文档库 最新最全的文档下载
当前位置:文档库 › 电解电容寿命分析

电解电容寿命分析

电解电容寿命分析
电解电容寿命分析

电解电容寿命分析

像其它电子器件应用一样 , 电解电容同样遵循一种被称为“Bathtub Curve”的失效率曲线。

其表征的是一种普遍的器件(设备)失效率趋势。但在实际应用中,电解电容的设计可靠性一般以其实际应用中的期望寿命( Expected Life )作为参考。这种期望寿命表达的是一种磨损失效( wear-our failure )。如下图所示,在利用威布尔概率纸( Weibull Probability Paper )对电解电容的失效率进行分析时可看到在某一使用期后其累进失效率曲线 (Accumulated Fallure Rate) 斜率要远大于 1 ,这说明了电解电容的失效模式其实为磨损失效所致。

影响电解电容寿命的因素可分为两大部分:

1) 电容本身之特性。其中包括制造材料(极片、电解液、封口等)选择及配方,制造工艺及技术(封口方式、散热技术等)。

2) 电容设计应用环境(环境温度、散热方式、电压电流参数等)。

电容器件一旦选定,寿命计算其实可归结为自身损耗及热阻参数的求取过程。

1 、寿命评估方式

电解电容生命终结一般定义为电容量 C 、漏电流( I L)、损耗角( tan δ)这三个关键参数之一的衰退超出一定范围的时刻。在众多的寿命影响因素中,温升是最关键的一个。而温升又是使用损耗的表现,故额定寿命测试往往被定为“在最大工作温度条件下(常见的有 85degC 及 105degC ),对电容施以一定的 DC 及 AC 纹波后,电容关键参数电容量 C 、漏电流( IL )、损耗角( tan )的衰竭曲线”。如下图所示:

2 、环境温度与寿命的关系

一般地(并非绝对),当电容在最大允许工作环境温度以下工作时(一般最低到 + 40degC 的温度范围),电解电容的期望寿命可以根据阿列纽斯理论( Arrhenius theory )进行计算。该理论认为电容之寿命会随温度每十摄氏度的上升而减半(每上升十摄氏度将在原基础上衰减一半)。从而可以得到如下寿命曲线以及用于计算寿命的环境温度函数 f(T ):

环境温度函数 f(T ) :

在一些纹波电流很小以致其在 ESR 上损耗引起的温升远远小于环境温度的作用时(例如与几乎无纹波的 DC 电源并联使用),即可认为电容器里面的热点温度与环境温度相等。一般可以按下式进行寿命计算:

L OP=LoXf(t)

算。纹波函数进行傅立叶变换后会得到倍频于纹波基频的无数正弦波量。要确切地计算出纹波在 ESR 上产生的损耗则需要得到两方面的参数:

a) 纹波函数进行傅立叶变换后对应所有频率的标准正弦波有效值 Irma(f n) 。

b) 对应所有频率的电解电容 ESR 值 Resr(f n)

纹波在各离散频率点的分量(对周期纹波的傅立叶变换或成频谱分析而得)及电容对应各频率点的 ESR 值(电容制造商提供)一旦得到,即可进行简单的Σ Irma(f n)2XRes r(f n) 计算即可得到 ESR 的交流纹波总损耗。

在一些制造商的规格书目中往往没有提供详细的 Resr(fx) 表达式或曲线,而是提供了一个所谓频率系数( Frequency Coefficient )。其物理意义是提供一个转换系数,将其它频率的电流值转化到某一标准频率上(例如 100Hz,120Hz )的等同值。此等同值的电流在对应标准频率的 ESR 上产生的损耗与其原来值在对应其频率的 ESR 上产生的损耗相等。亦可理解为将所有的频率量归一到标准频率上。而在标准频率上提供了一个确切的ESR 量以进行损耗计算。数学表达式如下

Io2× Ro= I(f)2 R(f) èIo :标准频率下的标准正弦电流有效值。

Ro :电容器在标准频率下 ESR 值。

I(f) :某一频率的标准正弦电流有效值。

R(f) :电容器在上述电流频率下 ESR 值。

将任一频率标准正弦电流有效值除以对应的频率系数即可归一到标准正弦电流有效值上。此归一后的值与电容器在标准频率下 ESR 值直接进行 Irms2XResr 计算即可得到其损耗表达。

频率系数并非一固定值,其与要进行转换的频率点及电容种类都有关系,通常可以从规格书目中找到。注意:不同制造商有自己的频率系数对照表或曲线,计算时须找到对应的规格书,不能简单通用。

5 、电解电容的寿命预计算(可参考‘电容寿命设计步骤’一文)

在电路的设计阶段对电解电容进行寿命预计算是进行电容选择及寿命、安全评估的最初方法。然而寿命的预计算却跟制造商、电容种类、使用环境的不同而有不同的计算公式。以上分析只是各应用因素分别对寿命的影响关系。最终的寿命表现将是所有因素的综合作用结果。

虽然各电解电容的寿命计算公式不尽一致(甚至还需要套用一些看似没有任何物理意义的公式),但其还是遵从一定的基本原则:

寿命计算式基本可分成三部分:

(1)基本寿命 Lo :由外壳体积,热辐射性能,制造工艺等决定。最大环境温度及最大纹波电流下的寿命就是基本寿命。厂商都会提供或在产品说明书中注明。给定一个电容,就给定了其 Lo 。

(2)环境温度函数 f(T) :因环境温度致使的电解液的消散速度及其对寿命的影响。(3)纹波电流函数 f(I) :纹波电流在 ESR 上的热损耗及其对寿命的影响。

后两部分因素致使铝电解电容核心温度(电解液温度)上升,电解液的消散速度加快。从而加速了寿命的终结。公式表达如下:

环境温度函数可从上面找到,而纹波电流函数却随所选择的电容器品牌、种类、规格的不同而不尽相同。

下面提供一种物理意义甚为明晰的电解电容寿命计算方法:

在一些制造商(例如 RIFA )提供的计算式,寿命公式中只含有一个简单的热点温度函数 f(Th) 。其实是已经将环境温度及纹波电流的单独作用归结到最终的热点温度作用上。

第一步:获取电容使用环境参数电气参数

( 1 ) Ta: 电容使用的环境温度(℃);

( 2 ) V :风冷速率 (m/S) ;

( 3 ) Rs-a/Rc-s: 电容铝外壳到散热装置及散热装置到环境的热阻的热阻(℃/W );

( 4 ) V O:工作 DC 电压值(计算时不一定使用到);

( 5 ) I=f(t) :工作纹波电流时间域表达式(假设以经选定了容量值 C R);

第二步:初步选定一个电气规格符合要求的电容器并获取如下参数

( 6 ) ESR(f)&ESR(t h): ESR 的频率曲线或频率矩阵以及其温度曲线或温度矩阵;

( 7 ) R H-A or R H-C: 热点到环境的热阻,或,热点到外壳的热阻;

( 8 ) f(t h) :热点温度函数;

( 9 ) K(f): 纹波电流系数

“( 6 )”和“( 9 )”知其一即可。

第三步:工作纹波电流从时间函数表达式进行傅立叶变换得到频域表达式。

实际应用中,工作纹波电流的时间函数表达式和对其进行傅立叶变换是一困难。可借助数学工具进行。

I=f(t) =In: In: 第 n 次谐波的有效值;fn: 第 n 次谐波的频率。

理论上频谱量取得越多,计算结果越准确,但在实际计算中,如无法进行无限量的相加。可以取频谱量中的 95 %以上分量即可。

第四步:纹波电流在 ESR 上的损耗计算

有两种方法:

MTBF寿命计算公式

寿命计算公式 MTBF (平均间隔失效时间)预估 概述 MTBF之计算系依据军用手册MIL-HDBK-217F “电子设备之可靠性预估” 来 进行,此部份涵盖了电子零件实际的应力关系、失效率。MIL-HDBK-217 的基 本版本将保持不变,只有失效率的资料会更新。在评估过程之前,应确定各元 器件的相关特性(如基本失效率、质量等级,环境等级等等)。 定义 “MTBF”的解释为“平均间隔失效时间”而MTBF是由MIL-HDBK- 217E.F计算,以25 C环境温度为参考温度。 电解电容寿命预测 Rubycon 品牌的电解电容的寿命计算公式 L X=Lr X2【(T°-Tx)/1°】X2(A r s/Ao- A Tj/A) L X预测寿命(Hr), Lr:制造商承诺的在最高工作温度(To)及额定纹波电流(Io)下的寿命, To:最高工作温度一105C或85C, Tx:实际外壳温度(C), △Ts:额定纹波电流(Io)下的电解电容中心温升「C), △Tj:实际纹波电流(lx)下的电解电容中心温升(C), A: A= 10 —0.25XZTj,(0

Io:额定的纹波电流值(Arms), R:电解电容的等效串连阻抗(Q), S:电解电容的表面积(cm2), S=dDX(D+ 4L)/4 , B:热辐射常数,一般取3= 2.3 X1O-3XS0.2, D:电解电容的截面积的直径(cm), L:电解电容的高度(cm), nichicon品牌的电解电容的寿命计算公式 2 L X= Lr X2【(To-Tx)/10] x21-(Ix/Io )/K, K:温升加速系数,二10—6X(Tx—75 C)/30 (Tx W75C 时,K 值 取 10) 其余字符的表达含意同上。 其余品牌的电解电容的寿命计算公式 2 b= L r X2【(To-Tx)/10]眾1-(Ix/Io ) ] XZTo/10 △To:最高工作温度下的电解电容中心容许温升(取△T o= 5C), K= 2,纹波电流允许的范围内;K= 4,超过纹波电流允许的范围时。

电解电容寿命分析

电解电容寿命分析: 以下均为简要说明,如有不同看法,请直接点评,同时也为众多LED电源制造商找到一个长寿命的理由。哪些地方不对,请多指教! 我们说一个电解的额定寿命多少小时,都是在其额定参数相同的工作环境下的实际寿命。同时也是设计寿命。 主要影响电解电容寿命的因素有以下几点:环境温度、电压、纹波电流、频率。 1、频率,首先请断定,使用的电解电容为高频电解电容。保证在频率一项不影响您电源的实际工作频率。 2、纹波电流:这个参数在电解规格书里可以查到额定的纹波电流,按照电源本身的纹波电流来选用合适的电解。 以上2项要考虑参数的余量,一般按照1.5倍计算足以。 下面是影响寿命的主要参数 3、环境温度:按照目前最普遍的电容寿命估算方法,实际工作温度比电容额定温度低10度,寿命增加1倍的理论。 额定温度105度,而实测温度为65度105-65=40度也就增加4倍。我们选用额定1万小时的电解电容,即95度时2万小时,85度时4万小时,75度时 8万小时,65度时16万小时,这16万小时暂时先记在这里。 4、工作电压:我们选用的电解额定为63V,实际工作37.2V,我们可以肯定寿命比额定要长,至于长了多少,我们先不管。 以上参数均为我公司的电解选用原则。 再分析一下电解电容的性能衰减特性。 我们说的一个电解电容的寿命结束了,其实并不是所有功能全部失效,而是开始衰减,直到满足不了电解在电路中所起到的作用。那么我们就要看电解在实际电路中所起到的作用,我先说2种用途,1是在PFC电路中,一个是在电源输出端做滤波使用,当电解性能衰减时,PF值会降低,但是即使降低到0.5(不加PFC电路),电源也是一样在工作,输出电流和电压丝毫不会受到影响。而做在输出端作为处理纹波的情况也是一样,只是输出纹波不断增大而已,而这个纹波对LED的确有很大影响,但是绝对不会立刻使LED失效。 所以,综上说述,我们做电源的要做到以下2点: 1、选用正品知名品牌的电解电容 2、设计电路时,充分考虑实际工作参数与电解参数的余量(转载)

铝电解电容的寿命

铝电解电容的寿命 电源产品中经常用到铝电解电容,他的寿命往往决定了整个产品的寿命。因此,了解如何计算铝电解电容的寿命很有必要。下面将我的一些心得整理出来,供大家参考。希望有助于提高国人的知识水平。说白了很简单,只不过很多人找不到相关的资料而已。同时也希望学校的教材中能够近早讲解相关知识。我尽量少翻译,因为我的语言能力及相关的专业术语还不行。仅供参考。 Chapter 1铝电解电容的特性 1.1 Circuit model (等效模型) The following circuit models the al uminium electrolytic capacitor’s normal operation as well as the over voltage and reverse voltage behavior. (此模型包含正常运行,过压,反压时的特性) C A C c R P ESR L D = Anode capacitance (阳极电容) = Cathode capacitance(阴极电容) = Parallel resistance, due to dielectric (并联电阻) = Series resistance, as a result of connections, paper, electrolyte, ect. 等效串联电阻= Winding inductance and connections 等效串联电感 = Over and reverse voltage 等效稳压管 The capacitance Ca and Cc are the capacitance of the capacitor and is frequency and temperature depended. (Ca and Cc,它的容量是频率及温度的函数) The resistance ESR is the equivalent series resistance which is frequency and temperature depended. It also increases with the rated voltage. (ESR是频率及温度的函数,随着额定电压的增加而增加) The inductance L is the equivalen t series inductance, and it’s independent for both frequency and temperature. It increases with terminal spacing. (L是频率及温度的函数) The resistance Rp is the equivalent parallel resistance and accounts for leakage current in the capacitor. It decreases with increasing the capacitance, temperature and voltage and it increases with time. (Rp的大小决定了漏电流的大小,随着容量温度电压的增加而降低,随着使用时间的延长而增加) The zener diode D models the over voltage and reverse voltage behavior. Application of over voltage on the order of 50 V beyond the cap acitor’s surge voltage rating causes high。(D模拟过压及加反向电压时特性)Leakage current and a constant voltage-operating mode quite like the reverse conduction of a zener diode. Applications of reverse voltage much beyond 1.5 V causes high leakage current quite like the forward conduction of a diode. Neither of these operating modes can be maintained for long because hydrogen gas is produced, and the pressure built up will cause failure. (加到电容两端的反向电压不能大于1.5V) 1.2 Capacitance (电容的容量) The rated capacitance is the nominal capacitance and it is specified at 120 Hz and a temperature of 25°C. Capacitance is a measure of the energy storage capability of a capacitor at a given voltage. (额定容量:标称电压,120Hz, 25°C时测量)。 The capacitance decreases under load conditions and increases under no load conditions over time. When

铝电解电容寿命计算公式

寿命计算式
改版
铝电容器 推定寿命计算式
http://www.chemi-con.co.jp
上海贵弥功贸易有限公司
1
CONFIDENTIAL(秘密的)

寿命计算式
寿命计算式 目录
? 寿命计算式
A) DC加载保证品 B) 纹波电流加载保证品 C) 螺丝端子型(额定电压350V以上) 螺丝端子型(额定电压 以上) D) 导电性高分子电容器
? 温度测定方法
A) 周围温度测定方法 B) 单元中心发热温度测定方法 1) 单元中心温度测定 2) 周围温度/电容器表面温度测定 3) 纹波电流测定 >>> 发热温度计算
注意事项
纹波电流频率修正系数与温度修正系数使用方法
CONFIDENTIAL(秘密的)
2

寿命计算式
推定寿命计算式
A) DC加载保证品 ) 加载保 品
Lx L = Lo × 2
Tx ? To 10
×2
? ?T 5
Lx (hrs):推定寿命 Lo (hrs):保证寿命 Tx (℃):最大可能周围温度 To (℃):实际使用周围温度 ( ) 纹波电流发热温度 ⊿T (℃):纹波电流发热温度 <应用系列> 贴片型:全般 引钱型:SRM/SRE/KRE/SRA/KMA/SRG/KRG/SMQ/SMG/ 引钱型 SRM/SRE/KRE/SRA/KMA/SRG/KRG/SMQ/SMG/ SME-BP/KME-BP/LLA
CONFIDENTIAL(秘密的)
3

电解电容纹波及寿命测试方法

Electrolytic Capacitor Ripple Current Derating Test Method and Life Time Evaluation From:郭雪松 Date:Oct-27-04 一.SPEC 1.电解电容零件工程规格书中之Standard Rating表格,其中规定了不同规格的电解电容Rated Ripple Current值,例如:Sharp机种PWPC C904(滤波电容) 67L215L-820-15N (CNN公司KXG Series) 2.此电容用于电源输入端滤波,因此采用120Hz时的Rated Ripple Current规格715mA。 3.而用于评估电解电容Ripple Current之Spec要依据以下公式: SPEC=Spec(component)×频率系数(FM)×温度系数(TM)注:FM/TM取值方法见附表 4.OTPV 评估电解电容Ripple Current的Derating规格为85%,因此测试值

线电流的有效值(rms),测试时要调整输入电压值(90V~264V)达到纹波电流最大。见图示: Irms 三.附表(FM&TM取值方法):NCC公司产品为例 1.Multiplying Factors on KMG Series(radial lead type) Frequency Multipliers Temperature Multipliers 2. Multiplying Factors on KY Series Frequency Multipliers

电解电容寿命分析

电解电容寿命分析 像其它电子器件应用一样 , 电解电容同样遵循一种被称为“Bathtub Curve”的失效率曲线。 其表征的是一种普遍的器件(设备)失效率趋势。但在实际应用中,电解电容的设计可靠性一般以其实际应用中的期望寿命( Expected Life )作为参考。这种期望寿命表达的是一种磨损失效( wear-our failure )。如下图所示,在利用威布尔概率纸( Weibull Probability Paper )对电解电容的失效率进行分析时可看到在某一使用期后其累进失效率曲线 (Accumulated Fallure Rate) 斜率要远大于 1 ,这说明了电解电容的失效模式其实为磨损失效所致。 影响电解电容寿命的因素可分为两大部分: 1) 电容本身之特性。其中包括制造材料(极片、电解液、封口等)选择及配方,制造工艺及技术(封口方式、散热技术等)。 2) 电容设计应用环境(环境温度、散热方式、电压电流参数等)。 电容器件一旦选定,寿命计算其实可归结为自身损耗及热阻参数的求取过程。 1 、寿命评估方式 电解电容生命终结一般定义为电容量 C 、漏电流( I L)、损耗角( tan δ)这三个关键参数之一的衰退超出一定范围的时刻。在众多的寿命影响因素中,温升是最关键的一个。而温升又是使用损耗的表现,故额定寿命测试往往被定为“在最大工作温度条件下(常见的有 85degC 及 105degC ),对电容施以一定的 DC 及 AC 纹波后,电容关键参数电容量 C 、漏电流( IL )、损耗角( tan )的衰竭曲线”。如下图所示: 2 、环境温度与寿命的关系 一般地(并非绝对),当电容在最大允许工作环境温度以下工作时(一般最低到 + 40degC 的温度范围),电解电容的期望寿命可以根据阿列纽斯理论( Arrhenius theory )进行计算。该理论认为电容之寿命会随温度每十摄氏度的上升而减半(每上升十摄氏度将在原基础上衰减一半)。从而可以得到如下寿命曲线以及用于计算寿命的环境温度函数 f(T ): 环境温度函数 f(T ) : 在一些纹波电流很小以致其在 ESR 上损耗引起的温升远远小于环境温度的作用时(例如与几乎无纹波的 DC 电源并联使用),即可认为电容器里面的热点温度与环境温度相等。一般可以按下式进行寿命计算: L OP=LoXf(t)

电解电容寿命

1 影响电解电容寿命的因素 电解电容的寿命取决于其内部温度。因此,电解电容的设计和应用条件都会影响到电解电容的寿命。从设计角度,电解电容的设计方法、材料、加工工艺决定了电容的寿命和稳定性。而对应用者来讲,使用电压、纹波电流、开关频率、安装形式、散热方式等都影响电解电容的寿命。 2 电解电容的非正常失效 一些因素会引起电解电容失效,如极低的温度,电容温升(焊接温度,环境温度,交流纹波),过高的电压,瞬时电压,甚高频或反偏压;其中温升是对电解电容工作寿命(Lop)影响最大的因素。 电容的导电能力由电解液的电离能力和粘度决定。当温度降低时,电解液粘度增加,因而离子移动性和导电能力降低。当电解液冷冻时,离子移动能力非常低以致非常高的电阻。相反,过高的热量将加速电解液蒸发,当电解液的量减少到一定极限时,电容寿命也就终止了。在高寒地区(一般-25℃以下)工作时,就需要进行加热,保证电解电容的正常工作温度。 电容器在过压状态下容易被击穿。电解电容的电压选择一般进行二级降额,降到额定值的80%使用较为合理。 3 寿命影响因素分析 除了非正常的失效,电解电容的寿命与温度有指数级的关系。因使用非固态电解液,电解电容的寿命还取决于电解液的蒸发速度,由此导致的电气性能降低。这些参数包括电容的容值,漏电流和等效串联电阻,影响电解电容寿命的几个直接因素:纹波电流(IRMS)和等效串联电阻值(ESR)、环境温度(Ta)、从热点传递到周围环境的总的热阻(Rth)。电容内部温度最高的点,叫热点温度(Th)。热点温度值是影响电容工作寿命的主要因素。而下列因素又决定了热点温度值实际应用中的外界温度(环境温度Ta), 从热点传递到周围环境的总的热阻(Rth)和由交流电流引起的能量损耗(PLOSS)。电容的内部温升与能量损耗成线形关系。 电容充放电时,电流在流过电阻时会引起能量损耗,电压的变化在通过电介质时也会引起能量损耗,再加上漏电流造成的能量损耗,所有的这些损耗导致的结果是电容内部温度升高。 电解液通过密封垫的蒸发决定了长寿命的电解电容工作时间。当电容的电解液蒸发到一定程度,电容将最终失效(这个结果会因内部温升而加速)。同时存放的时间越长,质量下降的比例越大。 电容寿命计算方法: Lx=L0(或者LR)*KT*KR1(或者KR2)*Kv Lx:电容预期寿命 L0/LR:电容加速寿命,可以查阅电容规格书.(如果资料提供在最高温度下的数据(如2000小时),则用L0,后面对应KR1;如果资料提供最高温度、施加可允许最大文波电流下的数据,则用LR,后面对应KR2) KT:环境温度影响系数(每升高10度,寿命降低一半) KT等于2的(T0-Tx)/10次方(公式不好编辑,这样写大家应该能明白) T0:电容最高工作温度(85或105) Tx:电容实际工作温度 KR1/KR2:纹波电流影响系数. KR1与L0对应,等于2的-T/5次方.T:纹波电流所引起的电容内部温升 KR2与LR对应,等于2的(Tm-T)/5次方,Tm:施加最大电容允许文波电流所引起的电

MTBF寿命计算公式

寿命计算公式MTBF(平均间隔失效时间)预估 概述 MTBF之计算系依据军用手册MIL-HDBK-217F“电子设备之可靠性预估”来 进行,此部份涵盖了电子零件实际的应力关系、失效率。MIL-HDBK-217的 基本版本将保持不变,只有失效率的资料会更新。在评估过程之前,应确 定各元器件的相关特性(如基本失效率、质量等级,环境等级等等)。 定义 “MTBF”的解释为“平均间隔失效时间”而MTBF是由MIL-HDBK-217E.F 计算,以25℃环境温度为参考温度。 电解电容寿命预测 Rubycon品牌的电解电容的寿命计算公式 L X=Lr×2[(To-Tx)/10]×2(ΔTs/Ao-ΔTj/A), L X:预测寿命(Hr), Lr:制造商承诺的在最高工作温度(To)及额定纹波电流(Io)下的寿命, To:最高工作温度—105℃或85℃, Tx:实际外壳温度(℃), ΔTs:额定纹波电流(Io)下的电解电容中心温升(℃), ΔTj:实际纹波电流(Ix)下的电解电容中心温升(℃), A:A=10-0.25×ΔTj,(0≤ΔTj≤20) Ao:Ao=10-0.25×ΔTs, 其中 ΔTs=α×ΔTco=α×Io2×R/(β×S), ΔTj=α×ΔTcx=α×Ix2×R/(β×S), ΔTco:额定纹波电流(Io)下的电解电容外壳温升(℃), ΔTcx:实际纹波电流(Ix)下的电解电容外壳温升(℃), α:电解电容中心温升与外壳温升的比例系数, Ix:纹波电流的实际测量值(Arms), Io:额定的纹波电流值(Arms), R:电解电容的等效串连阻抗(Ω), S:电解电容的表面积(cm2),S=πD×(D+4L)/4,

铝电解电容器寿命与温度之间的关系

铝电解电容器与温度之间的关系 BIT 销售经理郑淋先生 现如今市场上铝电解电容器的温度标准有85度、105度、125度、130度等几种,很多工程师的选择的时候不是很在意这个问题,所以就会导致很多时候电容没用多长时间就出问题。 铝电解电容器作为电子产品的重要部件,在电路中起着不可或缺的作用,它的使用寿命和工作状况与整体产品的寿命息息相关。当电路中铝电解电容器发生损坏,特别是铝电解电容器爆炸,电解液外溢时,那到底是电容器的质量出问题还是整体线路设计不合理呢?了解铝电解电容器的寿命与温度之前的关系,能为电子工程师提供一些判断依据。 阿列纽斯方程是用来描述化学物质反应速率随温度变化关系的经验公式。电解电容内部是由金属铝等和电解液等化学物质组成的,所以电解电容的寿命与阿列纽斯方程密切相关。 阿列纽斯方程公式:k=Ae-Ea/RT或lnk=lnA—Ea/RT(作图法) K化学反应速率, R为摩尔气体常量, T为热力学温度,

Ea 为表观活化能, A 为频率因子 根据阿列纽斯方程可知,温度升高,化学反应速率(寿命消耗)增大,一般来说,环境温度每升高10℃,化学反应速率(K 值)将增大2-10倍,即电容工作温度每升高10℃,电容寿命减小一倍,电容工作温度每下降10℃,其寿命增加一倍,所以,环境温度是影响电解电容寿命的重要因素 根据阿列纽斯方程结论可知,铝电解电容器使用寿命与温度之间的计算公式如下 L=L 0×2T0?T110 L:环境温度为T1时铝电解电容器的使用寿命,单位:H L 0:额定寿命,单位:H T 0:额定最高使用温度,单位:℃ T 1:环境温度,单位:℃ 举例说明:如果产品的额定温度为85度,2000小时的额定寿命,那么如果环境温度在55度时,铝电解电容器的使用寿命则为16000小时(约1.8年),那换成BIT 的铝电解电容器呢,那么同样是85度的产品,那使用寿命则为24000小时(约2.7年),

电解电容寿命设计

一、电解电容寿命设计 本文主要是通过纹波电流的计算,然后通过电容的热等效模型来计算电容中心点的温度,在得到中心点温度后,也就是得到电容的工作点最高的问题后,通过电容的寿命估算公式来估算电容的设计寿命。 首先,电容等效成电容、电阻(ESR )和电感(ESL )的串联。关于此请参考其他资料,接下来演示电容寿命计算步骤: 1 、纹波电流计算 纹波电流计算是得到电容功率损耗的一个重要参数,在设计电容时候,我们必须首先确定下来电流的纹波大小,这和设计规格和具体拓扑结构相关。铝电解电容常被用在整流模块后以平稳电压,我们在选择好具体拓扑结构后,根据规格要求得到最小的电容值: 控制某一纹波电压所需的电容容值为: P: 负载功率(单位W ) 注意:这是应用所需要的最小电容容值。此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。 必须知道主线及负载侧的纹波电流数据。可以首先计算出电容的充电时间。 f main是电网电流的频率。 电容的放电时间则为:

充电电流的峰值为 dU 是纹波电压(U max – U min) 则充电电流有效值: 接下来计算放电电流峰值和有效值。 最后计算得出:整流模块后纹波电流: 这个有效值只是纹波电流的计算式,在复杂的市电输入的情况下,我们必须考虑各阶谐波的纹波有效值,也就是说要通过各阶谐波的有效值叠加,才是最后得到的电容纹波寿命计算的纹波,也就是需要将电流傅立叶分解。 2 、计算功率损耗 在得到纹波电流后,我们可以计算各阶电流的纹波损耗,然后将各阶纹波求和: 3 、计算电容中心点温度 得到功率损耗后,我们由电容的热等效模型(参考其他资料)计算中心点温度:

铝电解电容寿命计算

最近在网上寻找资料,获益非浅。不能光索取而不奉献,花了一周的时间,牺牲了晚上和周末,得罪了夫人。当然了,整理过程中,自己也有所提高。同时也呼吁大家行动起来,多总结经验形成文字。当然了,年轻人有所保留是可以理解的,毕竟为了减少竞争者;但是有些人说自己是退休者,为啥如此吝啬或障碍重重? 网络是一个虚拟世界,现实生活已经有如此众多的虚伪,面子,为啥还要将其带入网络中呢?多么希望技术栏目中能恢复人与人间的真诚与无私奉献,体现出知识分子.学者.工程师的风范。当然,许多人不错,但是更多的人让我感觉差劲。我很少上网,也不愿与人争吵,只是提出个人的感受而已。 铝电解电容的寿命 电源产品中经常用到铝电解电容,他的寿命往往决定了整个产品的寿命。因此,了解如何计算铝电解电容的寿命很有必要。下面将我的一些心得整理出来,供大家参考。希望有助于提高国人的知识水平。说白了很简单,只不过很多人找不到相关的资料而已。同时也希望学校的教材中能够近早讲解相关知识。我尽量少翻译,因为我的语言能力及相关的专业术语还不行。仅供参考。 Chapter 1铝电解电容的特性 1.1 Circuit model (等效模型) The following c ircuit models the aluminium electrolytic capacitor’s normal operation as well as the over voltage and reverse voltage behavior. (此模型包含正常运行,过压,反压时的特性) C A C c R P ESR L D = Anode capacitance (阳极电容) = Cathode capacitance(阴极电容) = Parallel resistance, due to dielectric (并联电阻) = Series resistance, as a result of connections, paper, electrolyte, ect. 等效串联电阻= Winding inductance and connections 等效串联电感 = Over and reverse voltage 等效稳压管 The capacitance Ca and Cc are the capacitance of the capacitor and is frequency and temperature depended. (Ca and Cc,它的容量是频率及温度的函数) The resistance ESR is the equivalent series resistance which is frequency and temperature depended. It also increases with the rated voltage. (ESR是频率及温度的函数,随着额定电压的增加而增加) The inductanc e L is the equivalent series inductance, and it’s independent for both frequency and temperature. It increases with terminal spacing. (L是频率及温度的函数) The resistance Rp is the equivalent parallel resistance and accounts for leakage current in the capacitor. It decreases with increasing the capacitance, temperature and voltage and it increases with time. (Rp的大小决定了漏电流的大小,随着容量温度电压的增加而降低,随着使用时间的延长而增加) The zener diode D models the over voltage and reverse voltage behavior. Application of over voltage on the order of 50 V beyond the capacitor’s surge voltage rating causes high。(D模拟过压及加反向电压时特性)Leakage current and a constant voltage-operating mode quite like the reverse conduction of a zenerdiode. Applications of reverse voltage much beyond 1.5 V causes high leakage current quite like the forward conduction of a diode. Neither of these operating modes can be maintained for long because hydrogen gas is produced, and the pressure built up will cause failure. (加到电容两端的反向电压不能大于1.5V)

纹波电容计算

本文主要是通过纹波电流的计算,然后通过电容的热等效模型来计算电容中心点的温度,在得到中心点温度后,也就是得到电容的工作点最高的问题后,通过电容的寿命估算公式来估算电容的设计寿命。 首先,电容等效成电容、电阻( ESR )和电感( ESL )的串联。关于此请参考其他资料,接下来演示电容寿命计算步骤: 1 、纹波电流计算,纹波电流计算是得到电容功率损耗的一个重要参数,在设计电容时候,我们必须首先确定下来电流的纹波大小,这和设计规格和具体拓扑结构相关。铝电解电容常被用在整流模块后以平稳电压,我们在选择好具体拓扑结构后,根据规格要求得到最小的电容值: 控制某一纹波电压所需的电容容值为: P: 负载功率(单位 W ) 注意:这是应用所需要的最小电容容值。此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。 必须知道主线及负载侧的纹波电流数据。可以首先计算出电容的充电时间。 f main是电网电流的频率。 电容的放电时间则为: 充电电流的峰值为 dU 是纹波电压( U max – U min)

则充电电流有效值: 接下来计算放电电流峰值和有效值。 最后计算得出:整流模块后纹波电流: 这个有效值只是纹波电流的计算式,在复杂的市电输入的情况下,我们必须考虑各阶谐波的纹波有效值,也就是说要通过各阶谐波的有效值叠加,才是最后得到的电容纹波寿命计算的纹波,也就是需要将电流傅立叶分解。 2 、计算功率损耗 在得到纹波电流后,我们可以计算各阶电流的纹波损耗,然后将各阶纹波求和: 3 、计算电容中心点温度 得到功率损耗后,我们由电容的热等效模型(参考其他资料)计算中心点温度: 其中: Th 电容为电容中心点温度 , 为电容最高温度,其值直接影响到电容寿命,是电容寿命计算公式中的重要参数。 Rth 为电容的热阻,其值和风速等有关 ,Ta 表示电容表面温度。 P Loss 为纹波电流的中损耗。 4 、计算电容寿命 得到电解电容中心点最高温度后,我们可以计算电容的寿命,各个电容生产厂商会有不同的电容寿命的计算参数,也有不同的电容寿命修正值,现我们介绍阿列纽斯理论来计算电容寿命,其公式是说,电容工作没下降 10 度,其寿命增加一倍,反过来也就是电容温度升高 10 度,电容寿命减小一倍:

电解电容寿命计算方法

电解电容寿命计算方法 寿命估算(Life Expectancy):电解电容在最高工作温度下,可持续动作的时间。Lx=Lo*2(To-Ta)/10 Lx=实际工作寿命 Lo=保证寿命 To=最高工作温度(85℃or105℃) Ta= 电容器实际工作周围温度 Example:规范值105℃/1000Hrs 65℃寿命推估:Lx=1000*2(105-65)/10 实际工作寿命:16000Hrs 高温负荷寿命(Load Life)将电解电容器在最高工作温度下,印加额定工作电压,经一持续规定完成时间后,须符合下列变化:Δcap:试验前之值的20%以内tanδ:初期特性规格值的200%以下 LC :初期特性规格值以下 高温放置寿命(Shelf Life):将电解电容器在最高工作温度下,经一持续规定完成时间后,须符合下列变化:Δcap: 试验前之值的20%以内 tanδ:初期特性规格值的200%以下 LC:初期特性规格值以下 高温充放电试验(Charge/Discharge Test)将电解电容器在最高工作温度下,印加额定工作电压,经充电30秒后再放电330秒为一cycle,如此经1,000 cycles 后,须符合下列变化:Δcap : 试验前之值的10%以内 tanδ : 初期特性规格值的175%以下 LC : 初期特性规格值以下 纹波负荷试验(Ripple Life)将电解电容器在最高工作温度下,印加直流电压及最大纹波电流(直流电压+最大涟波电压峰值=额定工作电压),经一持续规定完成时间后,须符合下列变化:Δcap : 试验前之值的20%以内 tanδ : 初期特性规格值的200%以下 LC : 初期特性规格值以下 常用电解电容公式 容抗 : XC=1/(2πfC) 【Ω】 感抗 : XL=2πfL 【Ω】 阻抗: Z=√ESR2+(XL-XC)2 【Ω】 纹波电流: IR=√(βA△T/ESR) 【mArms】 功率 : P=I2ESR 【W】 谐振频率 : fo=1/(2π√LC) 【Hz】

电解电容寿命的计算方法

Load life If the capacitor`s max.operating temperature is at 105℃(85℃),then after applying capacitor`s rated voltage (WV) for Lo hours at 105℃(85℃),the capacitor shall meet the requirements in detail specification. where L0 is called ”load life” or “useful life (lifetime) at 105℃(85℃)”. L x=L0x2(To-Tx)/10x2—△Tx/5where △T x=△T0x(I x/I0)2 Ripple life: If the capacitor`s max .operating temperature is at 105℃(85℃),then after applying capacitor`s rated voltage (WV) with the ripple current for Lr hours at 105℃(85℃),the capacitor shall meet the requirements in detail specification . where Lr is called ”ripple life” or ”useful ripple life (ripple lifetime) at105℃(85℃) ”. Lx= L r x2(To-Tx)/10x2(△To-△Tx)/5where △T x=△T0x(Ix/I0)2 The (ripple) life expectancy at a lower temperature than the specified maximum temperature may be estimated by the following equation , but this expectancy formula does not apply for ambient below+40℃. L0 = Expected life period (hrs) at maximum operating temperature allowed Lr = Expected ripple life period (hrs) at maximum operating temperature allowed Lx = Expected life period (hrs) at actual operating temperature T0 = Maximum operating temperature (℃) allowed Tx = Actual operating ambient temperature(℃) Ix = Actual applied ripple current (mArms) at operating frequency fo (Hz) I0 = Rated maximum permissible ripple current IR (mArms) x frequency multiplier (C f) at f0 (Hz) △T0≦5℃= Maximum temperature rise (℃) for applying Io (mArms) △Tc = Temperature rise (℃) of capacitor case for applying Ix (mA/rms) △T x = Temperature rise (℃) of capacitor element for applying Ix (mArms) = K c△T c= K c(T c-T x) where T c is the surface temperature (℃) of capacitor case Tx is ditto. K c is transfer coefficient between element and case of capacitor From table below: Dia ≦8Φ10Φ12.5Φ13Φ16Φ18Φ22Φ25Φ30Φ35Φ Kc 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.50 1.65

铝电解电容器寿命的计算方法

铝电解电容器寿命的计算方法 LIFETIME CALCULATION FORMULA OF ALUMINUM ELECTROLYTIC CAPACITORS 铝电解电容的寿命的计算公式 1. Lifetime Calculation Formula 寿命计算公式 L : Life expectancy at the time of actual use. 实际使用平均寿命 Lb : Basic life at maximum operating temperature 最大工作温度下的基本寿命Tmax : Maximum operating temperature 最大工作温度 Ta : Actual ambient temperature 实际环境温度 ΔTjo : Internal temperature rise when maximum rated ripple current is https://www.wendangku.net/doc/205226830.html,R, USC, USG : 10℃VXP : 3.5℃Other type : 5℃ 加上最大额定波纹电流后,电容器的内部温升USR, USC, USG ::10℃VXP : 3.5℃其它类型:5℃ ΔTj : Internal temperature rise when actual ripple current is applied. 加入实际波纹电流后,电容内部的温升 F : Frequency coefficient 频率系数[这个不李理解] Io : Rated ripple current at maximum operating temperature 最高工作温度时的额定波纹电流 I : Actual ripple current 实际波纹电流 2. Ambient Temperature Calculation Formula 环境温度计算公式 If measuring ambient temperature (Ta) is difficult, Ta can be calculated from surface temperature of the capacitor as follows. .Ta = Tc –ΔTj/α如果测量环境温度Ta有困难,Ta可以根据电容器的表面温度按下式计算:Ta = Tc –ΔTj/α Ta : Calculated ambient Temperature 计算所使用的环境温度 Tc : Surface Temperature of capacitor 电容器的表面温度 α : Ratio of case top and core of capacitor element [此处不太理解] CaseφD ≤ 8 10,12.5 16, 18 20, 22 25 30 35 α 1.0 1.1 1.2 1.3 1.4 1.5 1.6 3. Ripple Current Multiplier 额定电流系数 (1) Temperature coefficient 温度系数 Temperature coefficients are shown as below. 温度系数选取如下:

电容寿命计算公式

RIFA、Nichicon、Rubycon的电解电容计算公式 电解电容寿命计算是电容电路设计的最关键的一步,它直接考量电容的设计寿命,电容寿命主要受到温度的影响,所以在设计时候考虑到热源和风道,是提高电容寿命的有效方式,在设计时尽量让电容远离热源,通风好,有时利用强制风冷的方式,尽量让电容工作于低温情况下。关于电容的寿命计算步骤这里不详述,请参考“电解电容寿命设计步骤”一文,以下主要介绍rifa ,nichicon ,Rubycon 电容寿命得计算公式。 1、nichicon 的电解电容寿命计算公式 nichicon 的电解电容寿命计算公式分为两种:a 、大封装电解电容(large can type );b 、小封装(miniature type )的电容,以下针对两种电容分别列出其计算公式。 A、large can type 电容结算公式如下: 其中: Ln: 估算之寿命(在环境温度Tn 和总纹波In ) Lo: 在最大允许工作温度To 和最大允许工作纹波Im 条件下的额定寿命 To: 最大允许工作温度 Tn: 环境温度 to: 在最大允许工作温度To 和最大允许工作纹波电流Im 条件下内部温升量 Im :在最大允许工作温度To 条件下的最大允许工作纹波电流有效值(在标准频率条件下的正弦波) In :实际应用的纹波电流有效值 Δ tn: 在环境温度Tn 和纹波电流In 条件下致使的内部温升 K: 因纹波损耗引起温升的加速系数

(Tn 从实际应用环境获得,In 根据其规格书中的纹波系数将实际纹波有效值归一到标准频率上的有效值。其它参数可从规格书中得到) 以上公式给出的是一个基本寿命与环境温度函数、热点温度及纹波电流函数之积。其内部温升Δ tn 估算并非由电阻损耗计算方式,而是提供了一个参考点值和相应的比例转换公式。此公式关键点是归一到标准频率的等效电流有效值In 的求解。 B、miniature type 对小封装的电容有两种情况,对应不同情况有两种计算公式 (a)使用规格书的L 值 L: 在最大允许工作温度To 和额定DC 电压条件下的额定寿命 Bn: 因实际应用纹波损耗引起温升的加速系数; α:寿命常数。 其它参数与“ Large Can type ”相同。 2、rifa 电容的寿命计算公式 rifa 电容的寿命计算公式利用阿列纽斯理论来计算,其原意为温度每升高10 度,电解电容寿命降低一半,RIFA 电容中计算中不一定都是10 度,有些是12 度或别的,具体参考规格书。 其寿命计算公式如下:

相关文档