文档库 最新最全的文档下载
当前位置:文档库 › 萃取分离设备

萃取分离设备

萃取分离设备
萃取分离设备

几类常用的萃取设备以及应用领域

几类常用的萃取设备以及应用领域 萃取设备 分为萃取机(也称离心萃取机),萃取槽(混合澄清槽),萃取塔。 萃取机 产品介绍:离心萃取机是一种新型、快速、高效的液液萃取设备。它与传统的萃取设备如混合澄清槽、萃取塔等在工作原理上有本质的区别。离心萃取机是利用转鼓高速旋转产生的强大离心力,使密度不同又互不混溶的两种液体迅速混合、迅速分离。 特点概述:离心萃取机具有占地面积小、级效率高、萃取剂用量少、密封性好、自动化程度高的特点,便于实现清洁生产。 应用领域:离心萃取机广泛用于湿法冶金、废水处理、生物、制药、石化、精细化工、原子能等领域。尤其适用于密度相近、在重力场下难以分离的产品,或溶液中溶质含量很低的物质的分离。 萃取槽 产品介绍:萃取槽(又称混合澄清槽)是靠重力实现两相分离的一种逐级接触式萃取设备,就水相和有机相的流向而言,可分逆流式和并流式;就能量输入方式而言,可分为空气脉动搅拌、机械搅拌和超声波搅拌;就箱提结构而言,除简单箱式混合器之外,还有多隔室的、组合式等各种其他混合器。 特点概述:操作简单灵活、放大可靠、适应性强。 应用领域:萃取槽广泛用于湿法冶金、石化、化肥、核工业 复合高效萃取槽 产品介绍:复合高效萃取槽是由普通混合澄清槽演变而来的,这种萃取槽不设混合室,两相的混合靠专用的混合设备实现高效的混合,从而达到传质的目的。其澄清部分和普通的混合澄清槽的澄清室一样,内设轻相堰、重相堰,实现了两相的澄清分离。 特点概述:由于这种萃取槽省去了搅拌混合设备,所以可以大幅度降低萃取槽的功耗,特别对于处理量大的场合,其节能优势会更加突出。另外,这种形式的萃取槽和反萃取槽可以叠加放置,这样就可以节约占地面积。 萃取塔 萃取塔可分为有机械搅拌和无机械搅拌的萃取塔,有机械搅拌的萃取塔又可分为脉冲筛板塔、转盘塔、震动筛板塔。这里主要介绍转盘塔。 产品介绍:转盘萃取塔属于机械搅拌萃取塔,它由带水平静环挡板的垂直的圆筒构成。静环挡板为中心看孔的平板,静环挡板将圆筒分成一系列萃取室,萃取室中心有转盘,一系列转盘平行地安装在转轴上,转盘和静环的上部和下部分别是两个澄清室。和其他萃取塔一样,工作时轻相和重相分别由塔底和塔顶进入转盘,在萃取塔内两相逆流接触,在转盘的作用下,分散相形成小液滴,增加两相间的传质面积。完成萃取过程的轻相和重相再分别由塔顶和塔底流出。 特点概述:塔式萃取设备具有占地面积小、处理能力大、密闭性能好等特点,根据分离要求,处理能力和体系特性的不同可设计成不同的结构。

色谱分离度及其优化简介

色谱分离度及其优化简介 黄秋鑫 (学号:200728016537055) 中国科学院广州地球化学研究所 摘要: 本文介绍色谱分离度的含义、影响分离度因素及常用优化离子色谱分离度方法,对 实际应用色谱法有一定的启发与帮助。 关键词: 色谱法 分离度 优化 一、分离度的定义 分离度(resolution )又称分辨率[1],为了判断难分离物质对在色谱柱中的分离情况,常用分离度作为柱的总分离效能指标,是全面反映两峰分离程度的参数。分离度等于相邻两峰保留时间之差与两组分色谱峰的峰底宽度之和的一半的比值: ())()() ()(21B b A b A R B R t t R ωω+-= 或 ???? ??+-=)(21)(21)()(699.1)(2B A A R B R t t R γγ 相邻两组分保留时间的差值反映了色谱分离的热力学性质;色谱峰的宽度则反映了色谱过程的动力学因素。因此分离度概括了这两方面的因素,并定量地描述了混合物中相邻两组分的实际分离程度,因此用它作为色谱柱的总分离效能的指标。 当两峰等高,峰开对称且符合正态分布时,可以从理论上证明,若R=0.8时,分离程度89%;R=1.0时,4δ分离(峰间距4δ),分离度达98%;R=1.5时,6δ分离,分离度达99.87%。一般采用R=1.5作为相邻两峰完全分离的标志。 图1 从图1中可以看出,(c)中A/B 两峰完全分离。实现分离的条件:相对保留值a 增大(组分分配比之差△K D 增大),分离的可能性增大,其峰间距也增大;柱效能n 增大,峰宽减小。

二、色谱基本分离方程式 假设相邻两峰的峰底宽度相等,即ωb(1)=ωb(2) ()()()??? ??-??? ??+=???? ??-??? ??+=-??? ??+=??? ??+=∴??? ??+===∴???? ??=-=-=-=-=+-=ααωωωωωωωωω1'1'411'1'411'1'41'1'41','1'4116','161''1'''''''2 122,12,122,122)2()2(2)2()2(22,1)2()2()2()2(2,1)2()2()2()1()2() 2()2()1()2()1()2() 1()2(k k n r r k k n r k k n R k k n t k k n n n n t t n r t t r t t t t t t t t t R b R eff eff eff b R b R eff b R R b R b R R R R b R R b b R R 又 其中:n 为色谱柱效;k ’为分配比;α=r 1,2为相对保留值;t 为保留时间;t ’为相对保留时间;ω为峰宽。 上式称为基本分离方程式,是色谱分析中最重要的方程式之一,可以计算给定体系所能达到的分离度和达到某一分离度所需的色谱柱长。 三、影响分离度的因素 从色谱基本分离方程式中可以看出,分离度R 的主要影响因素有以下: 3.1 色谱柱效n 随着n 增大,2n 增大,R 也随着增大。增加n 的方法: ①降低H ,制备性能优良的柱子,在最优化的条件下操作; ②增加柱长: a. 若系统压力不变,则必须降低流速; b. 若分析时间不变,则必须增大柱压,对设备要求提高。 3.2 相对保留值α α增大,αα1-也随着增大(但<1),柱选择性提高,R 增大。但由于α α1-为一指数函数,曲线变化如下: α从1.01~1.1,增加9%,R 增加9倍;α从1.5~2.0,增加33%,R 增加1.5倍;α较大时,对R 的影响小。因此,α一般在1~2范围内改变即可。 若要达到一定的分离度,在k ’不变的情况下,α的微小增加,将使n 显著下降。如表1所示。改变α的方法:气相色谱中可改变其固定相和柱温;液相色谱中可改变其固定相和流动相。

泡沫分离技术与应用

浅析泡沫分离技术的应用及其发展趋势 摘要:泡沫分离技术作为一种新兴的分离与净化技术,广泛应用于工业领域中。本文依据近年来有关泡沫分离的报道,综述了泡沫分离技术的研究进展,介绍了分离过程中操作参数,溶液体系性质,分离设备等因素对分离效果的影响,并介绍了泡沫分离在固体粒子、溶液中的离子分子、废水处理以及生物产品的分离过程中的应用,指出了泡沫分离技术目前存在的问题及发展方向。 关键词:泡沫分离技术;原理;设备;影响因素;应用 Abstract: The foam fractionation and purification technique, which are widely used in industry. Based on recent reports of foam separation, the purpose of this paper was to review the foam fractionation, introduced the effects of the operating parameters, the nature of solution system and the equipment, and also introduced the application of foam separation. To discuss the current problem and development trend of foam fractionation. Key words: foam fractionation; theory; equipment; the factors of effect; applications 第一章引言 泡沫分离技术是近几十年发展比较快的新兴分离技术,广泛应用于工业领域中。泡沫分离是膜分离技术的一种,它是以泡沫作为分离介质,以组分之间的表面活性差异作为分离依据,利用在溶液中的鼓泡来达到浓集物质目的的一种新型分离技术【1】。作为分离对象的某溶质,可以是表面活性物质和洗涤剂,也可以是不具有表面活性的物质,但它们必须具备和某一类型的表面活性物质能够络合或螯合的能力,当在塔式设备内部鼓泡时,该溶质可被选择性的吸附在自下而上的气泡表面,并在溶液主体上方形成泡沫层,将排出的泡沫消泡,可获得泡沫液(溶质的富集回收),在连续操作时,液体从塔底排出,可以直接排放,也可以作为精制后的产品液【2、3】。 泡沫分离技术的研究开发工作已开展了近一个世纪,为统一泡沫分离的概念,1967年Karger、Grieves等人共同推荐并向IUPAC提出一项建议,把泡沫分离技术方法按照图1分类【4、5】

化工分离设备技术的特点及应用

化工分离设备技术的特点及应用 化工分离设备技术有以下特点: (1)化工分离技术的多样性 由于化工分离技术的应用领域十分广泛,决定了分离技术的多样性。按机理划分,大致可分成5类:①生成新相以进行分离(如蒸馏、结晶);②加入新相进行分离(如萃取、吸收);③用隔离物进行分离(如膜分离);④用固体试剂进行分离(如吸附、离子交换);⑤用外力场和梯度进行分离(如离心萃取分离和电泳等),它们的特点和设计方法有所不同。 Keller于1987年总结了一些常用分离技术和应用成熟度关系图。精馏、萃取、吸收、结晶等仍是当前应用最多的分离技术。液膜分离虽然构思巧妙,但技术上仍有局限性,仅在药物缓释等方面得到了应用。 (2)化工分离技术的复杂性 化工分离技术的重要性和多样性决定了它的复杂性。即使对于精馏、萃取这些较为成熟的技术,多组分体系大型设备的设计仍是一项困难的工作,问题是缺乏基础特性数据和大型塔器的可靠设计方法。对于高温、高压、多组分和强非理想体系,不仅平衡数据和分子扩散系数难以准确计算,就连界面张力粘度等物性数据也难以求得。 催化剂和反应萃取之类的耦合分离技术的基础特性数据更为缺乏。大型塔器设计的放大的主要难度在于塔内两相流和传质特性十分复杂,数字模型尚不完善。沿用了百余年的平衡级模型虽然简单直观,但用于多组分分离过程的缺点已显而易见。非平衡模型被称为"可能开创板式分离设备设计和模拟新纪元"优点显著,但缺乏传质系数实验数据和模型参数过多,使其工程应用存在困难。已开发出的软件功能强大,已在工程设计中得到应用,但工程经验和中试实验仍是不可缺少的。 (3)分离技术的前瞻性 随着能源、资源、环境、新材料等基础工业和高新技术的发展,分类技术面临着新的机遇和挑战。石化领域的分离过程必需进一步节能和降耗,充分利用能源和资源。生产装置大型化步伐正在加快,能耗和成本不断降低。在生物制药工程方面,随着基因工程和细胞工程的发展,生物药品得到迅速发展。利用CO2作为溶剂的超临萃取具有不污染产品和选择性高等优点。色谱分离、电泳分离等方法由于其高效、常温常压特点而成功地应用于生产及实验室研究。随着环境意识的加强,"三废"处理引起了重视。从工业生态学的角度分析,许多工艺过程排出的"废物",不再是"无用"的,而是没有完全利用的

色谱分离条件的选择

分离度R作为色谱柱的分离效能指标,其定义为相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值 一、分离度 两个组分怎样才算达到完全分离?首先是两组分的色谱峰之间的距离必须相差足够大,若两峰间仅有一定距离,而每一个峰却很宽,致使彼此重叠,则两组分仍无法完全分离;第二是峰必须窄。只有同时满足这两个条件时,两组分才能完全分离。 判断相邻两组分在色谱柱中的分离情况,可用分离度R作为色谱柱的分离效能指标。其定义为相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值 R值越大,就意味着相邻两组分分离得越好。因此,分离度是柱效能、选择性影响因素的总和,故可用其作为色谱柱的总分离效能指标。 从理论上可以证明,若峰形对称且满足于正态分布,则当R=1时,分离程度可达98%;当R=1.5时,分离程度可达99.7%因而可用R=1.5来作为相邻两峰已完全分开的标志。 当两组分的色谱峰分离较差,峰底宽度难于测量时,可用半峰宽代替峰底宽度,并用下式表示分离度: 二、色谱分离基本方程式: 值,亦可使分析时间在不至于过长。使峰的扩展不会太严重对检测发生影响。

由分离度基本方程式可看出: (1)分离度与柱效的关系(柱效因子) 分离度与n的平方根成正比。 (2)分离度与容量比的关系(容量因子),k >10时,k/(k+1)的改变不大,对R的改进不明显,反而使分析时间在为延长。因此k值的最佳范围是1< k <10,在此范围内,既可得到大的R 表2-2 k值对k/(k+1)的影响 k 0.5 1.0 3.0 5.0 8. 0 10 30 50 k/(k+1) 0.33 0.50 0.75 0.83 0.89 0.91 0.97 0.98 (3)分离度与柱选择性的关系(选择因子),α越大,柱选择性越好,分离效果越好。分离度从1.0增加至1.5,对应于各α值所需的有效理论塔板数大致增加一倍。 分离度、柱效和选择性参数之间的联系为: a n有效 R=1.0R=1.5 1.00 1.005 1.01 1.02 1.05 1.07 1.10 1.15 1.25 1.50 2.0 ∞ 650000 163000 42000 7100 3700 1900 940 400 140 65 ∞ 1450000 367000 94000 16000 8400 4400 2100 900 320 145 三、分离操作条件的选择 1.载气及其流速的选择 对一定的色谱柱和试样,有一个最佳的载气流速,此时柱效最高,根据下式 H=A+B/u+C U 用在不同流速下的塔板高度H对流速u作图,得H-u曲线图。在曲线的最低点,塔板高度H最小(H最小) 。此时柱效最高。该点所对应的流速即为最佳流速u最佳,及H最小可由式(14-17)微分求得:

乳清分离设备应用工艺及技术介绍

浓缩乳制品行业使用的牛奶乳制品膜分离设备相对于一些其他国家已经逐渐成熟。目前,几乎所有的国际乳制品加工厂工业化,采用反渗透和超滤装置处理液体脱脂牛奶和乳清,特别是使用膜分离技术乳清浓缩蛋白形成了大规模的生产能力。 牛奶浓缩设备采用膜分离技术用于乳品加工可以降低能耗,减少废水污染及综合利用副产品等,尤其是乳清的回收利用,可以产生显著的经济效益。 奶乳膜分离设备在乳品工业中主要用于牛奶浓缩,乳清脱盐,牛奶组分的分离,废水处理同时回收蛋白质,滤除牛奶或乳清中的细菌等。 超滤浓缩脱脂乳和乳清分离加工流程如下: 脱脂乳或乳清—预处理—超滤—脱盐—蒸发—喷雾干燥—成品—包装 奶酪生产的传统工艺是在脱脂乳中加入发酵剂和凝乳酶后再进行混合和凝固,在此过程中会有25%的乳清蛋白从凝乳中析出排放到乳清中而流失。而用超滤浓缩脱脂乳,大部分乳糖可透过膜而被除去,大部分乳清蛋白被膜阻留在浓缩乳中,从而提高奶酪产量和质量。其基本工艺如下: 脱脂乳—预处理—超滤—浓缩液—加发酵剂—奶酪制造—奶酪 反渗透法浓缩可去除60%以上的水分,可将牛乳的固形物含量由原来的8%提高到22%,而固形物的透过率只有0.15%~0.2%,脱脂乳浓缩采用温度30~50℃超滤,可将脱脂乳浓缩到固形物3~4倍,通过稀释过滤除去乳糖和盐后,可得到蛋白质含量高达80%的脱脂浓乳,然后进行干燥,可节约大量的能源。 1、脱脂乳浓缩 利用膜技术对乳品组分进行浓缩与提纯能够保留乳品原有的风味,目前已广泛应用于脱脂乳的浓缩。膜技术作为乳品的低温浓缩技术,取代了传统的热蒸发浓缩,节省了大量的能源。另外,膜浓缩的加工温度较低,可防止乳品中的营养成分被高温破坏和高温环境下蛋白质的变性。 2、乳清脱盐与浓缩 作为制酪工业的副产品,乳清的组成很复杂,其中人们最感兴趣的是乳清蛋白。目前乳清的最大用途是饲料。通过不同的膜组合技术,可以从乳清中得到不同的产品。 使用超滤技术后,可以从低分子的乳清中分离水、盐和乳糖,从而提高集中在蛋白质的比例。随着浓缩度的提高,乳清分离可使产品中的蛋白质含量调节到所需数值,一般可将乳清浓缩到总固形物25%以上,喷雾干燥后,得到乳清蛋白浓缩粉,其蛋白质含量可达35~80%。

工业色色谱分离技术

工业色谱分离技术 工业色谱技术是广泛应用于淀粉深加工行业的现代分离技术,随着人们对色谱分离机理的理解日渐深入,自动控制程序和大型舍普柱的设计取得的巨大进展,近二十年来,色谱分离技术在淀粉深加工行业的工业化应用方面页取得了巨大成功,法国诺华赛公司作为世界主要色谱分离技术的核心供应商之一,已经将此技术成功的应用于果/葡糖浆、功能性糖醇、柠檬酸、低聚糖等工业生产领域。在此,我们将有机会将连续色谱分离系统的基本工作原理及在淀粉深加工领域中的工业化应用情况作一些介绍,供淀粉深加工行业的同行同飨: 一.色谱分离树脂 在淀粉深加工领域,典型的色谱分离载体是磺酸化交联苯乙烯和二乙烯基苯的阳离子树脂,对某些特定产品,阴离子树脂页可以得到利用。 1.色谱分离树脂型式 通常情况下,糖于糖之间的分离选用钙型树脂,而糖于非糖物质的分离则选用钾型树脂,表一给出了用于制糖工业的已商业化的分离介质。 表一针对不同产品分离的介质类型 2.色谱分离树脂特性对分离性能的影响 分离载体的主要物理特性是颗粒尺寸、颗粒和孔径分布、以及承受渗透冲击的能力。 2.1通常而言,规则的球形,小而均一的颗粒尺寸分布会实现更好的分离性能;但如果树脂粒径太小,则床层压降会显著增加,从而造成树脂破碎及运行成本提高; 2.2 树脂对由高水压和树脂膨胀/收缩形成的机械压力是非常敏感的,因此树脂的抗渗透性必须要很高。机械性能是和树脂的交联度相关的,即二乙烯苯的含量(DVB),通常这个比例是4—8%。 二.连续式色谱分离系统 1.利用树脂作为分离载体单额工业级色谱系统的通常要求: 用于色谱处理的进料液必须有稳定较高的浓度(50—70%DS)和较高的温度(60—80摄氏度),不能有任何悬浮物,温度和干基浓度的调整可以最优化系统操作。 进料之前必须要进行去离子处理,以避免树脂的离子在系统中进行离子交换而降低系统的分离效果。 具有氧化性的物质也必须要去除,因为它们会影响树脂的稳定性、 为防止树脂的氧化,通常进料流体在进入分离器之前必须进行脱气,以避免在分离器内发生气泡影响分离,所以要预防空气进入系统。 为保持树脂的特定形式,原料流体中的离子要得到控制,通常使用去离子或良好质量的冷凝水作为洗脱液。 在长时间的操作过程中,可能会形成一些细小的树脂颗粒,这些颗粒会引起床层压降的升高及流体形态的改变,因此运行一定时间后进行一些反洗是必要的; 2.连续色谱分离系统的种类:模拟移动床,多级模拟床,顺序式模拟移动床及NS2P

萃取设备

液-液萃取与萃取设备 1.液-液萃取 1.1概述 液-液萃取亦称溶剂萃取,是在液体混合物中加入与其不完全相溶的液体为溶剂,造成第二相,利用原液体中的某些成分在两液相之间不同的分配关系将有效成分分离开。这是一个液-液之间的传质过程。 液-液萃取具有处理能力大、分离效果好、回收率高、可连续操作以及易于自动控制等特点。在石油化工、湿法冶金、原子能工业、生化、环保、食品和医药工业等领域得到广泛的应用。目前萃取技术的发展还依赖于实验室的研究,从中试规模摸索工艺条件,然后再放大到工业装置。国外已有专业生产萃取设备的公司,并提供可做实验的小型实验装置,以实验提供设计参数,给用户提供整套技术服务。我国至今为止尚无一家专业制造萃取设备的企业,萃取设备仍依赖专业研究机构的特殊设计以应用于特定体系。 1.2萃取应用场合 蒸馏与萃取的区别:蒸馏:是利用混合液中各组分的挥发度不同来达到分离的目的;萃取:是利用某组分在不同溶剂中溶解度的差异来达到分离的目的。 液-液萃取主要用于以下几种情况: A.溶液中各组分的沸点非常接近,即各组分的相对挥发度接近于1,用蒸馏方法很不经济; B.溶液中含有大量的低沸点的物质,或者低沸点组分的汽化潜热较大,用蒸馏方法回收时,需要消耗的大量的热能; C.溶液中某些组分形成恒沸物,用蒸馏方法难以分离; D.溶液中要回收的组分,属于热敏性物质,蒸馏时容易分解、聚合或发生其他化学变化; E.提取很稀溶液中有价物质,如提取液中的铀、麻黄草浸煮液中的麻黄素; F.分离极难分离的金属,如锆与铪、钽与铌等。 1.3影响萃取的主要因素

A.溶剂的选择; 溶剂选择一般考虑以下因素: (1).溶剂的选择性:表征溶剂的分离能力,类似于蒸馏中的相对挥发度。选择性系数等于1,没有分离效果。选择性系数必须大于1。 (2).分配系数:分配系数与溶质浓度、温度有关。 (3).萃取容量:萃取容量要大,可以减小溶剂的循环量。 (4).溶剂的溶解度:溶剂的溶解度要小,以降低溶剂的损耗。 (5).溶剂的物性:主要是密度与界面张力。需要有适当的密度差及界面张力。 B.萃取设备的选择 萃取过程实际上是一个相际平衡的过程。 (1).将一相分散到另一相中,形成很大的相界面面积; (2).在分散相液滴和连续相接触时,发生传质,并使传质过程进行到接近平衡的程度; (3)分散相液滴的凝并。 在萃取过程中液滴的这种“分散-凝并-再分散”的过程,就使得“分散-传质-凝并”,“再分散-传质-凝并”过程不断地循环。传质机理过程对萃取设备的性能具有重要的影响。 2.萃取设备的选择 对于一个液液萃取过程来说,选择合适的传质设备,是一件比较重要的工作,但也是比较困难的工作。各种传质设备具有不同的特性,而且萃取过程及萃取系统中各种因素的影响也是错综复杂的。 设备的选型应考虑系统的性质和设计特性: (1).系统所需要的理论级数: 为完成一定的分离要求,萃取设备必须具有所需要的理论级数。所需要的理论级数较少,如2-3级,一般无机械搅拌的设备可以选用,如填料塔、筛板塔等。 所需要的理论级数较多,如5级以上,就必须选用具有外加能量的萃取设备,如转盘塔、振动塔。当需要更多的理论级数时,如稀土萃取过程往往需要几十级,甚至几百级,此时一般只能选用混合澄清器。

粉体工程——分离与分离设备

幻灯片1 第5部分 分离与分离设备 幻灯片2 分离 固气分离 按颗粒物性分离 固一液分离 幻灯片3 一、固气分离 概念 旋风收尘器 过滤分离 静电吸附 惯性式收尘 幻灯片4 概念 固气分离是分离捕集悬浮于气体中的固体颗粒或烟雾的操作,由于发展成以收尘为使用目的,往往称为收尘装置。收尘系统(图7.29 )由装设在扬尘点的洗尘罩、管道、收尘装置和风机等组成。 ;■ 處右收I: jdat 电收T. 威氏 收I: 幻灯片5 旋风收尘器

尾气的回收;也用于超细粉体的初步分离,以减少气溶胶中固体含量,为随后的过滤分离减轻压力。 工作原理:旋风收尘器是利用含尘气体高速旋转产生的惯性离心力而使尘粒与气体分离的设备。 与旋风分级原理基本一致。 幻灯片6 速度分布 旋风收尘器内旋流质点的切向速度分布可用旋涡方程式来表示: Vtrn=K Vt —旋流质点的切向速度 r —旋流质点与轴心的距离 K —常数n —指数n=1自由旋涡;n接近于1为准自由旋涡;n=-1为强制旋涡 tSi6-6-隸乂畋H生内向忧盘廈及压聲分布 幻灯片7 速度分布 排气管直径0.65倍的圆周上速度最大,作分界线。 内旋流为强制旋流,Vt=Kr,K=角速度 核心气流以外气流为准自由旋涡Vt=Kr - n n=0.5 —0.8,大型旋风收尘器n接近1,形成近于自由蜗旋的气流,同一收尘器内,随着圆锥下降,n值也一般减少. 幻灯片8 压强分布 径向压强分布曲线似抛物线状。 筒壁漏,含尘气体喷出;灰仓漏,外界空气吸入收尘器。 实际情况更加复杂,二次旋流,短路气流及散乱涡流等。 幻灯片9 性质与优缺点 根据径向沉降速度公式,可人为控制圆周速度和器筒半径,获得离心沉降速度uOr,较重力沉降速度大很多倍。 与沉降室相比,旋风收尘器可以做到小型和高效率,但能量消耗相应要增加。作初级收 尘器使用。 优缺点:结构简单,10 以上。流体阻力大。 幻灯片10

萃取过程及设备

萃取是利用系统中组分在溶剂中有不同的溶解度来分离混合物的单元操作,利用相似相溶原理,萃取有两种方式: 液-液萃取,用选定的溶剂分离液体混合物中某种组分,溶剂必须与被萃取的混合物液体不相溶,具有选择性的溶解能力,而且必须有好的热稳定性和化学稳定性,并有小的毒性和腐蚀性。如用苯分离煤焦油中的酚;用有机溶剂分离石油馏分中的烯烃;用CCl4萃取水中的Br2. 固-液萃取,也叫浸取,用溶剂分离固体混合物中的组分,如用水浸取甜菜中的糖类;用酒精浸取黄豆中的豆油以提高油产量;用水从中药中浸取有效成分以制取流浸膏叫“渗沥”或“浸沥”。 虽然萃取经常被用在化学试验中,但它的操作过程并不造成被萃取物质化学成分的改变(或说化学反应),所以萃取操作是一个物理过程。 萃取是有机化学实验室中用来提纯和纯化化合物的手段之一。通过萃取,能从固体或液体混合物中提取出所需要的化合物。 用溶剂从液体混合物中提取其中某种组分的操作称为液/液萃取。萃取是利用溶液中各组分在所选用的溶剂中溶解度的差异,使溶质进行液液传质,以达到分离均相液体混合物的操作。萃取操作全过程可包括: 1.原料液与萃取剂充分混合接触,完成溶质传质过程; 2.萃取相和萃余相的分离过程; 3.从萃取相和萃余相中回收萃取剂的过程。通常用蒸馏方法回收。 现以提取含有A、B两组分的混合液中的A组分为例说明萃取操作过程。选用一种适宜的溶剂S,这种溶剂对欲提取的组分A应有显著的溶解能力,而对其它组分B应是完全不溶或部分互溶(互溶度越小越好)。所选用的溶剂S称为萃取剂。待分离的混合液(含A+B)称为原料液,其中被提取的组分A称为溶质,另一组分B(原溶剂)称为稀释剂。 萃取过程的三个步骤:(1)首先将原料液(A+B)与适量的萃取剂S在混合器中充分混合。由于B与S不互溶,混合器中存在S与(A+B)两个液相。进行搅拌,造成很大的相界面,使两相充分接触,溶质A由原料液(稀释剂B)中经过相界面向萃取剂S中扩散。这样A 的浓度在原料液相中逐渐降低,在液相S中逐渐增高。经过一定时间后,两相中A的浓度不再随时间的增长而改变,称为萃取平衡。(2)在充分传质后,由于两液相有密度差,静置或通过离心作用会产生分层,以此达到分离的目的。以萃取剂S为主,并溶有较多溶质A 的一相称为萃取相,以E表示;以稀释剂B为主并含有少量未扩散的溶质A的一相称为萃余相,以R表示。(3)通常用蒸馏的方法回收S。脱除S后的萃取相称为萃取液;脱除S 后的萃余相称为萃余液。 选用的萃取剂的原则:

纳滤膜分离设备的应用领域

纳滤膜分离设备的应用领域

纳滤是较晚出现的新型分子级分离技术,介于传统分离范围的超滤与反渗透之间(恰好填补了超滤与反渗透之间的空白),纳滤膜在渗透过程中截留率大于95%的小分子约为1nm(非对称微孔膜平均孔径为2nm),故称为“纳滤”。 纳滤膜分离设备一个优点是能截留透过超滤膜的那部分小分子量的有机物,又能透析反渗透膜所截留的无机盐——也就是能使“浓缩”与脱盐同步进行。其次,在同等的外加压力下,纳滤的通量要比反渗透大得多;而在通量一定时,纳滤所需的压力则比反渗透的低得多。所以用纳滤代替反渗透时,“浓缩”过程可更有效、快速地进行,并达到较大的“浓缩”倍数。 纳滤膜分离设备的应用: 1. 软化水处理 对于大多数溶解固体低于2000mg/l的水,纳滤膜可在70~100psi 的压力下生产饮用水。而低压反渗透膜要在200psi下操作才能生产出较高质量的渗透水。 2. 饮用水有害物质的脱除 传统的饮用水处理主要通过絮凝、沉降、砂滤和加氯消毒来去除水中的悬浊物和细菌,而对各种溶解性化学物质的脱除作用很低。而纳滤膜由于本身的性能特点,可脱除河水及地下水中含有的三卤甲烷

中间体THM(加氯消毒时的副产物为致癌物质)、低分子有机物、异味物质、硝酸盐、氟、硼、砷等有害物质,因此纳滤十分适于饮用水领域。 3. 中水、废水处理 4. 食品、饮料、制药行业领域中的应用。 a、抗生素的纯化与浓缩 抗生素的相对分子质量多数在300——1200道尔顿之间。抗生素的生产过程为先将发酵液澄清,用选择性溶剂萃取,再通过减压蒸馏得到抗生素产品。 以上就是为大家介绍的全部内容,希望对大家有帮助。

直观演示7大萃取设备的结构和原理

直观演示7大萃取设备的结构和原理 萃取(Extraction)是分离液体混合物的一种单元操作,依据液体混合物中各组分在溶剂中溶解度的差异分离液体混合物,俗称抽提。 萃取设备 ——离心萃取机—— ——混合·沉降萃取器——

——脉冲筛板萃取塔—— ——筛板萃取塔——

——填料萃取塔—— ——往复筛板萃取塔——

——转盘筛板萃取塔—— 萃取设备简介 萃取设备又称萃取器,其作用是实现两液相之间的质量传递。对萃取设备的基本要求是使萃取系统的两液相之间能够充分混合、紧密接触并伴有较高程度的湍动;同时使传质后的萃取相与萃余相能够较完善的分开。萃取设备的种类很多,按两相接触方式,可分为逐级接触式和连续接触式;按形成分散相的动力,可分为无外加能量与有外加能量两类,前者只依靠液体送入设备时的压力和两相密度差在重力作用下使液体分散,后者则依靠外加能量用不同的方式使液体分散;此外,根据两相逆流的动力不同,可分为重力作用和离心力作用两类。

常用的萃取塔型 ①转盘塔 在工作段中,等距离安装一组环板,把工作段分隔成一系列小室,每室中心有一旋转的圆盘作为搅拌器。这些圆盘安装在位于塔中心的主轴上,由塔外的机械装置带动旋转。转盘塔结构简单,处理能力大,有相当高的分离效能,广泛应用于石油炼制工业和石油化工中。 ②脉动塔 在工作段中装置成组筛板(无溢流管的)或填料。由脉动装置产生的脉动液流,通过管道引入塔底,使全塔液体作往复脉动。脉动液流在筛板或填料间作高速相对运动产生涡流,促使液滴细碎和均布。脉动塔能达到更高的分离效能,但处理量较小,常用于核燃料及稀有元素工厂。 ③振动板塔 将筛板连成串,由装于塔顶上方的机械装置带动,在垂直方向作往复运动,借此搅动液流,起着类似于脉动塔中的搅拌作用。 萃取塔设计主要是确定塔的直径和工作段高度。先从液体流量除以操作速度,得出塔截面,算出塔径。然后根据塔的特性以及物系性

色谱分离技术原理及其的应用

色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。色谱法也由此而得名。现在的色谱法早已不局限于色素的分离,其方法也早已得到了极大的发展,但其分离的原理仍然是一样的。我们仍然叫它色谱分析。 一、色谱分离基本原理:由以上方法可知,在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。 二、色谱分类方法:色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。从两相的状态分类:色谱法中,流动相可以是气体,也可以是液体,由此可分为气相色谱法(GC)和液相色谱法(LC)。固定相既可以是固体,也可以是涂在固体上的液体,由此又可将气相色谱法和液相色谱法分为气-液色谱、气-固色谱、液-固色谱、液-液色谱。高效液相色谱法是继气相色谱之后,70年代初期发展起来的一种以液体做流动相的新色谱技术。高效液相色谱是在气相色谱和经典色谱的基础上发展起来的。现代液相色谱和经典液相色谱没有本质的区别。不同点仅仅是现代液相色谱比经典液相色谱有较高的效率和实现了自动化操作。经典的液相色谱法,流动相在常压下输送,所用的固定相柱效低,分析周期长。而现代液相色谱法引用了气相色谱的理论,流动相改为高压输送(最高输送压力可达4.9 107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。因此,高效液相色谱具有分析速度快、分离效能高、自动化等特点。所以人们称它为高压、高速、高效或现代液相色谱法。 液相色谱法 气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。 原理和分类 液相色谱法的分离机理是基于混合物中各组分对两相亲和力的差别。根据固定相的不同,液相色谱分为液固色谱、液液色谱和键合相色谱。应用最广的是以硅胶为填料的液固色谱和以微硅胶为基质的键合相色谱。根据固定相的形式,液相色谱法可以分为柱色谱法、纸色谱法及薄层色谱法。按吸附力可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱。近年来,在液相柱色谱系统中加上高压液流系统,使流动相在高压下快速流动,以提高分离效果,因此出现了高效(又称高压)液相色谱法。 液固吸附色谱 高效液相色谱中的一种,是基于物质吸附作用的不同而实现分离。其固定相是一些具有

EP6.0色谱分离技术(中文)

EP6色谱分离技术 色谱分离技术是多级分离方法,样品组分要分配到两相中,一种是固定相,一种是流动相。固定相可能是一种固体或者是固体上支持的液体或凝胶。固定相可以填充到柱中,或涂布为一层,或分散为一个薄膜等。流动相可能是气态或液体或超临界流体。分离原理可能是基于吸收、质量分布、离子交换等,或可能基于分子的理化性质不同,如粒度、质量、体积等。 本章包括系统适应性一般参数的定义和计算,以及一般适用性要求。在下列章节给出了分离原理、仪器和方法: --纸层析(2.2.26) --TLC色谱法(2.2.27) --气相色谱法(2.2.28) --液相色谱法(2.2.29) --分子排阻色谱法(2.2.30) --超临界流体色谱法(2.2.45) 定义 下列定义用于计算专论中的限度。 对于某些设备,某些参数(如信噪比)可以用生产商提供的软件计算。用户有责任确保软件中的计算方法与欧洲药典的要求相一致。如果不同,必需进行校正。 色谱图 一张色谱图是检测器响应值、流出浓度或其他数量的绘图的或其他标示,作为流出浓度、时间、体积或距离的一种测量。理想的色谱图是基线上出现高斯峰。 保留数据 保留时间和保留体积 洗脱色谱法中的保留测量可能是保留时间(t R),由色谱图中最大峰的位置直接进行定义。保留体积(V R)可以通过保留时间来计算: V R=v×t R t R=保留时间或沿基线从进针处到相应组分的最大峰垂直处之间的距离。 v=流动相的速率。

质量分布比率 质量分布比率(Dm)(也称为容量因子k’或保留因子k)规定如下: 固定相中溶质数量Vs Dm==Kc 流动相中溶质数量V M Kc=平衡分布系数(也称为分布常数) Vs=固定相体积 V M=流动相体积 一个组分的质量分布比率可以使用下列公式从色谱图中测定: t R-t M Dm= t M t R=保留时间(或体积)或沿基线从进针处到相应组分的最大峰垂直处之间的距离。t M=保持时间(或体积):时间(或体积)或沿基线从进针处到一个未保留组分的最大峰垂直处之间的距离。 分布系数 在分子排阻色谱法中,一个特定柱子中的一个组分的洗脱性质可以通过分布系数(Ko)表示,计算公式如下: t R-t o Ko= t t-t o t R=保留时间(或体积)或沿基线从进针处到相应组分的最大峰垂直处之间的距离。t o=保持时间(或体积):时间(或体积)或沿基线从进针处到一个未保留组分的最大峰垂直处之间的距离。 t t=保留时间(或体积)或沿基线从进针处到相应的一个组分的最大峰垂直处之间的距离,这个组分可以全部通过固定相的小孔。 延迟因子 在平面色谱法中,延迟因子(R F)(也称为保留因子R f)是从原点到斑点中心的距离与原点到溶剂前沿的距离的比值。 b R F= a

萃取与分离技术 萃取基本概念及分离方法

模块三萃取技术 学习目标 知识目标 1.掌握萃取操作的基本知识、三角形相图、相平衡关系、单级萃取操作的工艺计算;掌握萃取操作的适用场合;掌握萃取操作、常见事故及其处理方法。 2.理解萃取过程的基本原理,理解萃取操作过程的控制与调节。 3.了解各种萃取操作的基本流程,了解各种萃取设备的结构、特点及其选择方法。能力目标 1.能够用三角形相图表示萃取操作过程,分析萃取操作过程的影响因素,并 能够进行萃取剂的选择,液—液萃取操作的选择。 2.能够了解萃取操作的开停车,常见事故及其处理方法。 素质目标 1.培养学生工程技术观念; 2.培养学生独立思考的能力,逻辑思维的能力; 3.培养学生能应用所学知识解决工程实际问题的能力。 任务单 东方化工集团有限分司,乙酸水溶 液中回收乙酸,这一过程中使用萃取 的方式进行,要求处理量为每批1t, 其中乙酸含量为50%(质量百分率 下同),要求最终乙酸的组成达70% 以上。完成下列任务: (1)确定回收方法; (2)选用适宜的萃取剂; (3)选用合适的萃取设备; (4)计算萃取剂用量。

萃取基本概念及分离方法的任务单(18-1) 班级________组别_____姓名__________组员名单______________________ 基本概念 常用术语萃取: 萃取剂: 萃取相: 萃余相: 萃取液: 萃余液: 溶质: 原溶剂(稀释剂): 溶解溶解度曲线: 连接线(共轭线): 共轭液层(共轭相): 辅助曲线: 临界混熔点: 分配曲线: 分配系数: 萃取操作的分类及适用场合 萃取操作的分类 适用场合 建议选用分离方法 得分

萃取基本概念及分离方法的任务单(18-1) 班级________组别_____姓名__________组员名单______________________ 基本概念 常用术语萃取:利用混合物中的各组份在溶剂中的溶解度的不同,而达到混合物分离的目的。萃取剂:萃取剂:所选用的溶剂。 萃取相:以萃取剂为主溶有溶质的相。E 萃余相:以原溶剂为主溶质含量较低的相。R 萃取液:除去萃取相中的溶剂而得到的液体。E’ 萃余液:除去萃余相中的溶剂而得到的液体。R’ 溶质:混合物中被分离出的组份。A 原溶剂(稀释剂):原混合物中与溶剂不互溶或仅部分互溶的组份。 溶解溶解度曲线:将代表诸平衡液层的组成坐标点连接起来的曲线。 连接线(共轭线):萃取相E和萃余相R两点的联线。 共轭液层(共轭相):二元混合物中加入适量的萃取剂,即形成了二个液层萃取相E和萃余相R,把达到平衡时的两个液层称为“共轭液层或共轭相”。 辅助曲线:分别过共轭液层的两点作三角形任意两条边的平行线,其交点的连线。 临界混熔点:辅助曲线与溶解度曲线的交点。 分配曲线:将三角形相图中各组相对应的平衡液层中溶质A的浓度转移到x-y直角坐标上,所到的曲线。 分配系数:组份在萃取相E中浓度与其在萃余相R中的浓度之比值。 萃取操作的分类及适用场合 萃取操作的分类物理萃取:利用溶剂对欲分离的组份具有较大的溶解能力,溶质通过扩散作用转移到溶剂中,从而达到分离的目的的过程。 化学萃取:由于化学作用,溶剂选择性地与溶质化合或络合,从而帮助溶质重新分配,达到分离目的的过程。 适用场合(1)原料液中各组分间的相对挥发度接近于1或形成恒沸物。若采用蒸馏方法不能分离或很不经济; (2)原料液中需分离的组分含量很低且为难挥发组分。若采用蒸馏方法须将大量稀释剂汽化,能耗较大; (3)原料液中需分离的组分是热敏性物质。这种物料蒸馏时易于分解、聚合或发生其它变化。 (4)高沸点有机物的分离。用萃取方法代替技术很高的真空蒸馏、分子蒸馏,可降低能量消耗。 建议选用分离方法 得分

气相色谱分离的原理

峰面积:组分流出的曲线与基线所包围的面积。表示:符号A 峰底:色谱峰下面的基线延长线(峰起点到终点间的直线CD) 峰高:色谱峰最高点至峰底的垂直距离AB' 表示符号:h 峰宽(W):沿色谱峰两侧拐点所作的切线与峰底相交两点之间的距离。IJ。符号: 半峰宽(Wh/2):峰高为0.5h处的峰宽。 标准偏差(σ):峰高0.607h处峰宽EF的一半。 区域宽度:色谱峰的区域宽度是色谱流出曲线的重要参数之一,可用于衡量色谱柱的柱效及反映色谱操作条件下的动力学因素。宽度越窄,其效率越高,分离的效果也越好。 保留时间:试样从进样到出现峰极大值时的时间。它包括组份随流动相通过柱子的时间t0和组份在固定相中滞留的时间。 死时间:不与固定相作用的物质从进样到出现峰极大值时的时间,它与色谱柱的空隙体积成正比。由于该物质不与固定相作用,因此,其流速与流动相的流速相近。 调整保留时间:某组份的保留时间扣除死时间后的保留时间,是组份在固定相中的滞留时间。死体积:色谱柱管内固定相颗粒间空隙、色谱仪管路和连接头间空隙和检测器间隙的总和。保留体积Vr:指从进样到待测物在柱后出现浓度极大点时所通过的流动相的体积。 调整保留体积:某组份的保留体积扣除死体积后的体积。 净保留体积:用压力梯度校正因子修正后的组分调整保留体积,VN 比保留体积:组分在每g固定液校正到273.15K时的净保留体积,Vg 相比率:气相与吸附剂或固定液体积之比β=VG/VS,VG/VL 相对保留值:相同操作条件下,组分与参比物质的调整保留值之比ri,s 柱外效应:是指色谱柱之外的造成色谱峰展宽的成因,主要由进样装置、检测池及它们与柱之间的连接管路所产生. 即从进样系统到检测器之间色谱柱以外的流路部分,由于进样方式、柱后扩散等因素对柱效能所产生的影响。 反吹:一些组分被洗脱后,将载气反向通过色谱柱,使另一些组分向相反方向移动的操作.目的是为了使组分从色谱柱相反方向洗脱,可节省时间,或使组分不进入会受其污染的另一色谱柱. 老化:色谱柱在高于使用柱温下通过载气进行处理的过程.老化温度不可超过固定液的允许最高使用温度,老化时间一般为10小时左右. 色谱柱老化的目的:是彻底除去填充物中的残留溶剂和某些挥发性的物质;另一方面是促进固定液均匀牢固地分布在担体的表面上. 柱流失:所有的色谱柱都有柱流失的现象,来源于固定相由于各种原因降解而产生的被洗脱物质。柱流失会随着温度的升高而加剧。 基线噪声又称噪音,定义为没有溶质通过检测器时,检测器输出的信号变化,以RN表示。噪声是指与被测样品无关的检测器输出信号的随机扰动变化。 漂移是指基线随时间的增加朝单一方向规律性移动。造成漂移的原因是电源电压不稳;检测器本身或附属电子元件性能不佳;或者温度及流动相流速的缓慢变化;固定相从柱中冲刷下来;更换的新溶剂在柱中尚未达到平衡等 检测器的线性范围定义为在检测器呈线性时最大和最小进样量之比,或叫最大允许进样量(浓度)与最小检测量(浓度)之比。 检测器的灵敏度灵敏度可定义为信号(R)对进人检测器的组分量(C)的变化率 检测器的检测限如果要把信号从本底噪声中识别出来,则组分的响应值就一定要高于N。检测器响应值为2倍噪声水平时的试样浓度(或质量),被定义为最低检测限。 最小检测量指产生二倍噪声峰高时,色谱体系(即色谱仪)所需的进样量。 响应速度(响应时间):响应时间指进入检测器的某一组分的输出信号达到其真值的63%所需

相关文档