如渤海的月平均海平面的年较差为60~70厘米,黄海为35~50厘米,东海为

30~35厘米,南海为20~40厘米,而恒河口可达170厘米,太平洋的檀香山仅约8厘米。年平均海平面的差异,可达10厘米左右。海平面基准 1956年,中华人民共和国规定以青岛验潮站的多年平均海平面为中国统一的高程起算面,称为青岛平均海平面或黄海基准面。中国出版的地图上的海拔高度都由这个基准面起算。至于航海图上的深度,则从海图的基准面向下计算。 海平面的变化 日平均海平面不但随天气状况而变,而且具有季节、半年、一年和多年周期的变化。月平均海平面在一年中的最大变幅,即最高值和最低值之差,称为年较差。渤海月平均海平面的年较差为60~70厘米,黄海为35~50厘米,东海为30~35厘米,南海为20~40厘米,孟加拉湾恒河口的月平均海平面年较差可达170厘米,而太平洋的火奴鲁鲁(檀香山)则仅约8厘米。这种差异,主要由该地区的海洋水文和气候条件所决定。年平均海平面的差异,可达10厘米左右,它主要取决于气候和天体运动的长周期变化。至于地质年代中的海平面变化,则与冰川的消长和地壳的变迁有关。

驾驶台资源管理讲义第七章

第七章船舶计划 计划或以使工作有明确的目标和具体的步骤,可以协调大家的行动,增强工作的主动性,减少盲目性,使工作有条不紊地进行。同时计划本身又是对工作进度和质量的考核标准,对大家的较强的约束的督促作用。所以计划对工作既有指导作用,又有推动作用。 第一节计划的制定 1、计划是事先制定的为进行某事或制作某物的一些详细的方法。合理的计划或以确保组织按照行为的需要分配资源,组织成员按照规定的程序开展自己的工作,监测工作进程是否达到组织目标,以便在未能达到上述要求时及时采取改进措施。 从时间角度而言,计划可以分为短期计划和长期计划。对未来事件观测的时间越长,预测出错误的可能性也越大。因此,长期计划很少像战术计划那样被用于确定如何分配组织资源来帮助组织实现战略目标,而是通常被作为战略计划来确定整个组织的主一要远景目标以及促进这些远景目标实现所需要的方针。另外一种常的方式是将计划分为单项计划和标准计划两种。前者被用于规范通常不会以相同方式重复出现的行为,例如工程、项目和财务预算;而后者则被用于组织行为反复出现的情况,因为它能用一个或一系列单项决策指导所有重复的行为。标准计划的常见形式是方针、程序和规章制度。 2、计划的特点 1)预见性 这是计划最明显的特点之一。计划不是对已经形成的事实和状况的描述,而是在行动之前对行动的任务、目标、方法、措施所作出的预见性确认。但这种预想不是盲目的、空想的,而是以上级部门的规定和指示为指导,以本单位的实际条件为基础,以过去的成绩和问题为依据,对今后的发展趋势作出科学预测之后作出的。可以说,预见是否准确,决定了计划的成败。 2)针对性 计划一是根据党和国家的方针政策、上级部门的工作安排和指示精神而定,二是针对本单位的工作任务、主客观条件和相应能力而定。总之,从实际出发制定出来的计划,才是有意义有价值的计划。 3)可行性 可行性是和预见性、针对性紧密联系在一起的,预见准确、针对性强的计划,在现实中才真正可行。如果目标定得过高、措施无力实施,这个计划就是空中楼阁;反过来说,目标定得过低,措施方法都没有预见性,实现虽然很容易,并不能因而取和有价值和成就,那也算不是有可行性。 4)约束性 计划一经通过、批准或认定,在其所指范围内就具有了约束作用,在这一范围内无论是集体还是个人都必须按照计划的内容开展工作和活动,不得违背和拖延。 3、计划的制定 计划的基本过程可分为四个阶段:确立远景目标、分析当前形势、分析远景目标实现的有利和不利因素以及制订实现远景目标的方案。 1)确立远景目标 远景目标为组织的行为规定了基本方向。它们由组织的目的、任务、目标和战略四部分组成。 组织的目的是在其行为过程中由社会为其划定的基本地位,因此,它不仅是某一特点组织,而且也是社会中所有同类型组织的基本目标。 组织的任务是指能使其与同类组织区分开来的主要的和特有的目标。它是组织为自己确

潮汐简便计算法

潮汐简便计算法 而随着海水的涨落、水位的升降,出现了海水的水平流动,这种海水流动的现象叫潮流。海水有周期性涨落规律,如在每日里出现两次大潮和两次小潮。通过长期实践、观察、发现每日的高潮大多出现在月亮的上、下中天(即过当地子午线时1前后。低潮时间则在月出月落前后,并且每日的高(低)潮时间逐日后程约48分钟,即每天晚48分钟(0.8小时)。每月的两次大潮是农历初一、十五附近几天,两次小潮是在农历的初七、八和甘二、廿三附近几天。人们还发现,潮汐现象同月亮、太阳、地球的相对运动有密切的关系。地球在一定轨道上绕太阳运转,月亮又在一定轨道上绕地球运转,它们之间有一定的吸引力和离心力,这种力就是产生潮汐现象的基本因素。但实际潮汐涨落的主要成因却是月球对地球(表层)的吸引力,其次是太阳对地球的吸引力,太阳的乍用较小,约为月球的2/5,因月球离地球较近,故此月球的乍用较大。 据科学推测是:月球绕地球转,每一个月(29.5天多一点)转一圈,当月、日、地三者成一直线时,潮涨落的最大,这时是新月和望月(初一、十五)的时候,当日、月、地三者成直角三角形时潮涨落的最小,这是月上弦(初七、八)和下弦(廿二、廿三)的时候。但在实际上形成大潮和小潮的时间,并不正好是上述时间,因为地球形状很复杂,所以各地发生最大潮和最小潮的时间要比理论上拖后几天。如:山东半岛沿海每月的初三和十八潮的涨落最大,而初十和廿五前后潮的涨落又最小。由于地球本身的自转,使地球上某点与月球的相对位置随时发生变化,这种变化每天(太阳约24时48分)为一周期。每24时48分,发生两次高潮和两次低潮。由高潮到低潮约经过6时12分,由第一个高潮到第 二个高潮约经过12时24分。 潮汐的时间,在理论上应该与月球的上中天或下中天的时刻相符合,但实际上常常推迟。发生高潮和月球上中天相差的时间叫高潮间隙。但各地的高潮间隙又大不相同。如:威海是10时50分,烟台是10时25分,龙口是10时20分,足见地理位置的不同,而导致高潮间隙的差目。高潮时和低潮时的大概计算法:高潮时=(日差)0 8×(阴历日子)7-16(上半月-下半月-1,16)+高潮间隙,低潮时=高潮时-6时12分,如计算威海阴历初五的潮时如下:高潮时=0.8)×(5-1)+10:50′=3:12′+10:50′=14:02′(即为第二个高潮)14:02′-12:24′=1:38′(即为第一个高潮)低潮时=14:02′-6:12′=7:50′(即为第一个低潮)以上这样的算法固然)准确,但很繁琐,很难开口就说出来,我们经过多年的海上实践,验证,摸索出一种很有规律的简易计算法。其方法是阴历日子(上半月-3,下半月-18)x0.8,即为当日的高潮潮时。如计算威海阴历初五的潮时如下:高潮时=(5-3)×0.8=1:36′(即第一个高潮)。低潮时=1:36′+6:12′=7:48′(则则第一个低潮)。如计算威海阴历量五的潮时:高潮时=(25-18)×0.8=5:36′(则是第一个高潮)。低潮时=5:36′+6:12′=11:48′(则是第一个低潮)潮流也叫潮汐流,这是水位升降起伏的潮信现象,是由于海水受到引潮力的作用发生了水平流动后所导致的结果。因此潮流和潮汐一样具有周期性的变化规律,但海水流动受到地形条件的影响,故常呈现两种状态,一种是往复性,一种是回转性。这里就不说回转流的成因,只介绍一下近海的往复流。往复流(即东流和西流—就是涨潮流和落潮流,它是在两个相反方向上作周期性变化的潮流

潮汐术语

潮汐术语 1、平均海面(mean sea level , MSL) 根据长期潮汐观测记录,算得的某一时期内的海面平均高度。 2、海图基准面(chart datum , CD) 起算海图水深的基准面。 3、潮高基准面(tidal datum , TD) 计算潮高的起算面,一般为海图基准面,如两者不一致时,则应进行订正,才能将潮高应用到海图上。 4、潮差(tidal range) 相邻高、低潮潮高之差。 5、大潮升(spring rise , SR) 从潮高基准面到平均大潮高潮面的高度。 6、小潮升(neap rise , NR) 从潮高基准面到平均小潮高潮面的高度。 7、平潮(slack)与停潮(stand) 当高潮发生后,海面有一段时间呈现停止升降的现象,叫平潮;低潮发生后,海面也有一段时间呈现停止升降的现象,称为停潮。 8、涨潮时间(duration of rise) 从低潮时到高潮时的时间间隔。 9、落潮时间(duration of fall) 从高潮时到低潮时的时间间隔。 10、高高潮(higher high water , HHW) 在一个太阴日发生的两次高潮中潮高较高的高潮。 11、低高潮(lower high water , LHW) 在一个太阴日发生的两次高潮中潮高较低的高潮。 12、高低潮(higher low water , HLW) 在一个太阴日发生的两次低潮中潮高较高的低潮。 13、低低潮(lower low water , LLW) 在一个太阴日发生的两次低潮中潮高较低的低潮。 14、潮龄(tidal age)

由朔、望日到实际大潮发生的时间间隔称为潮龄。 15、平均高(低)潮间隙(mean high / low water interval , MHWI / MLWI) 每天月中天时刻至高(低)潮时的时间间隔的长期的平均值称为平均高(低)潮间隙。 16、高(低)潮时差 主港与附港高(低)潮潮时之差。 17、潮差比 对半日潮港来说,是指附港的平均潮差与主港的平均潮差之比;对日潮港来说,是指附港的回归潮大的潮差与主港的回归潮大的潮差之比。 18、潮高差 主、附港潮高之差,(适用于英版《潮汐表》)。 19、改正值 使用潮差比由主港潮高计算附港潮高时,若附港基准面不是由主港基准面确定的,需要对附港潮高加以订正,使之变为从附港基准面起算,此订正数就是表列的改正值。

相关文档