文档库 最新最全的文档下载
当前位置:文档库 › 铁芯极限磁滞回线低压测试系统_崔恒志

铁芯极限磁滞回线低压测试系统_崔恒志

铁芯极限磁滞回线低压测试系统_崔恒志
铁芯极限磁滞回线低压测试系统_崔恒志

0引言

太阳磁暴、直流输电单极运行等因素可能引起变压器及电流互感器中性点的直流偏磁。直流偏磁会导致变压器铁心温升增加、噪声和振动增加,危及变压器的安全运行。直流偏磁也会加速保护用CT的饱和,偏磁电流越大CT饱和越快,严重时将导致保护误动。另外,直流偏磁会使计量用CT的角差和比差增大,导

致计量结果失真[1-2]。关于直流偏磁对变压器和互感器造成危害的事例,在国内外已有多起,引起了电力和制造部门的高度重视。

研究直流偏磁对变压器和互感器影响的主要电磁暂态仿真方法包括:EMTP/ATP电磁暂态仿真软件、MATLAB的PSB工具箱软件[4-5]、基于Preisach理论的

电磁仿真方法[6-7]。以上仿真方法需要一个共同的输入参数:铁磁材料的极限磁滞回线。但经过课题组调研发现,铁磁材料厂家一般不直接提供极限磁滞回线数据,所以只能通过励磁实验来获取铁芯材料的极限磁滞回线数据。常用的磁滞回线测量方法有示波器

法、冲击电流计法[8-12],但公开文献大多只是给出了磁滞回线的测量原理,没有给出得到极限回线所涉及的方案设计和实际测量时的细节问题,例如,如何解决直接对电流互感器铁芯进行测量所需要的高压励磁问题。

铁芯极限磁滞回线低压测试系统

崔恒志1,蔡霁霖2,黄奇峰1,王忠东1,卢树峰1,杨世海1,周赣2(1.江苏省电力公司电力科学研究院,南京211103;2.东南大学电气工程学院,南京210096)

摘要:铁芯极限磁滞回线是电力电流互感器仿真的基本参数,电力电流互感器的尺寸较大,直接测量需要高压励磁。为了能够在电气实验室中利用常用设备测量铁芯极限磁滞回线,文章研究一种铁芯极限磁滞回线的低压测试系统,详细提出了测试系统的结构、定制铁芯的设计流程、测试步骤及测试数据的处理方法。通过两组实验验证了该测试系统的可行性和先进性。实验结果表明,利用该系统能够在150V以下的低压以及10A以下的小电流条件下精确地测量铁芯材料的极限磁滞回线。

关键词:铁芯;极限磁滞回线;低压;测试

中图分类号:TM936文献标识码:B文章编号:1001-1390(2013)07-0053-05

Low-Voltage Measuring System for Limiting Magnetic Hysteresis Loop of

Iron Core

CUI Heng-zhi1,CAI Ji-lin2,HUANG Qi-feng1,WANG Zhong-dong1,LU Shu-feng1,YANG Shi-hai1,ZHOU Gan2(1.Electric Power Research Institute,Jiangsu Electric Power Company,Nanjing211103,China.

2.School of Electrical Engineering,Southeast University,Nanjing210096,China)

Abstract:Because the limiting magnetic hysteresis loop(LMHP)of iron core is a basic parameter for power current transformer(CT)simulation,and the size of power CT is usually large,the high-voltage condition is unavoidable for measuring LMHP of power CT straightly,this paper studies a low-voltage LMHP measuring system for the purpose of measuring the LMHP with common instruments in the electrical laboratory.The framework of the measuring system, the design flow of customized iron core,and the measuring steps and data handling method are presented in detail. Two groups of experiments have been carried out to verify the feasibility of this measuring system.The results of the experiments show that LMHP can be measured precisely using the proposed system in the condition that the voltage is below150V and the current is below10A.

Key words:iron core,limiting magnetic hysteresis loop,low voltage,measure

本文提出了一种铁芯极限磁滞回线的低压测试系统,详细说明了测试系统的结构、定制铁芯的设计流程、测试步骤及测试数据的处理方法。通过合理设计定制铁芯的尺寸以及初级、次级线圈的匝数,使极限磁滞回线的测量能够在150V 以下的低压以及10A 以下的小电流条件下进行,实验所需设备都是电气实验室的常用设备,实验步骤简明。通过两组极限磁滞回线测量实验验证了该测试系统的可行性和先进性。1测量原理

1.1磁场强度测量原理

根据安培环路定理:

H d 乙

l =Ni

(1)

式中H 为环路中的磁场强度,

l 为磁路长度,N 为激磁绕组匝数,i 为流过激磁绕组的电流。由于铁芯的导磁率远大于空气的导磁率(漏磁可忽略不计),铁芯中的磁场强度可按下式计算:

H =N 1i L

(2)

式中N 1为初级线圈的匝数(初级线圈励磁,次级线圈开路);i 为初级线圈中的励磁电流;L 为铁芯的等效磁路长度。

依据式(2)可用初级线圈电流i 计算出磁场强度H 。1.2磁感应强度测量原理根据电磁感应定律:

u 2=N 2S

d B d t

(3)

式中u 2为次级线圈感应电压的瞬时值;

N 2为次级线圈的匝数;B 为铁芯中的磁通密度;S 为铁芯的截面积。式(3)可化为:

B =1

N 2S

乙u 2d t

(4)

记录电压u 2的数值,

再用式(4)进行积分就可以计算出B 值。根据上述B 和H 的数值便可复现铁芯材料对应的磁滞回线[8]

2测试系统结构

低压极限磁滞回线测试系统的原理如图1所示,各部件的作用如下:

(1)自耦变压器:调节初级线圈中的励磁电流大小。(2)限流电阻:限制初级线圈中的励磁电流大小,阻值取0.5Ω。

(3)录波仪:需2路录波通道来录取电压和电流信号波形,第一录波通道Ch1配合电流探头录取初级线圈回路的励磁电流信号,第二录波通道Ch2配合电压探头录取次级线圈的开路电压信号。

(4)定制铁芯:用来进行极限磁滞回线测量的铁芯样品。采用有效截面积为S ,磁路平均长度为L 的矩形或圆环形铁芯。3测试方法及步骤3.1

定制铁芯的设计流程

定制铁芯是实现低压条件测试的关键元件,定制

铁芯的参数、初级线圈和次级线圈的匝数由如下步骤

确定:

(1)由铁磁材料退火后的磁化曲线查出单位长度的饱和磁场强度H sat 和对应的饱和磁通密度B sat ,该磁化曲线由铁磁材料制造厂提供。

(2)确定定制铁芯的有效截面积S ,S 的数值在制造工艺允许的情况下尽量取小。

(3)为保证测试装置在低压条件下运行,E 1sat 、E 2sat 的参考值不能过大,但E 1sat 、E 2sat 的值也不能过小,否则电压信号的信噪比过小又会造成数据处理的难度。所以,初级线圈的匝数N 1的取值应使铁芯饱和时初级线圈上的感应电压E 1sat 的值落在合适的区间内(例如5V ≤E 1sat ≤50V )。其中,E 1sat 的计算表达式为E 1sat =N 1·B sat ·S /45。次级线圈的匝数N 2的取值应使铁芯饱和时次级线圈上的感应电压E 2sat 的值落在合适的区间内(如5V ≤E 2sat ≤50V )。其中,E 2sat 的计算表达式为E 2sat =N 2·B sat ·S /45。E 1sat 、E 2sat 的表达式中,除了S 的单位为平方厘米外,其余物理量的单位均为国标。(4)由于定制铁芯尺寸很小,应尽可能减小初级线圈中流过的电流以减小导线线径。所以,磁路平均长度L 的取值应使饱和励磁电流I 1sat 小于该导线的允许电流值,另外也需综合考虑L 过小引起的制造难度。其中,I 1sat 的计算表达式为I 1sat =H sat ·L /N 1。

图1低压极限磁滞回线测量系统的原理图Fig.1Schematic diagram of the low-voltage LMHP

measuring

system

图2实验平台实物照片

Fig.2The experimental platform photo

图3实验结果

Fig.3The experiment

results

3.2测试步骤及数据处理方法

具体的测试步骤和数据处理方法主要包括:(1)按照图1连接各个部件,将自耦变压器的低压

端电压调至0V ,接通220V 电源。设置录波仪的采样周期为ΔT ,

并设置X-Y 显示窗口,以第一录波通道录取的励磁电流为X 轴、

第二录波通道录取的感应电压的积分为Y 轴。由于铁芯的磁滞效应,X-Y 显示窗口的波形也具有明显的滞回特性。

(2)缓慢增大自耦变压器的低压端电压,同时观察录波仪上的X-Y 显示窗口波形,当波形的上升支和下降支有部分曲线完全重合时,认为该状态下铁芯已经饱和,停止增大自耦变压器的低压端电压。

(3)利用录波仪配套软件将励磁电流和感应电压波形数据导入到PC 机。设导入的励磁电流采样数值为i [k ],导入的感应电压数值为u [k ],其中k 为采样序列号。

(4)利用式(5)和式(6)计算铁芯磁通密度B 和铁芯中的磁场强度H 。

铁芯磁通密度的数值计算表达式为:B [k ]=ΔT N 1·S k

j=1

∑u

[j ]+B [1](5)

式中B [1]为积分初值,其取值方法是使B [k ]的极大

值和极小值的绝对值相等。

铁芯磁场强度的数值计算表达式为:

H [k ]=

N 2·i [k ]L

(6)

(5)取20个励磁周期的B [k ]和H [k ]做数值平均,

以降低噪声的影响。再将一个周期的B

[k ]和H [k ]制成表格,该表格对应的数据就是铁芯测试品的极限磁

滞回线数据。

4测量实验

4.1常规测量方法的弊端分析

如果不对铁芯尺寸和初级线圈、次级线圈的匝数进行设计,而采用文献提到的示波器法对表1所示电力电流互感器铁芯进行直接测量(硅钢材料的饱和磁场强度H sat 取500A/m ,饱和磁通密度B sat 取值1.8T ),可以估算出励磁电流和励磁电压大小如下(从互感器2次侧进行励磁):

I 2sat =H sat ·L/N 2=0.3167A

E 2sat =N 2·B sat ·S /45=982.2V

该测量系统需要1000V 高压和近300VA 的励磁功率,需要配置专门的升压器。4.2低压测试系统实验

按照第4节的方法设计了一组硅钢材料和一组超

微晶材料的定制铁芯,具体参数如表2所示。

按照图1原理搭建了测量平台,用于上表所示超

微晶材料(纳米晶合金1K107)和硅钢材料(普通级取向电工钢30Q130)的极限磁滞回线测量实验,测量平台的实物照片如图2所示,实验结果如图3所示。

表1保护用电流互感器参数表

Tab.1

The parameters of the current transformer for

protection

表2定制互感器的参数

Tab.2The parameters of the customized transformers

5P30 30Q130

L

95cm S 16.37cm á

N ? N á 1 1500

! "

1500A

30Q130

1K107

34.5 cm 34.5 cm 4.85 cm á 4.85 cm á

10:100 10:100 1 0.00478+j0.05O 0.00499+j0.05O 2

0.045+j0.05O

0.0559+j0.05O

利用MATLAB 按照3.2节中的步骤(4)、(5)对实验测得的数据进行处理,得到的两种材料的极限磁滞回线如图4、图5所示。

对图4、图5反映的实验结果分析如下:

(1)在实验过程中,电压和电流信号都叠加了噪声,所以极限磁滞回线上存在一定幅值的毛刺。对于图5所示的硅钢材料,极限磁滞回线上升支和下降支的线性段相距较远(线性段励磁电流较大),信噪比较高。但对于图4(a )所示的超微晶材料,其极限磁滞回线上升支和下降支的线性段相距很近(励磁电流较小),该部分的信噪比较小,故需对其进行滤波,滤波

后的波形如图4

(b )所示。(2)整个实验过程中,最大励磁电压为60V ,最大励磁电流为5A ,最大励磁功率为300VA ,本系统中绝

大部分励磁功率消耗在了限流电阻上(250VA ),可以通过重新设计限流电阻大幅降低励磁功率。一般电气实验室的调压器完全可以满足励磁要求。

(3)图4、图5中磁滞回线的上升支和下降支已经明显重合,说明上述测量过程中超微晶以及硅钢铁芯均已经发生饱和。

(4)得到的磁滞回线的形状与理论形状基本吻合,饱和磁通密度数值也与互感器厂家提供的理论值基本相同。

根据以上分析,可认为得到的磁滞回线为极限磁滞回线。在图4、图5中可以明显看出,铁芯运行在深度饱和区时,H 和B 不再具有多值对应关系,且B 关于H 线性递增。如果在某些应用场合下需要饱和程度更深时的H 和B 的数值,只需对实验测得的深度饱和区的这段直线作线性外延即可。5

结束语

本文提出的测试系统及对应测量方法可以在220V 低压条件下较精确地测量铁芯材料的极限磁滞回线,所涉及的仪器都是电气实验室的常用仪器。测得的极限磁滞回线可为需要该曲线的仿真软件提供数据支持。如果需要铁芯饱和程度更深时的H 和B 数值,只需要对实验测得的深度饱和区的直线作线性外延即可。

参考文献

[1]郑涛,陈佩璐,刘连光,等.计及直流偏磁的电流互感器传变特性对

差动保护的影响[J].电力系统自动化,2012,36(20):89-93.

ZHENGTao,CHENPei-lu,LIULian-guang,etal.TransferringCharacteristicsofCurrentTransformerAffectedbyDCMagneticBiasandItsImpactonDifferentialProtection[J].AutomationofElectricPowerSystems,2012,36(20):89-93.

[2]李长云,李庆民,李贞,等.直流偏磁条件下电流互感器的传变特性

[J].中国电机工程学报,2010,30(19):127-132.

LIChang-yun,LIQing-min,LIZhen,etal.TransferCharacteristicsofCurrentTransformerswithDCBias[J].ProceedingsoftheCSEE,2010,30(19):127-132.

[3]李富春,李建兵.基于EMTP/ATP的变压器建模及励磁涌流的仿真研究[J].电气开关,2009,(4):48-50.

LIFu-chun,LIJian-bing.TheSimulationResearchofTransformerModelingandExcitationSurgeBasedonEMTP/ATP[J].ElectricSwitchgear,2009,(4):48-50.

[4]袁兆强,凌艳.基于MATLAB的变压器仿真建模及特性分析[J].电力学报,2007,22(2):175-179.

YUANZhao-qiang,LINGYan.SimulationModelingandCharacteristicAnalysisofSingle-PhaseTransformerBasedonMATLAB[J].Journalof

图5硅钢材料的极限磁滞回线Fig.5The LMHP of the silicon

steel

图4超微晶材料的极限磁滞回线Fig.4The LMHP of the

ultra-crystallite

ElectricPower,2007,22(2):175-179.

[5]蔡克红,李升.MATLABPSB在电力系统暂态稳定中的仿真应用[J].江西电力,2006,30(3):4-7.

CAIKe-hong,LISheng.SimulationApplicationofMATLABPSBonTransientStabilityofPowerSystem[J].JiangxiElectricPower,2006,30(3):4-7.

[6]张新刚,王泽忠.基于PREISACH理论的电流互感器建模研究[J].中国电机工程学报,2005,25(16):68-72.

ZHANGXin-gang,WANGZe-zhong.ResearchonCTmodelingBasedonthePREISACHTheory[J].ProceedingsoftheCSEE,2005,25(16):68-72.

[7]黄平林,胡虔生.基于人工神经网络的Preisach磁滞模型与实现[J].电工电能新技术,2009,28(1):43-45,50.

HUANGPing-lin,HUQian-sheng.ResearchandApplicationonPreisachhysteresisModelBasedonANN[J].AdvancedTechnologyofElectricalEngineeringandEnergy,2009,28(1):43-45,50.

[8]李都红,张小青,李敬怡,等.一种测量铁磁材料磁滞回线的方法及仿真[J].变压器,2008,45(4):38-39.

LIDu-hong,ZHANGXiao-qing,LIJing-yi,etal.AMethodforMeasurementofHysteresisLoopofFerromagneticMaterialandSimulation[J].Transformer,2008,45(4):38-39.

[9]吴丽珠,洪远泉.用示波器测量铁磁物质的磁滞回线[J].韶关学院学报(自然科学),2006,27(9):46-48.

WULi-zhu,HONGYuan-quan.TheLoop-lineMeasureofFerromagnethyStersiswithOscilloGraph[J].JournalofShaoguanUniversity(NaturalScience),2006,27(9):46-48.

[10]张彬.冲击电流计在测磁技术中的应用[J].唐山师范学院学报,2005,27(5):65-66.

ZHANGBin.TheApplicationofImpulse-CurrentinMagneticMeasurement[J].JournalofTangshangTeachersCollege,2005,27(5):65-66.

[11]吕晔,周洪强.磁滞回线测试系统的硬件电路研究[J].电测与仪表,2009,46(7):77-80

LVYe,ZHOUHong-qiang.TheResearchonaCircuitofMagneticHysteresisLoopTestingSystem[J].ElectricalMeasurement&Instrumentation,2009,46(7):77-80.

[12]蔡杨,胡美君,方志明,等.基于SOC的磁性材料磁滞回线测量仪[J].电测与仪表,2004,41(1):26-31.

CAIYang,HUMei-jun,FANGZhi-ming,etal.AMeasuringInstrumentofHysteresisLoopforMagneticMaterialBasedonSOC[J].ElectricalMeasurement&Instrumentation,2004,41(1):26-31.作者简介:

收稿日期:2013-04-07;修回日期:2013-05-23

(田春雨编发

)崔恒志(1971—),男,汉族,江苏南通人,大学本科学

历,工程硕士,高级工程师,从事电能计量、电力通信管

理工作。

蔡霁霖(1991—)男,汉族,江苏扬州人,本科在读,现就

读于东南大学电气工程学院。

黄奇峰(1968—),男,汉族,江苏盐城人,大学本科学历,

工学学士,高级工程师,现就职于江苏省电力公司电力

科学研究院,高级工程师,从事计量管理工作。

王忠东(1969—),男,汉族,江苏苏州人,大学本科学

历,研究生学位,高级工程师,现就职于江苏省电力公

司电力科学研究院,高级工程师,从事计量管理工作。

卢树峰(1972—),男,山东高唐人,研究生学历,工学硕

士,现就职于江苏省电力公司电力科学研究院,高级工

程师,从事计量管理工作。

杨世海(1976—),男,汉族,安徽淮北人,研究生学历,

工学硕士,现就职于江苏省电力公司电力科学研究院,

高级工程师,主要从事计量检测与管理工作。

周赣(1978—),男,汉族,江苏丹阳人,工学博士,现就

职于东南大学电气工程学院,主要从事互感器分析和

设计、高效安全用电技术方面的研究工作。

Email:zhougan2002@seu.edu.cn

用示波器观察铁磁材料的动态磁滞回线_实验报告

图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S S RD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

《操作系统原理》信管专业实验指导书资料

《操作系统原理》实验指导书 班级:_______________ 学号:_______________ 姓名:_______________ 山东建筑大学管理工程学院 信息管理与信息系统教研室

目录 引言 (1) 实验题目一 (2) 实验题目二 (4) 实验题目三 (6) 实验题目四 (8) 实验题目五 (10) 实验题目六 (12)

引言 操作系统是信息管理与信息系统专业一门重要的专业理论课程,了解和掌握操作系统的基本概念、功能和实现原理,对认识整个计算机系统的工作原理十分重要。 操作系统实验是操作系统课程的一个重要组成部分,通过试验环节的锻炼使同学们不仅能够对以前的所学过的基础知识加以巩固,同时能够通过上机实验,对操作系统的抽象理论知识加以理解,最终达到融会贯通的目的,因此,实验环节是同学们理解、掌握操作系统基本理论的一个重要环节。 本实验指导书,根据教材中的重点内容设定了相应的实验题目,由于实验课程的学时有限,我们规定了必做题目和选做题目,其中必做题目必须在规定的上机学时中完成,必须有相应的预习报告和实验报告。选做题目是针对有能力或感兴趣的同学利用课余时间或上机学时的剩余时间完成。

实验题目一:模拟进程创建、终止、阻塞、唤醒原语 一、题目类型:必做题目。 二、实验目的:通过设计并调试创建、终止、阻塞、唤醒原语功能,有助于对操作系统中进 程控制功能的理解,掌握操作系统模块的设计方法和工作原理。 三、实验环境: 1、硬件:PC 机及其兼容机。 2、软件:Windows OS ,Turbo C 或C++、VC++、https://www.wendangku.net/doc/20420251.html, 、Java 等。 四、实验内容: 1、设计创建、终止、阻塞、唤醒原语功能函数。 2、设计主函数,采用菜单结构(参见后面给出的流程图)。 3、设计“显示队列”函数,目的能将就绪、阻塞队列中的进程信息显示在屏幕上,以供 随时查看各队列中进程的变化情况。 五、实验要求: 1、进程PCB 中应包含以下内容: 2、系统总体结构: 其中: 进程名用P1,P2标识。 优先级及运行时间:为实验题目二做准备。 状态为:就绪、运行、阻塞,三种基本状态。 指针:指向下一个PCB 。

2016磁滞回线的测量(实验报告材料)

实验名称: 用示波器观测铁磁材料的动态磁滞回线 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1101 实验日期 2016年 月 日 节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs 、剩磁Br 和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1. 双踪示波器 2. DH4516C 型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成!

3、基本磁化曲线 对于同一铁磁材料,设开始时呈去磁状态,依次选取磁化电流I1、I2、….I n,则相应的磁场强度为H1、H2、….H3,在每一磁化电流下反复交换电流方向(称为磁锻炼),即在每一个选定的磁场值下,使其方向反复发生几次变化(如H1→- H1→H1→- H1….),这样操作的结果,是在每一个电流下都将得到一条磁滞回线,最后,可得一组逐渐增大的磁滞回线。我们把原点O和各个磁滞回线的顶点a1、a2、….所连成的曲线称为铁磁材料的基本磁化曲线,如图3所示。 图3基本磁化曲线 (二)利用示波器观测铁磁材料动态磁滞回线测量原理 1、示波器显示B—H曲线原理线路 由上述磁滞现象可知,要观测磁介质磁滞现象及相应的物理量,需要根据磁化过程测定材料部的磁场强度和磁感应强度。因此,测量装置必须具备三个功能: ①提供使样品磁化的可调强度的磁场(磁化场) ②可跟踪测量与磁化场有一一对应关系的样品的磁感应强度 ③可定量显示样品的磁化过程 图4 磁滞回线的测量原理图 图4是利用示波器观测铁磁材料动态磁滞回线测量装置原理图:首先将待测的铁磁物质制成一个环形样品,在样品上绕有原线圈即励磁线圈N1匝,由它提供磁化场;在样品上再绕副线圈即测量线圈N2匝,由它来跟踪测量与磁化场有一一对应关系的样品的磁感应强度;由示波器

2016磁滞回线的测量

实验名称:用示波器观测铁磁材料的动态磁滞回线姓名学号班级 桌号教室基础教学楼1101 实验日期 2016年月日节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读 本实验报告!并携带计算器,否则实验无法按时完成!

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几 个重要概念 1、饱和磁感应强度B S 、饱和磁场强度H S 和磁化曲线 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。 图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值 H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞 B H B ~H H μ B ~H S f d e

用示波器观察铁磁材料的动态磁滞回线-实验报告

用示波器观察铁磁材料的动态磁滞回线-实验报告

2 B a B B s c a' b' H H m o B r H c 图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S SRD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

2016磁滞回线的测量(实验报告)(1)

2016磁滞回线的测量(实验报告)(1)

石家 庄铁道大学物理实验中心 第2页 共24页 实验名称: 用示波器观测铁磁材料的动态磁滞回线 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1101 实验日期 2016年 月 日 节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。

3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 石家庄铁道大学物理实验中心第3页共24页

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几个重 要概念 1、饱和磁感应强度B S、饱和磁场强度H S和磁 石家庄铁道大学物理实验中心第4页共24页

石家庄铁道大学物理实验中心 第5页 共24页 化曲线 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。

石家庄铁 道 大 学 物 理 实 验 中 心 第6页 共24页 图 1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、 磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化

操作系统原理实验指导

操作系统实验指导 操作系统是计算机的最重要的系统软件,它在计算机中具有核心地位,其作用是对计算机系统资源进行统一的调度和管理,提供各种强有力的系统服务,为用户创造灵活而又方便的使用环境。一个精心设计的操作系统能极大地扩充计算机系统的功能,充分地发挥系统中各种资源的使用效率,提高系统工作的可靠性。 操作系统原理是计算机科学与技术专业的一门主要专业课程,它涉及计算机系统中各种软、硬资源管理的实现原理与方法,内容非常丰富,综合性非常强,并且还具有很强的实践性。只有把理论与实践紧密地结合起来,才能取得较好地学习效果。 培养计算机专业学生的系统程序设计能力,也是本课程的重要环节。系统程序要求结构清晰、合理、可读性好,有准确而简明的注释。通过实验可以培养学生正规系统程序设计能力。 本实验包括下列六个方面: 实验一几种操作系统的界面 实验二进程调度 实验三存储器管理 实验四存储器管理 实验五磁盘驱动调度 实验六文件管理系统 上述每个实验约需要10个学时。可根据实际情况选用。最好学生自己独立完成,如有困难,可参考一些示例,弄清每个实验的思想和实现方法,上机调试通过,不能完全照搬示例。 实验一几种操作系统的界面 1、目的与要求 目的:通过本实验,学生应熟悉1~2种操作系统的界面。在熟练使用的基础上,能了解各种命令和调用在系统中的大致工作过程,也就是通过操作系统的外部特性,逐步深入到操作系统的内在实质内容中去。 要求:能熟练地在1~2种操作系统环境下工作。学会使用各种命令,熟悉系统提供的各种功能。主动而有效地使用计算机。 熟悉系统实用程序的调用方法和各种系统调用模块的功能和用法。 2、示例 用1~2种操作系统提供的各种手段,建立、修改、编辑、编译和运行程序,最后撤消一个简单程序。要尽可能多地使用系统提供的各种命令和功能。 操作系统可为如下两种序列: (1)Windows 98或Windows 2000或Windows XP。 (2)Linux或Unix。 下面简要介绍一下Unix操作系统。 Unix是一个分时操作系统,面向用户的界面shell是一种命令程序设计语言,这种语言向用户提供了从低到高,从简单到复杂的三个层次的使用方式。它们是简单命令、组合命令和shell过程。 简单命令:Unix命令一律使用小写字母。 例如:ls -l 显示文件目录(长格式) rm 删除一个文件 cat 合并和传送文件、 cp 复制文件 mv 文件改名 cc 编译C语言源程序 组合命令:shell简单命令可以用管道算符|组合构成功能更强的命令。

物理实验报告2_用示波器测动态磁滞回线

实验名称:用示波器测动态磁滞回线 实验目的: a .研究铁磁材料的动态磁滞回线 b .了解采用示波器测动态磁滞回线的原理; c .利用作图法测定磁性材料的饱和磁感应强度s B 、剩磁r B 、矫顽力c H 的值。 实验仪器: V252双踪示波器、自耦变压器、隔离变压器、互感器毫安表、电容等。 实验原理和方法: 铁磁材料除了具有高的导磁率外,另一重要的特点就是磁滞。当材料磁化时,磁感应强度B 不仅与当时的磁场强度H 有关,而且与以前的磁化状态有关。 如右图所示,曲线OA 表示铁磁材料从没有磁性开始磁化,磁感应强度B 随H 增加,称为磁化曲线。当H 增加到某一值S H 时,B 的增加速度将极其缓慢。和前段曲线相比,可看成B 不再增加,即达到磁饱和。当磁性材料磁化后,如H 减小,B 将不沿原路返回,而是沿另外一条曲线r A 下降。如果H 从S H 变到-S H ,再从-S H 变回S H ,B 将随H 变化而形成一条磁滞回线。其中当H = 0时,r B B =。r B 称为剩余磁感应强度。要使磁感应 强度为零,就必须加一反向磁场-c H ,c H 称为矫顽力。按一般分类,矫顽力小的称为软磁材料,大的称为硬磁材料。必须注意的是:反复磁化(S S S H H H →-→)的开始几个循环内,每次循环的回路才相同,形成一个稳定的磁滞回线。只有经过“磁锻炼”后所形成的磁滞回线,才能代表该材料的磁滞性质。 由以上可知,要测定材料的磁滞回线,需要根据磁化过程测定材料内部的磁场强度H 及其相应的磁感应强度B 。 磁性材料的磁滞回线能较全面地反应该材料的磁特性,譬如剩磁r B 、矫顽力c H 等。因此,实用上常常借助磁滞回线来粗略了解材料的磁特性。测量磁滞回线的基本线路图如下图所示:

实验指导(2015完全版)

操作系统上机实验指导书 (第一版) 闫大顺李晟编著 吴家培主审 计算机科学与工程学院 2014.8

操作系统实验指导 本课程是为《计算机操作系统》课所开的实验。计算机操作系统课程是一门实践性很强的技术课程,本课程实验的目的在于培养学生的实践能力,促进理论与实践的结合。要求学生通过上机编程,熟悉对操作系统原理,并熟练使用程序接口,并了解如何模拟操作系统原理的实现,从而加深对操作系统原理的领会,加深对操作系统实现方法的理解,与此同时使学生在程序设计方面也能够得到很大程度的提高。 实验的目的是使学生理论联系实际,提高学生系统理解与开发能力。这里所列的实验分为必做和选做。具体实验题的选择,不仅要考虑课程内容,而且要考虑学生目前的编程能力,要由浅入深。教师可通过运行示例或动画,帮助学生理解实验要求。学生应选择自己熟悉的语言与开发环境去完成实验。根据以往的教学经验,Delphi、C++ Builder,JBuilder由于提供了许多可重用的构件,易于学习、使用,VC++学习、使用困难较多。实验要求尽量在windows操作系统下,也可以在Linux下完成,由于多数没有专门学习Linux,在其平台下做试验比较困难。实验的硬件要求是能够支持VC++、Delphi、C++ Builder,JBuilder的微机即可。每个学生都独立在一台计算机上完成自己的实验内容,杜绝学生的抄袭。 实验报告的要求 1. 每位同学准备实验报告本,上机前作好充分的准备工作,预习本次实验的内容,事先熟悉与实验有关的软硬件环境。 2. 实验时遵守实验室的规章制度,爱护实验设备,对于实验设备出现的问题,要及时向指导老师汇报。 3. 提交实验文件格式:[班级][学号]_[实验题号].[扩展名] 例:计051班学号为03的学生第四个实验的文件名为:j05103_4.c 4. 最终的实验报告按照实验名称、实验目的、实验内容,实验过程(程序设计、实现与调试)、实验总结五部分书写,按时上交。实验总结是对于实验过程中出现的问题或疑惑的分析与思考。认真按照要求填写到实验报告纸上。

磁滞回线

【实验内容与数据处理】 实验材料:FeCoVSiB非晶合金薄带,带宽b=1.55mm,带厚b=40μm 校准仪器常数用标准互感:互感系数(亨)M0=5.09×10?5 1.观察材料形状对磁化的影响 样品:条形,1#长3cm,2#长6.5cm; 磁化螺线管磁场强度:(U为示波器X轴读数);H=4.55×103 U/R0 探测线圈匝数:N2=150匝(附补偿线圈)。 用示波器观察两样品在同一频率和最大磁场下磁滞回线,记录相当于各样品的矫顽力Hc、饱和磁化强度Ms、剩余磁化强度Mr和最大磁化强度的读数Mm,比较两样品的矩形度Mr/M s。测完每个样品,将K1接校准一方(即接通标准互感),记录示波器显示图形X,Y的峰值,用式(6)计算仪器常数K0,用公式(11)计算相应的Mm、Mr,用以上磁场(H)公式计算矫顽力(H c)。 数据如下:单位(V) 由K0=U0 M0i0=U y M0 R U x 得短样品K0=6.17×104 V/Wb 长样品K0=5.40×104 V/Wb 又由M(t)=U(t) μ0K0N2S 其中μ0=4π×10?7H/m N2=150 匝 S = bd = 6.2×10?9m2 3 由以上数据对比可知,样品的长度会影响样品的磁性。 2. 观测外加应力对磁化的影响: 样品:条形,上端固定,下端吊有秤盘; 磁化螺线管的磁场强度:(附补偿线圈)H=1.47×104U.R 在秤盘上加不同重力砝码(不加、加50克、加100克),在同一频率和最大磁场下用示波器观察各自的磁滞回线,记录Mm、Hc、M r的值,N2=200匝,用公式(11)计算Mm、Mr,用本组磁场强度公式计算Hc。

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告 铁磁材料的磁滞回线和基本磁化曲线【实验目的】1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。2测定样品的基本磁化曲线作H 曲线。3测定样品的Hc、Br、Bm和 Hm?6?1Bm等参数。4测绘样品的磁滞回线。【实验原理】1起始磁化曲线和磁滞回线铁磁物质是一种性能特异用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。其特征是在外磁场作用下能被强烈磁化故磁导率很高。另一特征是磁滞即磁化场作用停止后铁磁质仍保留磁化状态图2-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。图2-1 铁磁质起始磁化曲线和磁滞回线图2-2 同一铁磁材料的一簇磁滞回线图中的原点O表示磁化之前铁磁物质处于磁中性状态即BH0当磁场H从零开始增加时磁感应强度B随之缓慢上升如线段Oa所示继之B随H迅速增长如ab所示其后B的增长又趋缓慢并当H增至Hm时B到达饱和值BmOabs称为起始磁化曲线。图2-1表明当磁场从Hm逐渐减小至零磁感应强度B并不沿起始磁化曲线恢复到“O”点而是沿另一条新的曲线SR下降比较线段OS和SR可知H减少B相应也减小但B 的变化滞后于H的变化这现象称为磁滞磁滞的明显特征是当H0时B 不为零而保留剩磁Br。当磁场反向从0逐渐变至Hc时磁感应强度B消失说明要消除剩磁必须施加反向磁场Hc称为矫顽力它的大小反映铁磁材料保持剩磁状态的能力线段RD称为退磁曲线。图2-1还表示当磁场按Hm→0→Hc→-Hm→0→Hc→Hm次序变化相应的磁感应强度B则沿闭合曲线SRDS’R’D’S变化这闭合曲线称为磁滞回线。

所以当铁磁材料处于交变磁场中时如变压器中的铁心将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量并以热的形式从铁磁材料中释放这种损耗称为磁滞损耗可以证明磁滞损耗与磁滞回线所围面积成正比。2基本磁化曲线应该说明当初始态为HB0的铁磁材料在交变磁场强度由弱到强依次进行磁化可以得到面积由小到大向外扩张的一簇磁滞回线如图2-2所示这些磁滞回线顶点A1、A2、A3、…的连线为铁磁材料的基本磁化曲线由此可近似确定其磁导率因B与H非线性故铁磁材料的不是常数而是随H而变化如图2-3所示。铁磁材料的相对磁导率可高达数千乃至数万这一特点是它用途广泛的主要原因之一。图2-3 铁磁材料μ与H 关系曲线图2-4 不同铁磁材料的磁滞回线可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据图2-4为常见的两种典型的磁滞回线其中软磁材料的磁滞回线狭长、矫顽力、剩磁和磁滞损耗均较小是制造变压器、电机、和交流磁铁的主要材料。而硬磁材料的磁滞回线较宽矫顽力大剩磁强可用来制造永磁体。3利用示波器观测磁滞回线的原理图2-5 原理电路图利用示波器观测磁滞回线的原理电路如图2-5所示。待测样品为EI型矽钢片其上均匀地绕以磁化线圈N及副线圈n。交流电压u加在磁化线圈上线路中串联了一取样电阻R1。将R1两端的电压UH加到示波器的X输入端上对DC4322B 示波器为通道Ⅰ。副线圈n与电阻R2和电容C串联成一回路。电容C两端的电压UB加到示波器的Y输入端上对DC4322B示波器为通道Ⅱ。下面我们来说明为什么这样的电路能够显示和测量磁滞回线。

磁滞回线的测量(实验报告记录)()

磁滞回线的测量(实验报告记录)()

————————————————————————————————作者:————————————————————————————————日期: 2

实验名称:用示波器观测铁磁材料的动态磁滞回线 姓名学号班级 桌号教室基础教学楼1101 实验日期2016年月日节 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成! 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 石家庄铁道大学物理实验中心第3页共15页

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几个重要概念 1、饱和磁感应强度B S、饱和磁场强度H S和磁化曲线 石家庄铁道大学物理实验中心第4页共15页

石家庄 铁道大学物理实验中心 第5页 共15页 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。 图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现B H B ~H H μB ~H S f d e

操作系统原理实验报告(终版)

操作系统原理实验报告(终版)

————————————————————————————————作者:————————————————————————————————日期:

[键入文字] XX学校 实验报告 课程名称: 学院: 专业班: 姓名: 学号: 指导教师: 2011 年3 月

目录 实验1 进程管理 (3) 一、实验目的 (3) 二、实验内容 (3) 三、实验要求 (3) 四、程序说明和程序流程图 (4) 五、程序代码 (5) 六、程序运行结果及分析 (7) 七.指导教师评议 (8) 实验2 进程通信 (9) 一、实验目的 (9) 二、实验内容 (9) 三、实验要求 (9) 四、程序说明和程序流程图 (9) 五、程序代码 (11) 七.指导教师评议 (14) 实验3 存储管理 (15) 一、实验目的 (15) 二、实验内容 (15) 三、实验要求 (15) 四、程序说明和程序流程图 (16) 六、程序运行结果及分析 (23)

七.指导教师评议 (23) 实验4 文件系统 (24) 一、实验目的 (24) 二、实验内容 (24) 三、实验要求 (24) 四、程序说明和程序流程图 (24) 五、程序代码 (26) 六、程序运行结果及分析 (26) 七.指导教师评议 (27)

实验1 进程管理 一、实验目的 1. 弄清进程和程序的区别,加深对进程概念的理解。 2. 了解并发进程的执行过程,进一步认识并发执行的实质。 3. 掌握解决进程互斥使用资源的方法。 二、实验内容 1. 管道通信 使用系统调用pipe( )建立一个管道,然后使用系统调用fork( )创建2个子进程p1和p2。这2个子进程分别向管道中写入字符串:“Child process p1 is sending message!”和“Child process p2 is sending message!”,而父进程则从管道中读出来自两个子进程的信息,并显示在屏幕上。 2. 软中断通信 使用系统调用fork( )创建2个子进程p1和p2,在父进程中使用系统调用signal( )捕捉来自键盘上的软中断信号SIGINT(即按Ctrl-C),当捕捉到软中断信号SIGINT后,父进程使用系统调用kill( )分别向2个子进程发出软中断信号SIGUSR1和SIGUSR2,子进程捕捉到信号后分别输出信息“Child process p1 is killed by parent!”和“Child process p2 is killed by parent!”后终止。而父进程等待2个子进程终止后,输出信息“Parent process is killed!”后终止。 三、实验要求 1. 根据实验内容编写C程序。 2. 上机调试程序。 3. 记录并分析程序运行结果。

大学物理实验报告-磁滞回线研究

磁滞回线研究 班级 姓名 学号 一、 实验目的:a. 研究磁性材料的动态磁滞回线; a) b.了解采用示波器测动态磁滞回线的原理; b) c. 利用作图法测定磁性材料的饱和磁感应强度B,磁场强度H 二、 实验仪器:普通型磁滞回线实验仪DH 4516。 实验原理:当材料磁化时,磁感应强度B 不仅与当时的磁场强度H 有关,而且决定于磁化的历史情况,如图2.3.2-1所示。曲线OA 表示铁磁材料从没有磁性开始磁化,磁感应强度B 随H 的增加而增加,称为磁化曲线。当H 增加到某一值H S 时,B 几乎不再增加,说明磁化已达到饱和。材料磁化后,如使H 减小,B 将不沿原路返回,而是沿另一条曲线ACA 下降。当H 从-H S 增加时,B 将沿A ’C ’A 曲线到达A ,形成一闭合曲线称为磁滞回线,其中H=0时,r B B ,B r 称为剩余磁感应强度。要使磁感应强度B 为零,就必须加一反向磁场-H c , H c 称为矫顽力。为了使样品的磁特性能重复出现,也就是指所测得的基本磁化曲线都是由原始状态(H=0,B=0)开始,在测量前必须进行退磁,以消除样品中的剩余磁性。 1 .示波器测量磁滞回线的原理 图2.3.2-2所示为示波器测动态磁滞回线的原理电路。将样品制 成闭合的环形,然后均匀地绕以磁化线圈N 1及副线圈N 2,即所

谓的罗兰环。交流电压u 加在磁化线圈上,R 1为取样电阻,其两端的电压u 1加到示波器的x 轴输入端上。副线圈N 2与电阻R 2和电容串联成一回路。电容C 两端的电压u 加到示波器的y 输入端上。 (1)u x (x 轴输入)与磁场强度H 成正比,若样品的品均周长为l , 磁化线圈的匝数为N 1,磁化电流为i 1(瞬时值),根据安培环路定理,有H l =N 1 i 1,而11i R u =,所以 H N l R u 111= (1) 由于式中R 1、l 和N 1皆为常数,因此,该式清楚地表明示波器荧光屏上电子束水平偏转的大小(u 1)与样品中的磁场强度(H )成正比。 (2)u C (y 轴输入)在一定条件下与磁感应强度B 成正比 设样品的截面积为S ,根据电磁感应定律,在匝数为N 2的副线圈中,感应电动势应为 dt dB S N E 22-= (2) 此外,在副线圈回路中的电流为i 2且电容C 上的电量为q 时,又有 C q i R E +=222 (3) 考虑到副线圈匝数N 2较小,因而自感电动势未加以考虑,同时,R 2与C 都做成足够大,使电容C 上的电压降(u c =q/C )比起电阻上的电压降R 2i 2小到可以忽略不计。于是式(3)可

操作系统原理课程设计

操作系统原理课程设计 ——银行家算法模拟 指导老师:周敏唐洪英杨宏雨 杨承玉傅由甲黄贤英 院系:计算机学院计算机科学与技术班级:0237-6 学号:2002370609 姓名:刘洪彬 同组者:杨志 时间:2005/1/10---2005/1/14

银行家算法模拟 一、设计目的 本课程设计是学生学习完《计算机操作系统》课程后,进行的一次全面的综合训练,通过课程设计,让学生更好地掌握操作系统的原理及实现方法,加深对操作系统基础理论和重要算法的理解,加强学生的动手能力。 二、设计要求 银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 从课程设计的目的出发,通过设计工作的各个环节,达到以下教学要求:两人一组,每组从所给题目中任选一个(如自拟题目,需经教师同意),每个学生必须独立完成课程设计,不能相互抄袭,同组者文档不能相同; 设计完成后,将所完成的工作交由老师检查; 要求写出一份详细的设计报告。 三、设计内容 编制银行家算法通用程序,并检测所给状态的系统安全性。 1)银行家算法中的数据结构 假设有n个进程m类资源,则有如下数据结构: 可利用资源向量Available。这是一个含有m个元素的数组,其中的每一个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该类资源的分配和回收而动态地改变。Available[j]=K,则表示系统中现有Rj 类资源K个。 最大需求矩阵Max。这是一个n*m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K。 分配矩阵Allocation。这也是一个n*m的矩阵,它定义了系统中每一类资源当前已分配给没一进程的资源数。如果Allocation[i,j]=K,则表示进程i 当前已分得Rj类资源的数目为K。 需求矩阵Need。这也是一个n*m的矩阵,用以表示每一个进程尚需的各类资源数。如果Need[i,j]=K,则表示进程i还需要Rj类资源K个,方能完成其任务。

磁滞回线的测量实验报告

磁滞回线的测量实验报 告 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-

石家庄铁道大学物理实验中心 第1页 共10页 实验名称: 用示波器观测铁磁材料的动态磁滞回线 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1101 实验日期 2016年 月 日 节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs 、剩磁Br 和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1. 双踪示波器 2. DH4516C 型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成!

图1 磁性材料的磁化曲线图2 磁滞回线和磁化曲 线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H逐步退到零,B也逐渐减小,但B 的减小“跟不上”H的减小(B滞后于H)。即:其轨迹并不沿原曲线SO, 而是沿另一曲线Sb下降。当H下降为零时,B不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象, B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B=0时磁场的值H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞回线,如图2所示。 3、基本磁化曲线 对于同一铁磁材料,设开始时呈去磁状态,依次选取磁化电流I 1 、 I 2、….I n ,则相应的磁场强度为H 1 、H 2 、….H 3 ,在每一磁化电流下反复交换 电流方向(称为磁锻炼),即在每一个选定的磁场值下,使其方向反复发生 几次变化(如H 1→- H 1 →H 1 →- H 1 ….),这样操作的结果,是在每一个电流

计算机操作系统原理实验指导书

目录 1进程创建模拟实现 (6) 1.1实验类型 (6) 1.2实验目的 (6) 1.3实验描述 (6) 1.4实验内容 (6) 1.5实验要求 (6) 1.6测试要求 (6) 1.7相关知识 (7) 1.8实验设备 (9) 1.9实验指导 (9) 1.10实验成绩评定 (9) 1.11实验报告 (9) 1.12实验思考 (9) 2P、V原语的模拟实现 (10) 2.1实验类型 (10) 2.2实验目的 (10) 2.3实验描述 (10) 2.4实验内容 (10) 2.5实验要求 (10) 2.6测试要求 (10) 2.7相关知识 (11) 2.8实验设备 (11) 2.9实验指导 (11) 2.10实验成绩评定 (12) 2.11实验报告 (12) 2.12实验思考 (12) 3进程撤销模拟实现 (13) 3.1实验类型 (13) 3.2实验目的 (13) 3.3实验描述 (13) 3.4实验内容 (13) 3.5实验要求 (13) 3.6测试要求 (14) 3.7相关知识 (14) 3.8实验设备 (15) 3.9实验成绩评定 (15) 3.10实验报告 (16) 3.11实验思考 (16) 4FCFS进程调度模拟实现 (17)

4.2实验目的 (17) 4.3实验描述 (17) 4.4实验内容 (17) 4.5实验要求 (17) 4.6测试要求 (18) 4.7相关知识 (18) 4.8实验设备 (18) 4.9实验成绩评定 (19) 4.10实验报告 (19) 4.11实验思考 (19) 5银行家算法实现 (20) 5.1实验类型 (20) 5.2实验目的 (20) 5.3实验描述 (20) 5.4实验内容 (20) 5.5实验要求 (20) 5.6测试要求 (21) 5.7相关知识 (21) 5.8实验设备 (22) 5.9实验成绩评定 (22) 5.10实验报告 (22) 5.11实验思考 (22) 6改进型CLOCK页面置换算法实现 (23) 6.1实验类型 (23) 6.2实验目的 (23) 6.3实验描述 (23) 6.4实验内容 (23) 6.5实验要求 (23) 6.6测试要求 (24) 6.7相关知识 (24) 6.8实验设备 (24) 6.9实验成绩评定 (25) 6.10实验报告 (25) 6.11实验思考 (25) 7SCAN磁盘调度模拟实现 (26) 7.1实验类型 (26) 7.2实验目的 (26) 7.3实验描述 (26) 7.4实验内容 (26) 7.5实验要求 (26) 7.6测试要求 (27)

用示波器测动态磁滞回线、磁场测量实验报告

铁磁材料的磁滞回线和基本磁化曲线 (动态磁滞回线实验) 磁性材料在科研和工业中有着广泛的应用,种类也相当繁多,因此各种材料的磁特性测量,是电磁学实验中一个重要内容。磁特性测量分为直流磁特性测量和交流磁特性测量。本实验用交流正弦电流对磁性材料进行磁化,测得的磁感应强度与磁场强度关系曲线称为动态磁滞回线,或者称为交流磁滞回线,它与直流磁滞回线是有区别的。可以证明:磁滞回线所包围的面积等于使单位体积磁性材料反复磁化一周时所需的功,并且因功转化为热而表现为损耗。测量动态磁滞回线时,材料中不仅有磁滞损耗,还有涡流损耗,因此,同一材料的动态磁滞回线的面积要比静态磁滞回线的面积稍大些。本实验重点学习用示波器显示和测量磁性材料动态磁滞回线和基本磁化曲线的方法,了解软磁材料和硬磁材料交流磁滞回线的区别。 一.实验目的 1. 了解磁性材料的磁滞回线和磁化曲线的概念,加深对铁磁材料的重要物理量矫顽力、剩磁和磁导率的理解。 2. 用示波器测量软磁材料(软磁铁氧体)的磁滞回线和基本磁化曲线,求该材料的饱和磁感应强度m B 、剩磁r B 和矫顽力c H 。 3. 学习示波器的X 轴和Y 轴用于测量交流电压时,各自分度值的校准。 4. 用示波器显示硬铁磁材料(模具钢12Cr )的交流磁滞回线,并与软磁材料进行比较。 二. 实验原理 (一)铁磁物质的磁滞现象 铁磁性物质的磁化过程很复杂,这主要是由于它具有磁性的原因。一般都是通过测量磁化场的磁场强度H 和磁感应强度B 之间关系来研究其磁化规律的。 如左图所示,当铁磁物质中不存在磁化场时,H 和B 均为零,在H B 图中则相当于坐标原点O 。随着磁化场H 的增加,B 也随之增加,但两者之间不是线性关系。当H 增加到一定值时,B 不再增加或增加的十分缓慢,这说明该物质的磁化已达到饱和状态。m H 和m B 分别为饱和时的磁场强度和磁感应强度(对应于图中A 点)。如果再使H 逐步退到零,则与此同时B 也逐渐减小。然而,其轨迹并不沿原曲线AO ,而是

相关文档
相关文档 最新文档