文档库 最新最全的文档下载
当前位置:文档库 › 山谷线、山脊线提取

山谷线、山脊线提取

山谷线、山脊线提取
山谷线、山脊线提取

自动提取山脊线和山谷线

arcmap 自动提取山脊线和山谷线的方法1 平面曲率与坡形组合法

基于规则格网DEM是最主要的自动提取山脊线和山谷线的方法,从算法设计原理上来分,大致可以分为以下五种:

1) 基于图像处理技术的原理;

2) 基于地形表面几何形态分析的原理;

3) 基于地形表面流水物理模拟分析原理;

4) 基于地形表面几何形态分析和流水物理模拟分析相结合的原理;

5) 平面曲率与坡形组合法。

平面曲率与坡形组合法提取的山脊、山谷的宽度可由选取平面曲率的大小来调节,方法简便,效果好。该方法基本处理过程为:首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。因此,下面的提取过程以SOA代替平面曲率。

具体提取过程为:

1)激活DEM 数据,在Spatial Analysis 下使用surface 菜单下的Derive Aspect 命令,提取DEM 坡向层面,记为A;

2)激活A 层面,在Spatial Analysis 下使用surface 菜单下的Derive Slope 命令,提取A 层面的坡度信息,记为SOA1;

3)求取原始DEM 数据层的最大高程值,记为H;通过Spatial Analysis 下的栅格计算器Calculator,公式为(H-DEM),得到与原来地形相反的DEM 数据层,即反地形DEM 数据;

4)基于反地形DEM 数据求算坡向值;

5)利用SOA 方法求算反地形的坡向变率,记为SOA2;

6)在Spatial Analysis 下使用栅格计算器Calculator,公式为SOA =(([SOA1]+[SOA2])-Abs ([SOA1]-[SOA2]))/ 2,即可求出没有误差的DEM 的坡向变率SOA;

7)激活原始DEM 数据,在Spatial Analysis 下使用栅格邻域计算工具Neighborhood Statistics;设置Statistic type 为平均值,邻域的类型为矩形(也可以为圆),邻域的大小为275×275 MAP,则可得到一个邻域为275×275 MAP的矩形的平均值层面,记为B;

8)在Spatial Analysis 下使用栅格计算器Calculator,公式为C =[DEM]-[B],即可求出正负地形分布区域,

9)在Spatial Analysis下使用栅格计算器Calculator,公式为D =[C] >0 & SOA > 70,即可求出山脊线;

10)同理,在栅格计算器Calculator 中,修改公式为D =[C] < 0 & SOA > 70,即可求出山谷线

地形特征信息提取(山谷线、山脊线)

方法1:SOA法

SOA法原理:山谷线和山脊线实质是平面曲率发生突变的地方,所以用SOA来近似平面曲率,提取其中变法大的就是山谷线和山脊线,其中山谷线对应的是负地形中SOA较大的值,山脊线对应的是正地形中SOA较大的值。

实现路线:

1)加载数据并求DEM数据的坡向变率SOA1

2)求原始数据的反DEM数据,并求反DEM数据的坡向变率SOA2

3)通过栅格计算器求出没有误差的DEM的坡向变率SOA。从理论可知,SOA1和SOA2应该是相同的,故通过下面的表达式可以消除误差

SOA = ([SOA1]+[SOA2])-Abs([SOA1]-[SOA2])/2

4)通过正负地形和SOA求解山谷线和山脊线

山脊线对应的是正地形且SOA较大值,表达式如下:

[DEM]-[meandem]>0&SOA<70

山谷线对应的是负地形且SOA较大值,表达式如下:

[DEM]-[meandem]<0&SOA<70

方法2:水文分析法

原理:提取山谷线可以等效与提取河流,所以先进行填洼,然后计算水流方向和汇流量,最后提取的河流就是山谷线了,提取山脊线时只需求反DEM数据的山谷线即可。再次要说明一下,因为水是向下流的,所以要fill,虽然山谷线没有这要求,可是不填充就得不到连续的线,所以也要fill。

实现路线:

1)加载DEM数据,并对其进行填充。对填充后的DEM数据作流水方向分析,记为f2流向。

2)对f2流向作累积汇流量分析,记为f2汇流量。

3)对f2汇流量做重分类,把分类值为1的不显示即得到山谷线。

4)山脊线即求反DEM的山谷线。

方法3:几何形态分析与水文分析相结合

原理:对于山脊线而言,由于它同时也是分水线,所以对于山脊线上的栅格是水源的起源点,通过地表径流模拟后这些栅格应该汇流累积量为0。所以通过对零值的汇流累积值的栅格的提取就可以得到山脊线。山谷线的提取就是提取反DEM的山脊线。

实现路线:

1)加载DEM数据并生成其反DEM数据。

2)对反DEM数据和方法2中一样作流向和汇流量分析,得到的数据分别记为f3流向和f3汇流。

3)对原始DEM数据做邻域分析,得到meandem。

4)在栅格计算器中写如下表达式即求出山谷线。

[DEM]-[meandem]<0&[f3汇流]==0

5)对原始DEM数据做同样的分析得到山脊线。其中需要把[DEM]-[meandem]改成大于零。

ArcGIS方法利用到路面提取道路中心线的方法

A r c G I S方法-利用到路面提取道路中心线的方法利用到路面提取道路中心线的方法在利用GIS制图时,需要经常跟数据打交道。很多初级的制图人员都存在一种惯性思路,以为数据精度越高,出图的效果就越好。这是错误的观点。假如现在需要制作1:1w的地图,但手头上却只有1:500的地形图,数据精度虽然很高,但却无法在小比例尺下显示出来。回到主题上,1:500的数据,大多数道路都是以面状显示。由于其精度高,有些数据甚至是不带线道路图层的,而在1w的地图下,道路以线状表达才是符合要求的。所以,这就需要涉及到地图制图的一个常规工作—地图缩编。本文主要介绍如何从到路面直接提取出道路中心线,从而辅助小比例尺地图的制作。 由于面状数据一般都是不规则的,所以很难从其提取中心线,一般的GIS软件也没提供直接提取的工具。ArcGIS里面虽然也有一些工具可以辅助一下处理,例如在制图工具箱里面有一个提取中心线的工具,但这个工具的作用是通过道路边线(双线)提取中心线。也有人说ArcGIS里面同样是提供面转线工具,先用工具转一道再提取不就行了吗?可是问题来了,面转线工具传出来的数据是封闭线,而不是道路边线,提取中心线工具依然是不可用,除非在每个路面图形打断两端的封闭,不然无法进行提取,恰好打断工作又是非常的巨大。因此,该方法还是不可用。 为了解决这个问题,那就是ArcScan扩展模块。提到ArcScan扩展,很多专业人员第一时间反应是这只是个栅格矢量化工具,跟当前讨论的中心线提取似乎没有任何关系。只要深入了解ArcScan扩展的具体细节,我们不难发现其自动矢量化里面可以提取面要素和中心线,利用这一特性,我们就可以曲线去完成该任务了。 先来说说总体思路:将路面(矢量面数据)转化为栅格数据,因为ArcScan只能对栅格数据进行处理,由于是从矢量转为栅格而非扫描,栅格质量一般会非常好;通过二值化栅格

山脊线山谷线提取实验报告

山脊线山谷线提取实验报告 实验内容描述: 山脊线和山谷线构成了地形起伏变化的分界线(骨架线),因此它对于地形地貌研究具有重要意义;另一方面,对于水文物理过程研究而言,由于山脊、山谷分别代表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。 本次实验通过某区域栅格DEM掌握山脊线和山谷线这两个基本地形特征信息的理论及其基于DEM的提取方法与原理;同时,熟练掌握利用ArcGIS软件对这两个地形特征信息的提取方法。 实验原理: 1.本实验基于规则格网DEM数据使用平面曲率与坡形组合法提取山脊线和山谷线,首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。因此,提取过程中可以SOA代替平面曲率。 2.主要用到以下理论知识: 1)坡向变率:是指在提取坡向基础上,提取坡向的变化率,亦即坡向之坡度(Slope of Aspect,SOA)。它可以很好地反应等高线弯曲程度; 2)反地形DEM数据:求取原始DEM数据层的最大高程值,记为H,通过公式(H-DEM),得到与原来地形相反的DEM数据层,即反地形DEM数据; 3)地面坡向变率SOA:地面坡向变率在所提取的地表坡向矩阵的基础上沿袭坡度的求算原理,提取地表局部微小范围内坡向的最大变化情况。但是SOA在提取过程中在北面坡将会有误差产生,所以要将北坡坡向的坡向变率误差进行纠正,其公式为: SOA=(( [SOA1]+[ SOA2] )-Abs( [SOA1]-[ SOA2] ))/2 其中:SOA1为原始DEM数据层坡向变率,SOA2为反地形DEM数据层坡向变率。 4)焦点统计 5)ArcScan自动矢量化 流程图

七年级地理上册期中测试试卷 山顶鞍部山谷山脊陡崖山谷山脊山顶鞍部陡崖

七年级地理上册期中测试试卷 考试时间:60分钟满分:100分 一.单项选择题(每题2分,共50分) 1.地球的平均半径为() A、6336千米 B、6357千米 C、6371千米 D、6378千米 2.纬线的特点是() A、纬线都是半圆 B、纬线指示南北方向 C、所有纬线长度相等 D、赤道是最长的纬线 3.划分东西半球的界线是() A、任意两条相对的经线所组成的经线圈 B、0°经线和180°经线所组成的经线圈 C、西经20 °和东经160°两条经线所组成的经线圈 D、东经20 °和西经160°两条经线所组成的经线圈 4.在地球仪上,66.5°N纬线被人们称为() A、北回归线 B、南回归线 C、北极圈 D、南极圈 5.某建筑队要修建一座房屋,房屋的四面窗户都朝北方,你认为房屋应建立在哪个地方() A、赤道上 B、北极点 C、南极点 D、青藏高原 6.下列四个地点中,符合“东半球、北半球,一年中有两次太阳直射”三个条件的是() A、170 °E、20 °N B、10 °E、25 °N C、30 °W、20 °S D、10 °W、23 °N 7.地球自转产生的地理现象主要是() A、地球上昼夜的形成 B、地球上昼夜的更替 C、地球上四季的变化 D、同一地方正午太阳高度随季节变化 8.下列关于地球公转的说法,正确的是() A、方向是自东向西 B、周期是365天 C、产生了昼夜现象 D、产生了四季变化 9.同学们放寒假的时候,南半球的澳大利亚正处于() A、春季 B、夏季 C、秋季 D、冬季 10.北京一年中白昼最短、正午太阳高度最低的时间是() A、夏至 B、冬至 C、春分 D、秋分 11.太阳光在地球表面直射的最南界线是() A、北回归线 B、赤道 C、南回归线 D、南极圈 12.我国南极考察队从上海(31°N)出发到南极大陆,沿途经过几个温度带() A、五个 B、四个 C、三个 D、两个 13.在一副1:3000000的地图上,8厘米代表的实际距离是() A、240千米 B、2400千米 C、24千米 D、1200千米 14.下列对高度的叙述,表示相对高度的是() A、珠穆朗玛峰高8848米 B、吐鲁番盆地的艾丁湖高-155米 C、珠穆朗玛峰比吐鲁番盆地高8999米 D、青藏高原平均海拔4000米 15. 在分层设色地形图上,蓝色一般表示() A、山地和丘陵 B、山地和高原 C、平原和盆地 D、湖泊和海洋

一种基于脊线跟踪的冠状动脉中心线提取方法

收稿日期:2006-11-26;修订日期:2007-07-06 基金项目:新世纪优秀人才支持计划资助项目(NCET 20420948) 作者简介:高飞(1968-),男,山东昌乐人,副教授,博士,主要研究方向:智能信息处理、图像图形学; 高新波(1972-),男,山东莱芜人,教授,博士,主要研究方向:智能信息处理、图像工程、视频信号处理. 文章编号:1001-9081(2007)S1-0380-02 一种基于脊线跟踪的冠状动脉中心线提取方法 高 飞1 ,高新波 2 (1.深圳大学信息工程学院,广东深圳518060;2.西安电子科技大学电子工程学院,陕西西安710071)(nels on_gao2010@yahoo .com;nels ongao2010@g mail .com ) 摘 要:冠脉血管中心线的提取是血管造影图像定量分析中的关键步骤。基于脊线跟踪法,提出了一种血管中心线自动提取方法。通过交互式地指定一个起始点和一个终止点,该算法能够自动获取两点间的血管中心线。实验结果表明了该方法的鲁棒性和可重复性。 关键词:中心线提取;定量冠脉分析;脊线跟踪中图分类号:TP391.41 文献标识码:A 0 引言 冠脉血管造影是临床诊断的重要手段。对冠脉血管进行 定量分析具有重要的实际意义。与传统定性诊断方法相比,它克服了医生判断的主观随意性,提供了更为客观准确的诊断依据。血管轮廓线和中心线的自动提取是血管定量分析的前提。在血管造影图像中,血管的提取可以采用基于区域或边缘的图像分割技术。文献[1]中指出血管的剖面灰度分布呈近似高斯型,因此利用二维高斯模板来提取血管,但该方法比较耗时。文献[2]中利用一维旋转高斯模板代替了二维高斯模板,降低了算法的复杂度。不过,从精确分析的角度看,在血管分析中准确提取血管边缘是更好的选择。在现有的许多血管轮廓提取算法中,血管中心线的检测是最为关键和困难的一步。最简单的方法是手工描绘[3],但该方法费时费力且可重复性差,所以逐渐为人机交互的半自动方法所取代。在这些交互式方法中,操作者只需指明待分析血管段的起始点和结束点,就可以自动获得两点间的中心线[4,6]。不过,现有的中心线提取算法大都基于动态规划方法的,搜索时间较长,难以满足临床上实时性的要求。因此急需研究实时性能好的血管中心线提取算法。 既然血管剖面呈近似高斯分布,那么可以将血管的中心线看作脊线。中心线提取问题就转化为脊线的检测。受文献[5]中指纹特征点提取的脊线跟踪法的启发,本文提出了一种基于脊线跟踪的血管中心线提取方法,在实际应用中也取得了比较好的效果。需要指出的是,这里所说的中心线并不是严格的血管的对称轴线,只要求它位于血管内部且与血管走向一致即可,文献[4]中对此有详细说明。 1 血管中心线提取算法 1.1 图像预处理 血管造影图像质量因拍摄条件的不同而参差不齐,一般都有较强的噪声干扰。既然本文方法主要依据的是血管的脊线特征,因此,首先需要降低噪声对脊线特征的破坏。这里采用二维高斯模板来平滑噪声,模板大小一般应大于所选血管段的最大直径。图1显示了滤波的效果:图1(a )是沿血管一个剖面(垂直中心线方向)的灰度分布曲线,可以看到它近似 的反高斯形状;图1(b )是相应位置的梯度强度;图1(c )(d )为对应的平滑处理结果,可以看到,虽然处理后目标与背景的对比度降低了,但目标灰度和梯度的真实结构得到了加强,这有利于后面准确的计算局部脊线方向 。 图1 预处理结果显示 1.2 中心线跟踪 跟踪过程可以分为两步:局部脊线方向计算和中心线上点的更新。局部脊线方向计算方法将在1.3节中详述,这里假设已经得到了这个方向。为了叙述方便,以下将正在处理的点称为当前点。如图2所示,P k -1是当前点,在P k -1处计算 得局部脊线方向为θk -1,由P k -1沿θk -1前进d 个像素到达P ′k ,通过点的更新操作更新到P k ,此时P k 成为当前点。重复以上过程直到停止条件满足。在P ′k 点的更新操作中利用了匹配滤波方法:在P ′k 点得到局部脊线的估计方向θ′k ,以P ′k 为中心,在θ′k +π 2 的方向上获得剖面灰度分布曲线g ′(i )(i =1,…,2l +1)。设f (k )(k =-m ,…,m )为一维高斯 滤波模板,长度为2m +1,满足 ∑k f (k ) =1。通过下式来得到 更新的灰度分布g (i )(i =1,…,2l +1): ∑m v =-m f (v ) g ′ (i +v ),i =m +1,…,2l -m g ′(i ), 其他 (1) 取g (i )的局部极小值点作为更新点P k (如图2所示)。其中,参数l 、m 、d 可以经验地选择,l 应至少大于最大血管直 第27卷2007年6月   计算机应用 Computer App licati ons   Vol .27June 2007

山脊线、山谷线和鞍部点的提取知识讲解

山脊线、山谷线和鞍部点的提取

山脊线、山谷线和鞍部点的提取 一.实习背景 山脊线、山谷线是地形特征线,它们对地形、地貌具有一定的控制作用。它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。因此在数字地形分析中,山脊线和山谷线以及地形特征点等的提取和分析是很有必要的。 相邻两山头之间呈马鞍形的低凹部分称为鞍部,鞍部是两个山脊和两个山谷会合的地方。鞍部点是重要的地形控制点,它和山顶点、山谷点以及山脊线、山谷线等构成的地形特征点线,具有对地形具有很强的控制作用。因此,对这些地形特征点、线的分析研究在数字地形分析中具有很重要的意义。同时,由于鞍部点的特殊地貌形态,使得鞍部点的提取方法较山顶点和山谷的提取更难,目前没有什么有效的方法来提取鞍部点,利用水文分析的方法可以来提取一些鞍部点,但是它还是具有一定局限性。 二.实习目的 (1)熟练掌握基于DEM利用ArcGIS进行提取相关地形特征的方法与原理; (2)深入认识山脊线、山谷线和鞍部点3个基本地形特征;三.实习内容 1.提取dem数据的SOA 2基于地形表面的几何形态分析方法提取山脊线山谷线 3.基于DEM水文分析方法提取山脊线山谷线

4.鞍部点的提取 四.实习数据 DEM 五.实习工具 Surface Analyst,model工具 六.实习步骤 1.提取DEM的SOA数据 A.求取原始DEM数据层的最大高程值,记为H;通过Spatial Analysis 下的栅格计算器 Calculator,公式为(H-DEM),得到与原来地形相反的 DEM数据层,即反地形DEM数据; B.基于反地形 DEM数据求算坡向值; C.利用 SOA 方法求算反地形的坡向变率,记为 SOA2,由原始DEM数据求算出的坡向变率值为 SOA1; D.在 Spatial Analysis下使用栅格计算器 Calculator,公式为 SOA =(([SOA1]+[SOA2])-Abs([SOA1]-[SOA2]))/ 2,即可求出没有误差的 DEM 的坡向变率, 2.利用基于地形表面的几何形态分析方法提取山脊线山谷线 (1)山脊线的提取

山谷线、山脊线提取

自动提取山脊线和山谷线 arcmap 自动提取山脊线和山谷线的方法1 平面曲率与坡形组合法 基于规则格网DEM是最主要的自动提取山脊线和山谷线的方法,从算法设计原理上来分,大致可以分为以下五种: 1) 基于图像处理技术的原理; 2) 基于地形表面几何形态分析的原理; 3) 基于地形表面流水物理模拟分析原理; 4) 基于地形表面几何形态分析和流水物理模拟分析相结合的原理; 5) 平面曲率与坡形组合法。 平面曲率与坡形组合法提取的山脊、山谷的宽度可由选取平面曲率的大小来调节,方法简便,效果好。该方法基本处理过程为:首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。因此,下面的提取过程以SOA代替平面曲率。 具体提取过程为: 1)激活DEM 数据,在Spatial Analysis 下使用surface 菜单下的Derive Aspect 命令,提取DEM 坡向层面,记为A; 2)激活A 层面,在Spatial Analysis 下使用surface 菜单下的Derive Slope 命令,提取A 层面的坡度信息,记为SOA1; 3)求取原始DEM 数据层的最大高程值,记为H;通过Spatial Analysis 下的栅格计算器Calculator,公式为(H-DEM),得到与原来地形相反的DEM 数据层,即反地形DEM 数据; 4)基于反地形DEM 数据求算坡向值; 5)利用SOA 方法求算反地形的坡向变率,记为SOA2; 6)在Spatial Analysis 下使用栅格计算器Calculator,公式为SOA =(([SOA1]+[SOA2])-Abs ([SOA1]-[SOA2]))/ 2,即可求出没有误差的DEM 的坡向变率SOA; 7)激活原始DEM 数据,在Spatial Analysis 下使用栅格邻域计算工具Neighborhood Statistics;设置Statistic type 为平均值,邻域的类型为矩形(也可以为圆),邻域的大小为275×275 MAP,则可得到一个邻域为275×275 MAP的矩形的平均值层面,记为B; 8)在Spatial Analysis 下使用栅格计算器Calculator,公式为C =[DEM]-[B],即可求出正负地形分布区域, 9)在Spatial Analysis下使用栅格计算器Calculator,公式为D =[C] >0 & SOA > 70,即可求出山脊线; 10)同理,在栅格计算器Calculator 中,修改公式为D =[C] < 0 & SOA > 70,即可求出山谷线

山脊线山谷线提取实验报告

山脊线山谷线提取实验报告 实验容描述: 山脊线和山谷线构成了地形起伏变化的分界线(骨架线),因此它对于地形地貌研究具有重要意义;另一方面,对于水文物理过程研究而言,由于山脊、山谷分别代表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。 本次实验通过某区域栅格DEM掌握山脊线和山谷线这两个基本地形特征信息的理论及其基于DEM的提取方法与原理;同时,熟练掌握利用ArcGIS软件对这两个地形特征信息的提取方法。 实验原理: 1.本实验基于规则格网DEM数据使用平面曲率与坡形组合法提取山脊线和山谷线,首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。因此,提取过程中可以SOA代替平面曲率。 2.主要用到以下理论知识: 1)坡向变率:是指在提取坡向基础上,提取坡向的变化率,亦即坡向之坡度(Slope of Aspect,SOA)。它可以很好地反应等高线弯曲程度; 2)反地形DEM数据:求取原始DEM数据层的最大高程值,记为H,通过公式(H-DEM),得到与原来地形相反的DEM数据层,即反地形DEM数据; 3)地面坡向变率SOA:地面坡向变率在所提取的地表坡向矩阵的基础上沿袭坡度的求算原理,提取地表局部微小围坡向的最大变化情况。但是SOA在提取过程中在北面坡将会有误差产生,所以要将北坡坡向的坡向变率误差进行纠正,其公式为: SOA=(( [SOA1]+[ SOA2] )-Abs( [SOA1]-[ SOA2] ))/2 其中:SOA1为原始DEM数据层坡向变率,SOA2为反地形DEM数据层坡向变率。 4)焦点统计 5)ArcScan自动矢量化 流程图

冠状动脉中心线提取

冠状动脉中心线提取 2018.12.5 1简介 1.1步骤和实现方式 本次任务是从冠状动脉增强图像提取血管中心线。步骤和实现方式大致如下: ?图像二值化:读入.mha格式CT图像,阈值处理; ?空洞填充 ?图像细化:类似腐蚀,取最大内切球心的集合 ?端点分叉点检测:考虑26邻域内像素个数,卷积实现 ?断裂分支重连:寻找连接点,条件判断,Dijkstra最小代价连接 ?构建中心线:在分叉点集基础上追踪,数组存储在Cell中 1.2运行说明 coronary_refine.m是主要的运行函数。其他函数和脚本:branchReconnect输入细化后的图像和权重(原始CT volume的像素值为可能性),其中调用了三维的Dijkstra函数;directConnect脚本很简短地实现在三维图像中两点连直线,但因为用了最短路径所以没有采用;其余函数都是由比较冗长的小功能封装成的。两张图片运行时间小于一分钟。 2实现方法 2.1阈值 为了不让阈值化后丢失的成分过多,对后续分支重连的步骤造成困难,这里选择了较小的阈值0.1*原图最大值(2^16)。这也导致最后结果中分支会显得比0.5的阈值下丰富很多,但算法能够原图(mha)保证最终中心线和真实血管走向的一致性。 2.2空洞填充 一开始使用的是imfill函数,通过查看源代码可见这个函数调用了imcomplement和imreconstruct对二值图像进行填充。imfill对三维图像的处理速度较慢,最终使用形态学库函数bwmorph3中的fill功能进行处理。

图1:Skeleton of a rectangle defined in terms of bi-tangent circles. 2.3图像细化 程序中调用了bwskel来实现。Thinning在文献中有两种最为常见的方法,一种被称为“Onion peeling”1,顾名思义用不断的腐蚀操作来一层一层地剥开血管,难点是设置一定的条件来保证原有拓扑结构。这个方法也是bwskel的参考文献中使用的方法。2还有一种细化方法也和腐蚀有些类似,基本思路是求连通域内部的内切圆心(三维为球心)集合,如图一。 2.4基于卷积的端点分叉点检测 虽然形态学库函数中同样有branch和endpoint的功能,但这两个功能的feature都导致它们并不适合直接使用。比如bwmorph3中branch会返回所有分叉点以及分叉点各自的相邻点。面对如此古怪的feature,不如构造简单的卷积核来求端点分叉点。 ?分叉点检测 首先考虑3*3*3全1的卷积核。在二值、细化图像非分叉部分,其响应应该为3。如果将响应大于3的视为分叉,其结果中会有很多处于真正的分叉点附近、实际却为原图空白部分的点被误判成分叉。原因就是分叉附近往往点较为密集,空白点的26邻域内也容易出现多个1,导致超出阈值。解决方法很简单,要让卷积能区分出原中心线上的点和空白格,只要在kernel的中心加大权重,这样空白格的响应和值为1的点差距会变得很大,从而被排除在外。代码如下(因为convolution包含padding,最终结果还需删除padding部分): 1A Sequential3D Thinning Algorithm and Its Medical Applications 2Ta-Chih Lee,Rangasami L.Kashyap and Chong-Nam Chu Building skeleton models via3-D medial surface/axis thinning algorithms. Computer Vision,Graphics,and Image Processing,56(6):462-478,1994.

ArcGIS实验-Ex18-利用水文分析方法提取山脊、山谷线

第十一章水文分析 练习1:利用水文分析方法提取山脊、山谷线 一、背景 山脊线、山谷线是地形特征线,它们对地形、地貌具有一定的控制作用。它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。因此在数字地形分析中,山脊线和山谷线以及地形特征点等的提取和分析是很有必要的。 二、目的 理解基于DEM结合水文分析的方法提取出研究区域的山脊线和山谷线的原理;掌握水流方向、汇流累积量的提取方法以及它们的提取原理;能将水文分析的方法和其它的空间分析方法相结合以解决应用问题。 三、要求 1、利用水文分析思想和工具提取研究区域的山脊线; 2、利用水文分析思想和工具提取研究区域的山谷线。 四、数据 一幅25m分辨率的黄土地貌DEM数据,数据的区域大概有140 km2。数据存于…/ChP11/Ex1中,请将其拷贝到E:/ChP11/Ex1。结果数据保存在…/ChP11/Ex1/Result中。 五、算法思想 对于水文物理过程研究而言,由于山脊、山谷分别表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。因此,对于山脊线和山谷线就可以利用水文分析的方法进行提取。 基于DEM的这种地形表面流水物理模拟分析的原理是:对于山脊线而言,由于它同时也是分水线,那么对于分水线上的那些栅格,由于分水线的性质是水流的起源点,通过地表径流模拟计算之后这些栅格的水流方向都应该只具有流出方向而不存在流入方向,也就是其栅格的汇流累积量为零。通过对零值的汇流累积值的栅格的提取,就可以得到分水线,也就得到了山脊线;对于山谷线而言,由于其具有汇水的性质,那么对于山谷线的提取,可以利用反地形的特点,即是利用一个较大的数值减去原始的DEM数据,而得到了与原始地形完全相反的地形数据,也就是原始的DEM中的山脊变成负地形的山谷,而原始DEM中的山谷在负地形中就变成了山脊,那么,山谷线的提取就可以在负地形中利用提取山脊线的方法进行提取。 六、操作步骤 1、正负地形的提取 (1) 启动ArcToolbox,展开Analysis Tools工具箱,打开hydrology工具集。在图层管理器中加载研究区域的原始DEM数据。 (2) 加载Spatial Analyst模块,点击Spatial Analyst模块的下拉箭头,点击neighborhood statistics菜单工具,利用邻域分析的方法以11×11的窗口计算平均值,如图1。分析结果命名为meandem,如图2所示。

arcgis之地形5山脊山谷线提取

致可以分为以下五种: 1) 基于图像处理技术的原理; 2) 基于地形表面几何形态分析的原理; 3) 基于地形表面流水物理模拟分析原理; 4) 基于地形表面几何形态分析和流水物理模拟分析相结合的原理; 5) 平面曲率与坡形组合法。 平面曲率与坡形组合法提取的山脊、山谷的宽度可由选取平面曲率的大小来调节,方 法简便,效果好。该方法基本处理过程为:首先利用 DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为 山谷。实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度 上可以很好地表征平面曲率。因此,下面的提取过程以 SOA代替平面曲率。 具体提取过程为: 1)激活 DEM 数据,在 Spatial Analysis 下使用surface 菜单下的Derive Aspect 命令,提取 DEM 坡向层面,记为 A; 2)激活 A 层面,在 Spatial Analysis 下使用 surface 菜单下的 Derive Slope 命令,提取A 层面的坡度信息,记为 SOA1; 3)求取原始 DEM 数据层的最大高程值,记为 H;通过 Spatial Analysis 下的栅格计 算器Calculator,公式为(H-DEM),得到与原来地形相反的 DEM 数据层,即反地 形 DEM 数据;

4)基于反地形 DEM 数据求算坡向值; 5)利用 SOA 方法求算反地形的坡向变率,记为 SOA2; 6)在Spatial Analysis 下使用栅格计算器 Calculator,公式为SOA = (([SOA1]+[SOA2])-Abs([SOA1]-[SOA2]))/ 2,即可求出没有误差的 DEM 的坡向变率SOA; 7)激活原始 DEM 数据,在 Spatial Analysis 下使用栅格邻域计算工具 Neighborhood Statistics;设置 Statistic type 为平均值,邻域的类型为矩形(也可以为圆),邻域的大小为 275×275 MAP,则可得到一个邻域为 275×275 MAP的矩形的平均值层面,记为 B; 8)在 Spatial Analysis 下使用栅格计算器 Calculator,公式为 C =[DEM]-[B],即可求出正负地形分布区域, 9)在 Spatial Analysis下使用栅格计算器 Calculator,公式为 D =[C] >0 & SOA > 70,即可求出山脊线; 10)同理,在栅格计算器 Calculator 中,修改公式为 D =[C] < 0 & SOA > 70,即可 求出山谷线。

利用水文分析方法提取山脊、山谷线 技术文档

利用水文分析方法提取山脊、山谷线 1.背景 作为地形特征线的山脊线、山谷线对地形、地貌具有一定的控制作用。它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。同时由于山脊线具有分水性,山谷线具有合水性特征使得它们在工程应用方面具有特殊的意义。因此在数字地形分析中,山脊线和山谷线的提取和分析是具有很大应用价值的。 2.目的 了解基于DEM的水文分析方法提取出山脊线和山谷线的原理;掌握水流方向、汇流累积量的提取原理及方法;能够利用水文分析的方法与其它空间分析方法相结合以解决实际应用问题。 3.要求 (1)利用水文分析思想和工具提取研究区域的山脊线; (2)利用水文分析思想和工具提取研究区域的山谷线。 4.数据 一幅25m分辨率的黄土地貌DEM数据,区域面积大约有140 km2。 5.算法思想 山脊线和山谷线的提取实质上也是分水线与汇水线的提取。因此,可以利用水文分析的方法进行提取。 对于山脊线而言,由于它同时也是分水线,而分水线的性质即为水流的起源点。所以,通过地表径流模拟计算之后,这些栅格的水流方向都应该只具有流出方向而不存在流入方向,也就是其栅格的汇流累积量为零。通过对零值的汇流累积值的栅格的提取,就可以得到分水线,即山脊线;对于山谷线而言,可以利用反地形的特点,即利用一个较大的数值减去原始的DEM数据,得到与原始地形完全相反的地形数据,使得原始的DEM中的山脊变成反地形的山谷,而原始DEM中的山谷在反地形中就变成了山脊,再利用山脊线的提取方法就可以实现山谷线的提取。但是这种方法会出现提取出的山脊和山谷位置有些偏差,可以利用正、负地形来加以纠正。 基于DEM利用水文分析的方法提取山脊线和山谷的技术流程如图1所示。 图1 山脊线和山谷线的提取流程图

山脊线、山谷线、鞍部点的提取

实例与练习 练习1. 利用水文分析方法提取山脊、山谷线 1.背景:山脊线、山谷线是地形特征线,它们对地形、地貌具有一定的控制作用。它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。因此在数字地形分析中,山脊线和山谷线以及地形特征点等的提取和分析是很有必要的。2.目的:理解基于DEM结合水文分析的方法提取出研究区域的山脊线和山谷线的原理; 掌握水流方向、汇流累积量的提取方法以及它们的提取原理;能将水文分析的方法和其它的空间分析方法相结合以解决应用问题。 3.要求: (1)利用水文分析思想和工具提取研究区域的山脊线; (2)利用水文分析思想和工具提取研究区域的山谷线。 4.数据:一幅25m分辨率的黄土地貌DEM数据,数据的区域大概有140 km2。数据存放于…/ChP11/Ex1中,请将其拷贝到E:/ChP11/Ex1。结果数据保存在…/ChP11/Ex1/Result 中。 5.算法思想: 对于水文物理过程研究而言,由于山脊、山谷分别表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。因此,对于山脊线和山谷线就可以利用水文分析的方法进行提取。 基于DEM的这种地形表面流水物理模拟分析的原理是:对于山脊线而言,由于它同时也是分水线,那么对于分水线上的那些栅格,由于分水线的性质是水流的起源点,通过地表径流模拟计算之后这些栅格的水流方向都应该只具有流出方向而不存在流入方向,也就是其栅格的汇流累积量为零。通过对零值的汇流累积值的栅格的提取,就可以得到分水线,也就得到了山脊线;对于山谷线而言,由于其具有汇水的性质,那么对于山谷线的提取,可以利用反地形的特点,即是利用一个较大的数值减去原始的DEM数据,而得到了与原始地形完全相反的地形数据,也就是原始的DEM中的山脊变成负地形的山谷,而原始DEM中的山谷在负地形中就变成了山脊,那么,山谷线的提取就可以在负地形中利用提取山脊线的方法进行提取。 基于DEM利用水文分析的方法提取山脊线和山谷的技术流程如图1所示。

基于平面曲率与坡形组合法提取山脊线和山谷线

基于平面曲率与坡形组合法提取山脊线和山谷线 1.提取思路: 本篇采用平面曲率与坡形组合法来提取山脊线和山谷线。因为使用该方法提取的山脊、山谷的宽度可以由选取的平面曲率的大小来调节,比较简单,同时效果也不错。 该方法的处理过程如下: 首先利用原始DEM数据提取地面的平面曲率及地面的正负地形,其中因为实际地形中的平面曲率的提取较为繁琐,本篇使用坡向变率SOA代 替。 正地形上平面曲率的大值即山脊线,负地形上平面曲率的小值即山谷线。 2.基础操作步骤介绍: 选择【系统工具箱→3D Analyst Tools→栅格表面→坡向】工具,提取原始DEM的坡向数据。

选择【系统工具箱→3D Analyst Tools→栅格表面→坡度】工具,提取上一步得到的坡向数据层的坡度数据,得到坡向变率数据层SOA1。 选择【系统工具箱→Spatial Analyst Tools→数学分析→减】工具,使用原始DEM中的最大值减去原始栅格,得到反地形DEM栅格图像。

然后依次选择【系统工具箱→3D Analyst Tools→栅格表面→坡向】工具和选择【系统工具箱→3D Analyst Tools→栅格表面→坡度】工具,得到坡向变率数据层SOA2。 选择【系统工具箱→Spatial Analyst Tools→地图代数→栅格计算器】工具,输入(("SOA_1" + "SOA_2") - Abs("SOA_1" - "SOA_2")) / 2地图代数公式,得到没有误差的DEM的坡向变率SOA。

选择【系统工具箱→Spatial Analyst Tools→邻域分析→焦点统计】工具,得到邻域大小为11×11(可以根据需要自行设置)的矩形的平均值数据层Mean_DEM。

ArcMap自动提取山脊线和山谷线

ArcMap自动提取山脊线和山谷线 来自汤国安《ARCGIS地理信息系统空间分析实验教程》PAGE349 基于规则格网DEM是最主要的自动提取山脊线和山谷线的方法,从算法设计原理上来分,大致可以分为以下五种: 1) 基于图像处理技术的原理; 2) 基于地形表面几何形态分析的原理; 3) 基于地形表面流水物理模拟分析原理; 4) 基于地形表面几何形态分析和流水物理模拟分析相结合的原理; 5) 平面曲率与坡形组合法。 平面曲率与坡形组合法提取的山脊、山谷的宽度可由选取平面曲率的大小来调节,方法简便,效果好。该方法基本处理过程为:首先利用DEM 数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。因此,下面的提取过程以SOA代替平面曲率。 具体提取过程为: 1)激活DEM 数据,在Spatial Analysis 下使用surface 菜单下的Derive Aspect 命令,提取DEM 坡向层面,记为A; 2)激活A 层面,在Spatial Analysis 下使用surface 菜单下的Derive Slope 命令,提取A 层面的坡度信息,记为SOA1; 3)求取原始DEM 数据层的最大高程值,记为H;通过Spatial

Analysis 下的栅格计算器Calculator,公式为(H-DEM),得到与原来地形相反的DEM 数据层,即反地形DEM 数据; 4)基于反地形DEM 数据求算坡向值; 5)利用SOA 方法求算反地形的坡向变率,记为SOA2; 6)在Spatial Analysis 下使用栅格计算器Calculator,公式为SOA =(([SOA1]+[SOA2])-Abs([SOA1]-[SOA2]))/ 2,即可求出没有误差的DEM 的坡向变率SOA; 7)激活原始DEM 数据,在Spatial Analysis 下使用栅格邻域计算工具Neighborhood Statistics;设置Statistic type 为平均值,邻域的类型为矩形(也可以为圆),邻域的大小为275×275 MAP,则可得到一个邻域为275×275 MAP的矩形的平均值层面,记为B; 8)在Spatial Analysis 下使用栅格计算器Calculator,公式为 C =[DEM]-B,即可求出正负地形分布区域, 9)在Spatial Analysis下使用栅格计算器Calculator,公式为 D =[C] >0 & SOA > 70,即可求出山脊线; 10)同理,在栅格计算器Calculator 中,修改公式为D =[C] < 0 & SOA > 70,即可求出山谷线。

[全]高中地理(山脊、山谷、地形、海拔、等高线)考点详解

高中地理(山脊、山谷、地形、海拔、等高线)考点详解 山谷、山脊的区分 (1)山谷线、山脊线的特点 ①山谷线:等高线向高处弯曲,一般发育着山谷、河流; ②山脊线:等高线向低处弯曲,一般为山坡,很少发育河流。 (2)判断技巧 ①沿着等高线延伸的方向,作出山谷线、山脊线; ②垂直于山谷线/山脊线,画一条直线(蓝线),与山谷线/山脊线相交(绿色的圆点),并与两侧的等高线相交(红色五角星)。 ③比较中间(绿色圆点)的海拔,与两侧等高线交点(红色五角星)的海拔。如果中间高,两侧低,则为山脊(图中的②号线);如果中间低,两侧高,则为山谷(图中的③号线)。

图1 山脊与山谷的判断技巧 例题 如下图所示,等高线的间距为100m,西北侧山峰的海拔为580m,东南侧Q 点的海拔可能为多少米?

图2 例题 答案:400m~500m 精讲精析:(1)判断西部的地形与海拔。下图中,西部的多条等高线的弯曲,都具有同步性,因此可以判断西部是一个连续的坡,因此从西北侧的山峰开始,海拔会逐渐下降(等高距为100m):500m、400m、300m。下图中的红线代表着山脊线(等高线向低海拔弯曲),蓝色线代表着山谷线(等高线向高海拔弯曲)。

图3 山脊线与山谷线 (2)判断河谷两侧的海拔,进而判断Q点海拔。一般来说,河流都发育在海拔较低的山谷,两侧山谷的海拔都会高于河流,即河流两侧山谷的海拔,应该具有相似性。因此图中河流两侧等高线数值,应该一致,都为300m。图中右侧的地形中,等高线的弯曲方向一致,表明它是一个连续的坡,因此海拔由河流至Q 点,海拔应该具有连续性,即逐渐升高。由此可判断出Q点的海拔: 400m~500m。

操作步骤-山脊线和山谷线提取插件

山脊线和山谷线提取插件版本V1.0操作说明1/6 山脊线和山谷线提取插件 操作说明 1引言 1.1编写目的 编写本使用说明的目的是充分叙述本脚本软件所能实现的功能及其运行环境,以便使用者了解本脚本软件的使用范围和使用方法。 1.2编写背景 山脊线和山谷线的提取在很多行业,例如环境保护、水文水利、农业等行业应用很广泛。目前主要依赖ArcGIS中的空间分析工具来完成,需要使用13个空间分析工具来完成,费时费力,同时会产生许多中间过程文件。本插件使用Python 语言,基于ArcGIS10进行二次开发,基于DEM数字高程模型,使用1个脚本来实现山脊线和山谷线的提取。技术问题可以在QQ群讨论:960933115 2运行环境 2.1软件环境 win7及以上版本、ArcGIS10.0及以上版本 2.2硬件环境 CPU:2.4GHz以上 硬盘:至少4G以上的空闲空间 内存:至少4G的空闲内存 显示器分辨率:1280×600以上

山脊线和山谷线提取插件版本V1.0操作说明1/6 3运行原理 本插件运行原理如下图所示: 图1:山谷线和山脊线提取脚本运行过程

(1)坡向分析 对输入的地形图进行坡向分析(Aspect),结果记为A。 結果示例如下: (2)坡度分析Slope 对第一步的结果进行坡度分析,结果记为SOA1。 (3)反地形DEM 求取原始DEM数据层的最大高程值,记为H;通过栅格计算器计算,公式为H-DEM,得到与原来地形相反的DEM数据层,既反地形DEM。结果记为rastercalc。 (4)反地形的坡向分析 求反地形DEM的坡向。结果记为Aspect_raste1. (5)反地形的坡度分析 求反地形的坡向变率,记为SOA2 (6)然后利用soa1和soa2求得没有误差的DEM的坡向变率(注意大小写一致) 利用栅格计算器,公式:(([SOA1]+[SOA2])-Abs([SOA1]-[SOA2]))/2,结果记为SOA。

利用水文分析提取山脊线山谷线

学院 实验报告 课程名称 开课学期2019-2020第二学期 实验地点 班级 姓名 学号 -1-

-2-地理与环境科学院学生实验报告 课程名称实验项目名称 开课系(部)及实验室实验日期2020.3.3 学生姓名学号专业班级 指导教师实验成绩 一、实验目的 了解基于DEM水文分析方法提取山脊线和山谷线的原理;掌握水流方向、汇流累积量提取原理及方法。 二、实验器材 ArcGIS10.4、原始dem数据 三、实验步骤 1)正负地形的提取 (1)在ArcMap中加载原始DEM数据。 (2)在ArcToolBox中选择Spaitiai Analyst Tool--Neiborhood--focal stastics,利用邻域分析方法以11×11的窗口计算平均值,计算结果命名为meandem. (3)在ArcToolBox中选择Map Algebra--Raster calculator,对原始DEM数据与邻域分析之后的数据meandeam做减法运算。 (4)在ArcToolbox中选择Spaitiai Analyst Tool--Reclass--Reclassify对运算结果进行重分类,分类界限为0。将大于0的区域赋值为1(即为正地形),小于0的区域赋值为0,命名为zhengdixing,另一次将小于0的区域属性值赋值为1(即为负地形),大于0的区域赋值为0,命名为fuduxing。 Zhengdixing fudixing

2)山脊线的提取 (1)在ArcMap中加载原始区域的DEM数据。 (2)洼地填充:选择Spaitiai Analyst Tool——hydrology--Fill,进行原始DEM的洼地填充,输入表面栅格数据:dem;命名输出栅格数据文件名:filldem,因为选择的是所有洼地全部填充,所以Zlimit为默认值。 (3)基于无洼地的水流方向的计算:选择Spaitiai Analyst Tool——hydrology——Flow direction,输入表面栅格数据filldem;命名输出栅格数据flowdirfill (4)汇流累积量的计算:选择Spaitiai Analyst Tool——hydrology——Flow accumulation,选择flowdirfill作为输入的水流方向数据;输出命名为flowaccl。(5)汇流累积量为零值的提取:在ArcToolBox中选择Map Algebra--Raster calculator,提取汇流累积量为零值,计算公式为facc0=(flowaccl==0) (6)对facc0做光滑处理:在ArcToolBox中选择Spaitiai Analyst Tool--Neiborhood--focal stastics,利用邻域分析方法以3×3的窗口计算平均值,计算结果命名为neiborfacc0. (7)打开Spaitiai Analyst Tool--surface--contour和Spaitiai Analyst Tool--surface--hillshade,分别生成原始DEM的等值线ctour和晕渲图hillshade.(8)在neiborfacc0数据上单击右键,点击properties,进行重新分级,将数据分为两级,以等值线ctour和晕渲图hillshade为辅助不断调整分级临界点,属性值越接近于1的栅格越有可能是山脊线的位置,最终确定分界阈值为0.5541。 (9)将进行过二值化的neiborfacc0进行重分类为reneibor,将属性值接近于1的赋值为1,其余的赋值为0. (10)利用Map Algebra--Raster calculator工具,将reneibor数据于zheng相乘,就消除了那些存在负地形中的错误山脊线。然后将计算结果进行重分类,所有属性不为1的栅格属性值赋为No Data。 -3-

相关文档
相关文档 最新文档