文档库 最新最全的文档下载
当前位置:文档库 › 某两轮摩托车车架模态特性分析

某两轮摩托车车架模态特性分析

某两轮摩托车车架模态特性分析
某两轮摩托车车架模态特性分析

基于Hypermesh的车架结构模态分析(1)

计算机工程应用技术本栏目责任编辑:贾薇薇 基于Hypermesh的车架结构模态分析 卢立富1,岳玲1,黄雪涛2 (1.泰安东岳重工有限公司技术中心,山东泰安271000;2.中国五征集团汽车设计院,山东日照262300) 摘要:应用Hypermesh分析某中型载货汽车车架的固有频率,验证与外部激励发生共振的可能性,同时得出分析结论。 关键词:Hypermesh;车架结构;有限元 中图分类号:TP202文献标识码:A文章编号:1009-3044(2008)12-20569-02 TheModalAnalysisofMobileFrameBasedonHypermesh LULi-fu1,YUELing1,HUANGXue-tao2 (1.Tai'anDongyueHeavyIndustryCo.Ltd.TechnologyCenter,Tai'an271000,China;2.ChinaAutomotiveGroup5levyDesignInstitute,Rizhao262300) Abstract:Thispapermainlydealswiththeanalysisofthefrequenciesofmedium-sizedlorrycar,itverifiestheresponancepossibilityofthefrequencieswiththeexteriorencourageandbringsforwardtheanalysisresult. Keywords:Hypermesh;FrameStructure;FiniteElement 1概述 Altair公司研发的HyperWorks系列产品可以解决工程优化及分析问题,其中的Hypermesh软件可以完成有限元前处理任务,它可以很好的对几何模型数据完整读取,进行有限元的四面体网格和六面体网格的剖分,还有设置完备的网格检查功能,如今Hy-perwork已成为航空、航天、汽车等领域CAE应用的利器之一。 车架结构模态分析是新车型开发中有限元法应用的主要领域之一,是新产品开发中结构分析的主要内容。尤其是车架结构的低阶弹性模态,它不仅是控制汽车常规振动的关键指标而且反映了汽车车身的整体刚度性能,而且,应作为汽车新产品开发的强制性考核内容。实践证明,用有限元法对车架结构进行模态分析,可在设计初期对其结构刚度、固有振型等有充分认识,尽可能避免相关设计缺陷,及时修改和优化设计,使车架结构具有足够的静刚度,以保证其装配和使用的要求,同时有合理的动态特性达到控制振动与噪声的目的。使产品在设计阶段就可验证设计方案是否能满足使用要求,从而缩短设计试验周期,节省大量的试验费用,是提高产品可靠性的有效方法。 2车架有限元模型的建立 车架的Ug模型和有限元模型分别如图1和图2所示。有限元建模在前处理软件HyperMesh中进行。为了保证计算结果的正确性和经济性,在建模过程中尽量保持和原始结构一致的同时,也需要进行必要的简化。因为过于细致地描述一些非关键结构,不但增加建模难度和单元数目,还会使有限元模型的单元尺寸变化过于剧烈而影响计算精度。对于必要的简化要以符合结构主要力学特性为前提。车架结构中的小尺寸结构,如板簧吊耳、副簧限位件等,对车架的整体振型影响不大,可以忽略不计。而对于链接两个零件的铆钉,则采用刚性单元代替。 图1车架模型在UG环境下的实现图2车架结构有限元模型车架结构都采用板壳单元进行离散。单元形态以四边形单元为主,避免采用过多的三角形单元引起局部刚性过大;为了使整个车架有限元模型规模不致过大保证计算的经济性,单元尺寸控制在10~25mm。 车架板壳结构的材料参数取:弹性模量E=2.1e11pa,伯松比u=0.3,密度均取:ρ=7900kg/m3。模型规模:车架单元总数为36378个,节点总数为39064个。 3车架结构振动分析 在汽车设计领域,伴随着计算技术的迅猛发展,有限元分析在汽车数字化开发过程中获得了广泛的应用,尤其是对轿车承载式车身基本力学性能的分析,已经作为新产品开发设计中结构分析的主要内容。然而对于载货车,由于其非承载式的结构且在行驶过程中悬架系统和挠性橡胶垫较好的缓冲、吸振、吸能作用,故对其强度刚度和振动模态特性的要求要低于承载式车身,目前还没有 收稿日期:2008-03-12 569

基于+ANSYS+的混凝土搅拌车副车架的有限元分析

设 计 基于ANSYS的混凝土搅拌车 副车架的有限元分析 高耀东1 李 帅1 孔祥刚2 (1.内蒙古科技大学机械工程学院,内蒙古014010; 2.内蒙古北方巴里巴工程专用车有限公司,内蒙古014033) 摘要:利用ANSYS软件对14m3混凝土搅拌车副车架的静动态特性进行仿真分析。通过CATIA软件建立副车架的三维实体模型,并导入ANSYSY有限元分析软件对模型进行静力分析和模态分析,得到其最大应力的分布情况和固有频率及振型特点。为该类型车辆的进一步改进设计提供了理论指导。 关键词:搅拌车;副车架;有限元分析;静动态特性;模型 中图分类号:TU642 文献标识码:A FiniteElementAnalysisofConcreteMixer SubFrameBasedonANSYS GaoYaodong,LiShuai,KongXianggang Abstract:Emulationalanalysesondynamicandstaticcharacteristicsof14m3concretemixersubframehavebeenimplementedbyapplyingANSYS.ThreedimensionalsolidmodelofsubframehasbeenestablishedthroughCATIA,andstaticstressandmodeanalysesonthemodelhavebeencarriedoutbyquotingANSYSYfiniteelementanalysissoft-ware,finallytoobtainmaximumstressesdistributionstatusesandnaturalfrequenciesaswellasvibrationmodelcharac-teristics,whichprovidedtheoreticguidanceforfurtherdesignimprovementofthistypesofvehicle.Keywords:concretemixer;subframe;finiteelementanalysis;staticanddynamiccharacteristics;model 目前我国生产的混凝土搅拌车多数是由上装部分和通用底盘组装而成的[1]。其中,上装部分由搅拌筒、前后支撑、副车架、液压系统、操纵系统、清洗系统等主要部件组成。副车架起着连接底盘和整个上装部分的重要作用。混凝土搅拌车在行驶过程中,副车架不仅要承受拉伸、扭转、弯曲的复合应力,而且还要受动载荷作用产生冲击、振动。当达到一定的工作次数后,副车架会产生疲劳失效,这也是副车架结构的常见失效形式。 针对上述的实际情况,本文以某厂生产的14m3混凝土搅拌车为研究对象,用ANSYS有限元分析软件对该车型的副车架结构进行静力学分析和模态分析[4],验证该结构是否具有足够的强度和刚度。 收稿日期:2012—10—30 作者简介:高耀东(1966—),内蒙古科技大学教授,东南大学硕士,主要从事CAD、CAE技术的应用和研究工作。 李帅(1987—),内蒙古科技大学硕士研究生,主要从事 CAD、CAE技术的应用和研究工作。1 有限元模型的建立 1.1 副车架结构 该副车架为钢板焊接的纵截面为U型槽钢的箱型结构,主要由2根纵梁、2根横梁、8根X型斜梁组成,长6830mm、宽90mm、高140mm。其几何模型的主要尺寸如图1所示。材料为 Q345-B,弹性模量E=2.06×105MPa,泊松比μ=0.3,质量密度ρ=7850kg/m3,抗拉强度极限σb的范围为470MPa~630MPa,屈服强度极限σs=345MPa。该材料为塑性材料,故选取极限屈服强度作为极限应力,取强度安全系数n=1.4,则有许用应力值[σ]=σs/n=247 MPa。 图1 副车架的主要尺寸 Figure1 Mainsizesofsubframe 1 枟中国重型装备枠No.1CHINAHEAVYEQUIPMENTMarch2013

基于Workbench的赛车车架模态分析

基于Workbench 的赛车车架模态分析 摘要:参照中国大学生方程式汽车大赛竞赛规则,利用SolidWorks 软件建立了车架三维模型,在Workbench 中建立车架梁单元模型,并对车架进行模态分析,求取其前阶模态频率,并利用其振型动 画,找到试验模态的最佳激励点和悬挂点,接着通过试验模态的方法对车架 进行模态测试,将试验数据与仿真结果进行对比,前五阶频率误差不超过 2Hz,结果表明,通过梁单元建立的车架模型会有较高的精 度,可以进行后续的优化设计。 关键词:赛车车架;固有频率;模态测试;模态分析车架作为赛车总成最重要的一部分,其上安装着所有的 零部件,承载着来自各个系统的载荷,车架的结构设计在汽车总体设计中显得非常重要。赛车车架承受着来自道路的各种复杂载荷,在行驶时会由于各种不同振动源激励而产生振动。由于全国方程式赛车比赛时在良好道路条件下进行的,因此路面的激励不是主要激励,发动机激励为赛车车架的主要激励源。本文采用有限元软件Workbench 对某赛车车架进行模态分析,并与实际试验数据进行对比,结果表明利用梁单元建立的车架模型具有较高的精度,可以利用此模型进行后续的优化设计。

1.发动机激励分析 发动机激励是整车最为重要的激励源,如果车架的某阶 频率与发动机激励频率接近,车架将会发生严重的振动,从 而影响赛车的平顺性及可靠性。方程式赛车采用CRF-450单缸4 冲程发动机,转速区间900-9500r/min 。发动机2 阶点火激励为最主要的激励,其频率可以表示为: 2.车架模态测试 2.1模态试验原理试验时赛车车架采用自由悬挂方式,赛车车架用四 根弹 簧绳悬挂,模拟自由约束状态。试验原理图如图1 所示,由 于赛车车架质量只有32.6kg,使用激振器不方便安装,试验 过程中容易晃动造成试验数据不准确,所以试验时使用50KN 的冲击力锤产生激励信号。6 个单向加速度传感器,用于测 量各拾振点的振动信号,DH8302 采集系统用于数据采集及 分析。加速度传感器通过磁座安装在车架钢管上。 2.2模态测试测点和激振点选择与布置方案根据赛车车架的结构特 点,对其进行模态测试时,布置 了一个激振点,57 个测点,分别测取x、y、z 三个方向的加取平均值,模态测试测点及激振点布置如图3 所示,其中红色点位测点位置。 速度信号,为提高测试结果的精度,每个测点敲击4 次,求 2.3模态试验结果

轿车后副车架结构强度与模态分析.

轿车后副车架结构强度与模态分析 郑松林王寅毅冯金芝袁锋李丽 (上海理工大学机械工程学院) 【摘要】 根据某轿车后副车架的实际结构,运用有限元软件Hyperworks对后副车架进行有限元建模。 由有限元模型分析后副车架的结构强度,并计算后副车架的模态。从而反映后副车架可能存在的问题。在理论上为结构的进一步改进提供了重要参考二 【主题词】模态分析后副车架汽车 0 引言 随着轿车技术的不断进步,人们对于轿车的 舒适程度提出了更高的要求。副车架作为底盘系 统重要的承载元件,与车身和悬架系统相连,主要作用是提高悬架系统的连接刚度,减少路面震动

的传人,从而带来良好的舒适性。目前,一些中高 档轿车均采用独立式前后悬架系统,后副车架也 应用得越来越广泛。在设计时不仅要考虑到其强度,同时,为了避免振动和噪声,还要将模态特征作为对后副车架设计的约束条件。本文以某轿车后副车架为例,运用有限元软件对后副车架进行强度分析及模态分析,为轿车后副车架的设计改进提供了理论依据。 1 后副车架有限元模型的建立 后副车架三维模型是运用CATIAV5建立 的。后副车架如图1所示,通过4个悬置与车身相连。 使用Hyperworks软件的Hypermesh模块对3D 模型进行网格划分建立有限元模型。为保证有限 元模型的准确性,尽可能采用了四边形壳单元。 收稿日期:2009一∞一21 ?20?图1后副车架三维模型

考虑到模型的结构尺寸及运算效率采用以下划分标准:最小网格边长>10mm,最大网格边长≤ 20 mm;四边形单元的长宽比≤5,最大角150。,最 小角>30。,雅可比>0.6。三角单元的总数占总单元的比例不超过10%;得到有限元模型如图2所示。 图2后副车架有限元模型 有限元模型计算所使用的普通钢的材料参数 上海汽车2009.11 万方数据 为:密度7.8 x 103 kg/m3;弹性模量210GPa;泊松 比0.3。

汽车前副车架模态分析与参数识别

汽车前副车架模态分析与参数识别 摘要:通过了解模态分析的定义及概念,学习模态参数识别的基本方法与技术,在介绍结构模态试验方法的基础上,以汽车前副车架为研究对象,采用锤击激励法和白噪声激励法进行了模态试验,又用3种模态参数识别软件作模态参数识别,并对识别结果进行误差分析。 关键词:前副车架,模态试验,激振,模态参数识别

Modal analysis and parameters identification of car front subframe Abstract:By understanding the definitions and concepts of modal analysis, modal parameter identification of learning the basic methods and techniques, based on the introduction of structural modal test methods, automobile front subframe for the study, using a hammer and a white noise excitation method encourage a modal test method, and use three kinds of modal parameter identification software for modal parameter identification, error analysis and recognition results. Keyword: front subframe, modal test, exciting, identification modal parameters

车架的模态分析知识讲解

车架的模态分析

Frame模型的模态分析 班级:T943-1 姓名:王子龙 学号:20090430124

Frame模型的模态分析 T943-1-24王子龙20090430124 一、模型问题描述 1、如图所示1,机架为一焊接件,材料为结构钢,在两根长纵梁的八个圆孔内表面采用Cylinder Support约束,分析结构的前6阶固有频率。 2、在短纵梁2另一侧增加一短纵梁,使其于短纵梁1对称,分析新结构的前6阶固有频率,并与 原结构对比。 短纵梁 短纵梁 图1 机架模型 二、模型分析 (一)无预紧力情况 1、导入模型:打开ANSYS Workbench,从左侧工具栏中双击Modal(ANSYS),右击A3项,右键选择 Import Gemetry→Browse,找到文件Frame.x_t点击打开,然后双击A4栏,打开Mechanical窗口。 2、施加约束:选择左侧结构树中的Modal,选择两根长纵梁的八个圆孔内表面,右键选择Insert→ Cylindrical Support,如图2所示。

图2 八圆孔内表面施加约束 3、在solution(A6)中插入Toal Deformation,点击Solve求解,求解结果如图3所示。

图3 无应力时的变形图及6阶频率 (二)有预紧力情况 1、回到Workbench界面,从左侧工具栏中的Static Structural(Ansys)拖至A4栏,如图4所示,双 击B5栏,进入Mechanical窗口。 图4 拖拽Static Stuctual(ANSYS)到A4 2、按住“shift”键,选择A5分支中Cylindrical Support,右键选择Copy,右键单击B5项,选择 Paste。 3、在Static Structual(B5)中施加载荷:选择焊接件底面insert→Force,Force=4000N,如图5所 示。

车架模态分析报告

110ZH车架模态分析报告 编制: 审核: 批准: 2006年 3 月 15 日

第一章 车架模态分析 一、模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了某结构在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 由于车架的结构振动会直接引起驾驶室振动,所以分析三轮摩托车振动时,应对车架进行模态和响应分析,优化车架结构,并从工艺设计上保证乘客的安全、舒适。三轮摩托车车架是一个多自由度弹性振动系统,作用于这个系统的各种激扰力就是使摩托车产生复杂振动的动力源。引起各种激扰力的因素可概括为两类:一是摩托车行驶时路面不平度对车轮作用的随机激振;二是发动机运转时引起的简谐激振。如果这些激励力的激振频率和车架的某一固有频率相吻合时,就会产生共振,并导致在车架上某些部位产生数值很大的共振动载荷,影响乘骑的舒适性,而且往往会造成车架有被破坏的危险。因此,车架的动态设计要求车架具有一定的固有频率和振型,这样才能保证车架具有良好的动态特性。 本次分析主要针对车架进行模态分析,以期预计车架主要模态的固有频率和形状,并借以指导车架改进设计,达到优化摩托车动态性能的目的。 1、模态分析处理 本次分析采用自由边界条件下的模态分析(即不添加任何边界支撑和约束力,计算车架的自由模态。)和添加6个车架的边界条件状态下的模态分析(左右板簧4个,前轮支撑轴承处2个)。 1.1、模型材料参数 车架材料为:Q235,有限元分析过程中材料参数为: 密度 7829 kg/m^3

ANSYS在车架模态分析中的应用

模态分析报告 一.分析目的 图1 熟悉和掌握模态分析的理论及其分析方法,并能够解决工程中的一些问题。 (1)如图1所示,机器为一焊接件,在两根长纵梁的八个圆孔内表面采用Cylinder Support,分析结构的前6阶固有频率。 (2)在短纵梁2另一侧增加一短纵梁,使其于短纵梁1对称,分析新结构的前6阶固有频率,并与原结构对比。 二.建立实体模型 1. 题(1)的模型直接在GM模块中导入图1所示的模型。 启动DM,导入装配体模型。单击File,在其下拉菜单中选择“Import External Geometry File…”,打开“Frame.x_t”,单击“Generate”。即可导入现有模型。导入的模型与题目的图相同。 2.题(2)的模型需要在所给模型的基础上进行冻结、切片、对称的操作。 I.首先在DM模块中,创建Plane4后,选择“Tools”,然后选择“Freeze”将整个模型冻结。 II.在如图2所示的平面上“Creat”-“Slice”,将模型分成三个“body”。选取

三个“body”-“Form New Part”,形成一个整体。 图2 III.新建如图3所示的一个新的平面Plane5。 图3 IV.选择“Creat”-“body Operation”,相对于新建的平面将短纵梁1进行一个“mirror” 的操作。即可得到需要的模型。如图4

图4 三.有限元模型 1. 图1模型采用的单元大小、单元数和节点个数 三.对模型1进行网格划分 划分网格后为图5所示。

2. 图4模型采用的单元大小、单元数和节点个数 三.对模型进行网格划分 划分网格后为图6所示

汽车车架的动力学分析--模态分析

北京科技大学 机械工程进展(论文) 题目:汽车车架的动力分析计算 (模态分析) 院别:机械工程学院 专业班级:机研106班 学生姓名: 学号: 导师: 评分: 2010年11月26日

轻型载货汽车车架模态分析 摘要:车架作为汽车的承载基体,安装着发动机、传动系、转向系、悬架、驾驶室、货厢等有关部件和总成,承受着传递给它的各种力和力矩。所以对车架的结构十分重要。本文主要采用有限元方法对车架的进行模态分析,研究了车架结构与其固有频率及其振型的关系, 给出车架在一定约束下的固有频率及固有振型,为解决车架结构的动力学问题和结构的改进提供了一定的依据。 关键词:有限元方法;车架;固有频率;模态分析 1 引言 车架是一个弹性系统,在外界的时变激励作用下将产生振动。当外界激振频率与系统固有频率接近时,将产生共振。共振不仅使乘员感到很不舒适,还会带来噪声和部件的疲劳损坏,威胁到车架的使用寿命和车辆安全。 车架是一个多自由度的弹性系统。因此,它也有无限多的固有振型,而作用在车架上的激励来自于悬架系统、路面、发动机、传动系等的振动,这些振动对车架的激励可以认为是全频率的,但是,路面和悬架系统对车架结构激励的特点一样,每种激励在所有频率范围内并不是等能量分布的,所以,试图在所有频率上消除作用在车架上的激励,与车架结构的某些振型的共振是不可能。因此,只有将注意力集中在各激励的能量集中的频率上,使之与所关心的车架的某阶振型不发生共振。因而对车架进行模态分析以掌握车架对激振力的响应,从而对车架设计方案的动态特性进行评价,己经成为车架设计过程中必要的工作[1]。 2 模态分析理论基础 在有限元分析程序中,振动方程表示为: 1-1 该方程可作为特征值问题,对无阻尼情况,方程可简化为: 1-2 其中。ω2(固有频率的平方)表示特征值;{μ}表示特征向量,在振动的物理过程 中表示振型,指示各个位置在不同方向振动幅值之间的比例关系,它不随时间变化。对有阻尼情况,振动方程可转化为:

货车车架的建模与模态分析

货车车架的建模与模态分析 摘要:车架作为载货汽车的承载基体,对整车的性能有很大的影响,利用catia软件对汽车车架进行建模,对所建模型划分网格,并对其加载,进行强度和刚度校核,对车架模型进行束模态分析。通过分析,得到车架各阶固有频率和振型,知道车架的弯曲和扭转情况,在车架设计中就可以尽可能地避免共振。 关键词:车架;建模;模态分析 一、课题研究意义 对于载货汽车来说,车架是承受载荷的主体,对整车的性能有很大的影响。上世纪五六十年代,我国对于一般车架的设计及强度校核是依靠传统的经验及方法[1]。这种方法对结构做了大量的简化,因此简单易行,但是设计中很容易出现车架各部分强度分配不合理的现象,达不到对车架进行优化设计的目的。有限元法能对工程实际中几何形状不规则、载荷和支承情况复杂的各种结构以及零部件进行变形计算和应力分析,而车身、车架不论是形状还是载荷都相当复杂,所以有限元法是计算车身、车架的一种有效而实用的工具[2]。利用模态分析,可以从设计上避免车架的共振现象[3]。利用有限元分析的方法,对于加快产品的开发速度、降低设计成本、提高产品竞争力有重要意义。 二、ca1091k2型汽车车架静态分析 1.建立有限元模型和划分网格。首先在保证车架主要特性、确保

网格划分顺利进行的同时对ca1091k2型汽车车架局部简化。利用catia软件对车架进行实体建模,建立的简化后的车架模型如图2-1所示。 图2-1〓简化后的车架模型 对建立的实体模型,利用catia软件中的“分析与仿真模块”来进行模型网格的划分,在此模块中,对横梁、纵梁等其他零件设置各个参数,选用四节点直边单元生成网格,最终建立了69587个节点,划分的单元数为276378个。 2.车架的强度和刚度分析。汽车在实际行驶过程中,车架主要受动载荷的作用[4],而动载荷的大小又取决于动载系数的大小。动载荷系数主要由三个因素决定:道路不平度、汽车的行驶状况(如车速)和汽车的结构参数(如悬架的刚度、车轮刚度、汽车的质量分布等)。 fzs=kxs×■fz (2-1) 其中:kzs为动载系数 kzs=1+■(2-2) 式中:c1、c2——前、后悬架刚度,c1=185n/mm,c2=362n/mm. ?姿——经验系数,取?姿=1000(km/h)2;va——车速,该车取

车架的模态分析

Frame模型的模态分析 班级:T943-1 姓名:王子龙 学号:20090430124

Frame模型的模态分析 T943-1-24王子龙20090430124 一、模型问题描述 1、如图所示1,机架为一焊接件,材料为结构钢,在两根长纵梁的八个圆孔内表面采用Cylinder Support约束,分析结构的前6阶固有频率。 2、在短纵梁2另一侧增加一短纵梁,使其于短纵梁1对称,分析新结构的前6阶固有频率,并与原 结构对比。 图1 机架模型 二、模型分析 (一)无预紧力情况 1、导入模型:打开ANSYS Workbench,从左侧工具栏中双击Modal(ANSYS),右击A3项,右键选择Import Gemetry→Browse,找到文件Frame.x_t点击打开,然后双击A4栏,打开Mechanical窗口。 2、施加约束:选择左侧结构树中的Modal,选择两根长纵梁的八个圆孔内表面,右键选择Insert→ Cylindrical Support,如图2所示。

图2 八圆孔内表面施加约束 3、在solution(A6)中插入Toal Deformation,点击Solve求解,求解结果如图3所示。 图3 无应力时的变形图及6阶频率 (二)有预紧力情况 1、回到Workbench界面,从左侧工具栏中的Static Structural(Ansys)拖至A4栏,如图4所示,双 击B5栏,进入Mechanical窗口。 图4 拖拽Static Stuctual(ANSYS)到A4

2、按住“shift”键,选择A5分支中Cylindrical Support,右键选择Copy,右键单击B5项,选择Paste。 3、在Static Structual(B5)中施加载荷:选择焊接件底面insert→Force,Force=4000N,如图5所示。 图5 施加预紧力 4、在Solution(B6)中插入Equivalent Stress,点击Slove求解,如图6所示。 图6 Equivalent Stress图

相关文档