文档库 最新最全的文档下载
当前位置:文档库 › C302铜基甲醇合成催化剂颗粒设计__颗粒结构对催化剂宏观活性的影响

C302铜基甲醇合成催化剂颗粒设计__颗粒结构对催化剂宏观活性的影响

C302铜基甲醇合成催化剂颗粒设计__颗粒结构对催化剂宏观活性的影响
C302铜基甲醇合成催化剂颗粒设计__颗粒结构对催化剂宏观活性的影响

甲醇合成催化剂生产工艺

甲醇合成催化剂生产工艺 甲醇合成催化剂分两期进行生产,甲醇合成催化剂每批生产周期(从物料加入到得到产品)为24小时,每批产品为500kg,一期年生产批数为2000批,总计为1000吨。一期甲醇合成催化剂以电解铜、电解锌、碱式碳酸铜、碱式碳酸锌、碳酸氢钠、硝酸、氧化铝、石墨为原料,经备料、反应、过滤、烘干、焙烧、成型得到产品。 (1)备料 ①化铜 先将电解铜和水加入5m3化铜罐中,再加入95%硝酸,化铜罐内设有冷却水盘管,用冷却水控制反应温度为60~70℃,铜和硝酸反应生成硝酸铜。该工序涉及反应方程式如下: 3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO↑+4H2O ②化锌 先将电解锌和水加入5m3化锌罐中,再加入95%硝酸,化锌罐内设有冷却水盘管,用冷却水控制反应温度为60~70℃,锌和硝酸反应生成硝酸锌。该工序涉及反应方程式如下: 3Zn + 8HNO3 = 3Zn(NO3)2 + 2NO↑+4H2O 将上述制备好的硝酸铜和硝酸锌溶液打入15m3混合液罐中进行混合,混合均匀后打入计量罐用作反应工序原料。 备料过程会有含氮氧化物废气产生,送二级低温水+二级尿素水溶液吸收系统处理。 (2)反应 先向12m3反应罐加入一定量水,再夹套内通入蒸汽升温至60~65℃,开启搅拌器,然后加入碳酸氢钠。保持罐内温度为60℃~65℃,将制备的硝酸铜、硝酸锌混合液经过计量后匀速加入反应罐中,硝酸铜、硝酸锌与碳酸氢钠发生反应生成碱式碳酸铜、碱式碳酸锌沉淀,碱式碳酸铜、碱式碳酸锌为难溶性物质,溶解度均小于0.01g/100g 水。该工序涉及反应方程式如下:

2Cu(NO3)2 + 4NaHCO3 = Cu2(OH)2CO3↓+4NaNO3 + H2O + 3CO2↑ 2Zn(NO3)2 + 4NaHCO3 = Zn2(OH)2CO3↓+4NaNO3 + H2O + 3CO2↑ 反应结束后,将称量好的碱式碳酸铜、碱式碳酸锌、氧化铝依次放入反应罐中,继续搅拌20~30分钟,然后静止沉降得到反应浆液。 (3)过滤 将制得反应浆液加入板框压滤机进行过滤,滤饼用水进行洗涤,洗涤水回用于反应工序补水,含有硝酸钠的滤液送硝酸钠浓缩装置进行处理,洗涤后滤饼送烘干工序。 (4)烘干 将过滤得到的滤饼放入托盘,然后送入烘干机进行烘干,烘干机内设有蒸汽盘管,烘干控制温度为120~150℃,烘干后物料送焙烧工序。 (5)焙烧 甲醇合成催化剂物料焙烧采用燃气回转炉,炉体分升温段、恒温段和冷却段三段,内部分为物料通道和燃气通道,以天然气为燃料,采用间接加热方式。 将烘干好的物料送入回转炉中进行焙烧,焙烧控制温度为400~550℃,焙烧结束后得到焙烧料送成型工序。该工序涉及反应方程式如下: Cu2(OH)2CO3 = 2CuO + H2O + CO2↑ Zn2(OH)2CO3 = 2ZnO + H2O + CO2↑ 物料焙烧过程会有含尘废气产生,由布袋除尘器回收粉尘后通过15m排气筒排放。回转炉以天然气为燃料,烟气由15m烟囱排放。 (6)成型 先将焙烧好的物料放入3m3双锥混合机,再加入10kg石墨、8kg 水,混合均匀后将物料送入ZP-25压片机中进行压片成型,成型结束后得到产品甲醇合成催化剂,包装后入库存放待售。 甲醇合成催化剂生产工艺流程简图如下:

甲醇合成铜基催化剂催化活性及失活研

甲醇合成铜基催化剂催化活性及失活研究 1引言 甲醇是一种极其重要的化工原料,主要用于生产一系列化工产品,还可用作潜在的车用醇醚燃料电池的燃料等。随着甲醇制烯烃等技术进步及下游产品的开发,特别是甲醇燃料电池的开发和应用,合成甲醇的研究越来越受到广泛重视。 目前,甲醇的工业生产主要是采用CO/CO2催化加氢技术,所以甲醇合成催化剂的研发是甲醇合成工业的基石。甲醇工业的发展很大程度上取决于催化剂的研制及其性能改进。在甲醇生产中,很多工业指标和操作条件都是由催化剂的性质决定的。随着甲醇工业的快速发展,对甲醇合成催化剂的研究开发提出了更高的要求。 2 甲醇合成催化剂 在甲醇合成过程中,催化剂的重要性显而易见,目前工业上使用的甲醇合成催化剂一般可分为锌铬催化剂和铜基催化剂两类。国外比较有名的研究和生产甲醇合成催化剂公司主要有英国ICI公司、德国BASF公司、德国SudChemie公司和丹麦TopsΦe公司等,国内研究铜基催化剂的院所主要有南化集团研究院、西南化工研究设计院,西北化工研究院及齐鲁石化研究院等[1]。 锌铬(ZnO/Cr2O3)催化剂由德国BASF公司于1923年首先开发研制成功。操作温度必须在590 K~670 K,操作压力必须为25 MPa~35MPa,锌铬催化剂的特点是:耐热性能好、对硫不敏感,机械强度高,使用寿命长,使用范围宽,操作控制容易,但是其活性低、 选择性低、产品中杂质复杂,精馏困难。 铜基催化剂由英国ICI公司和德国Lurgi公司先后研制成功,操作温度为210℃~300℃,压力为5MPa~10MPa,比传统的合成工艺温度低得多,对甲醇反应平衡有利。其特点是:活性好,单程转化率为7%~8%;选择性高,大于99%,易得到高纯度的精甲醇;耐高温性差,对合成原料气中杂质比较敏感。目前工业上甲醇的合成主要使用铜基催化剂。 近年来,新型催化剂的研制也在一直进行,新型催化剂的研制方向在于提高活性,改善热稳定性及延长催化剂使用寿命等,如钯系、钼系及低温液相催化剂,但这些催化剂因活性不理想或对甲醇的选择性较差,还只停留在研究阶段未实现工业化。对铜基催化剂的改进研究主要集中在两个方面[2],一是添加除铜锌铝以外的其他组分,另一方面是改进催化剂的制备方法和工艺。 3 铜基催化剂的催化原理

铜锆催化剂汇总 列表

Cu/ZrO2催化剂文献汇总列表 2015 1 Catalytic Hydrodeoxygenation of Algae Bio-oil over Bimetallic Ni ? Cu/ZrO 2 Catalysts Ind. Eng. Chem. Res. 2015 2 Hydrogenation of biomass- derive d l evulinic acid to - valerolactone over copper catalysts supported on ZrO2 J Chem Technol Biotechnol 2015 2014 外文 1 CO methanation over ZrO2/Al2O3 supported Ni catalysts: A comprehensive study Cuili Guo Fuel Processing Technology 2014 2 Selective oxidation of alcohols over copper zirconium phosphate Abdol R. Hajipour Chinese Journal of Catalysis 2014 3 CuO/ZrO2 catalysts for wateregas shift reaction:Nature of catalytically active copper species Yanjie Zhang Int J Hydrogen Energy2014 4 The significant role of oxygen vacancy in Cu/ZrO2 catalyst for enhancing water-gas-shift performance Chongqi Chen Int J Hydrogen Energy2014 5 The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol G. Bonura Applied Catalysis B: Environmental 2014 6 The effect of preparation method of the Cu–La2O3–ZrO2/ c-Al2O3 hybrid catalysts on one-step synthesis of dimethyl ether from syngas (二甲醚)Zhuo Li Fuel 2014 7 ZnO-modified zirconia as gold catalyst support for the low-temperature methanol steam reforming reaction Chongyang Wang Applied Catalysis B: Environmental 2014 8 Steam reforming of methanol over Cu/ZnO/ZrO2/Al2O3 catalyst Jung Eun Park Int J Hydrogen Energy 2014 9 Study of different designs of methanol steam reformers: Experiment and modeling P. Ribeirinha Int J Hydrogen Energy 2014 10 CA TAL YTIC PROPERTIES OF NANOSIZED Cu/ZrO2 SYSTEMS IN THE STEAM REFORMING OF BIOETHANOL Theoretical and Experimental Chemistry 2014 11 Influence of ZrO2 Structure and Copper Electronic State on Activity of Cu/ZrO2 Catalysts in Methanol Synthesis from CO2 American Chemical Society 2014 中文 1不同晶型结构纳米ZrO2的稳定化制备管昊材料研究学报2014 2催化氧化NO 催化剂Mn /ZrO2 的制备与性能研究程俊楠环境科学学报2014 3以共沉淀法为基础的铜基催化剂制备新技术的研究进展杨浩化工进展2014 4铜物种对Cu/Fe2O3水煤气变换反应催化剂性能的影响林性贻催化学报2014 5 铬助剂对Cu/ZrO2/CNTs-NH2催化剂催化CO2加氢合成甲醇性能的影响王冠男物理化学学报2014 6 CuO/ZnO/CeO2/ZrO2催化剂上甲醇水蒸气重整制氢反应机理研究张磊大连理工大学学报2014 7助剂Mn对CO2加氢制二甲醚Cu-ZnO -ZrO2/HZSM-5催化剂的结构和性能影响张雅静分子催化2014 2013 外文

_甲醇合成催化剂使用效果的影响因素及对策

第31卷第3期2010年6月 化学工业与工程技术 J o ur nal o f Chemical I ndus tr y&Engineering V ol.31N o.3 Jun.,2010 收稿日期:2010-03-28 作者简介:薛守标(1970-),男,回族,江苏高邮人,本科,工程 师,现从事新材料研发工作。 E-mail:xueshoubiao@https://www.wendangku.net/doc/28685395.html, 甲醇合成催化剂使用效果的影响因素及对策 薛守标 (南化集团研究院,江苏南京 210048) 摘要:介绍了甲醇合成催化剂的制造及使用过程,探讨了催化剂的失活方式及其机理,提出防止或 消除这些因素、延长甲醇合成催化剂寿命的方法。 关键词:甲醇合成;催化剂;使用;对策 中图分类号:T Q426 文献标识码:A 文章编号:1006-7906(2010)03-0050-05 Affecting factors and countermeasures of the application effect of methanol synthesis catalyst XU E S houb iao (Research Institute o f Na njing Chemical Industrial G ro up,N anjing210048,China) A bstract:T he manufacture and a pplica tion pr ocess of methano l synthesis catalyst are presented,and the deactiva tion ma n-ner s and mechanisms are discussed.T he co untermeasures fo r preventing o r removing the affecting f ac to rs and pro lo ng ing the li-fetime of methano l synthesis ca taly st a re put fo rw ard. Key words:M etha no l synthesis;Cataly st;A pplicatio n;Co unter measure s 自20世纪60年代英国ICI公司成功推出合成 甲醇的铜基催化剂以来,甲醇工业得到迅速发展。 目前,全世界75%以上的甲醇合成采用中低压法, 普遍采用英国ICI工艺和德国Lurgi工艺[1]。近年 来,国内低压合成甲醇催化剂的研究和制造水平取 得巨大进步,但综合性能特别是核心指标催化剂的 3.4 分离单元的定期作业 压力离心机/压力过滤机是分离PT酸的关键设备,因此需对压力离心机的母液管定期碱洗,将压力离心机/压力过滤机定期切出隔离碱泡,以清除在母液管或设备内件上产生的闪蒸积料,从而保证产品中PT酸的含量正常。 实际生产中还发现,同样工况下,压力过滤机去除PT酸的效果也明显优于压力离心机,见表4。 表4 离心机与压力过滤机的分离效果 项目3台离心机4台离心机压力过滤机PT酸/(mg·kg-1)135121115 4 结 语 通过对氧化TA料品质的控制,精制单元可根据产品质量及平均粒径的趋势,及时进行TA料的掺混、氢分压的调整、定期作业等有效手段,使全年因PT酸含量超标返料加工的一次不合格率降至0.01%。 主要措施有:(1)生产过程中,若过程控制异常,工艺人员应及时将产品切至中间疑似料仓,以免污染合格料仓,待加样分析合格后再送往大料仓;(2)产品质量跟踪过程中,若产品PT酸超过内控指标,工艺人员需加样分析,以确保过程控制中产品质量合格。 参考文献: [1] 张卓绝,王振新,徐欣荣.P T A产品中P T酸的控制 [J].聚酯工业,2002,15,(3):30-34. [2] 徐根东.影响P T A产品中P T酸含量的因素分析[J]. 合成技术及应用,2006,21,(2):52-54. [3] 孙静珉.聚脂工艺[M].北京:化学工业出版社,1985.

甲醇合成催化剂知识

甲醇合成催化剂知识 d i4 X+ }1 z! j0 v1 铜基催化剂的催化原理 + W7 b1 C1 Y9 W4 M1 h) o9 F0 t8 j* c: D q, |6 O 目前,低压甲醇合成铜基催化剂主要组分是 CuO、ZnO和Al2O3,三组分在催化剂中的比例随着生产厂家的不同而不同。一般来说, CuO的质量分数在40% ~80%, ZnO的质量分数在10% ~30%, Al2O3的质量分数在5% ~10%。铜基催化剂在合成甲醇时, CuO、ZnO、Al2O3三组分的作用各不相同。CO和H2在催化剂上的吸附性质与催化剂的活性有非常密切的关系。在铜基催化剂表面对CO的吸附速率很高,而H2的吸附则比CO 慢得多。ZnO是很好的氢化剂,可使H2被吸附和活化, 但对CO几乎没有化学吸附,因此可提高铜基催化剂的转化率。纯铜对甲醇合成是没有活性的,H2和CO合成甲醇的反应是在一系列活性中心上进行的,而这种活性中心存在于被还原的Cu-CuO界面上。在催化剂中加入少量 Al2O3的首要功能就是阻止一部分氧化铜还原。当催化剂被还原后,开始进行反应时,合成气中的H2 和CO都是还原剂,有使氧化铜进一步还原的趋势。 这种过度的还原,使得活性中心存在的界面越来越小,催化剂活性也越来越低。从合成的整个过程来看,随着还原表面向催化剂的内层深入,未还原的核心越来越小,作为被还原的Cu-CuO界面的核心表面积也越来越小,催化剂的活性降低,合成反应速率随之降

低。研究认为,Al2O3在催化剂中作为结构助剂起阻碍铜颗粒烧结的作用, CuO/ZnO/Al2O3催化剂的活性远高于双功能催化剂 CuO/ZnO的活性。q7 h- G8 n9 ]$ B5 m- Q: ?& ]/ D2 铜基催化剂助剂6 j8 } x5 L! ?0 V1 l1 K4 H$ Q! m% g\5 K8 e) C+ g5 A) E! ~ 铜基催化剂助剂的研究是甲醇合成催化剂研究的一个重要课题。铜基催化剂耐热强度较低,使用时间过长或操作温度过高都会造成铜的晶体长大使催化剂失去活性。其热稳定性差,很容易发生硫、氯中毒,使用寿命短等缺点,一般通过加入其他助剂得以改善,由此形成具有工业价值的新一代铜基催化剂。 $ P3 d }9 z x* |/ t2 bf, Z6 f) K& R2 y( U q: b1 B) t3 @ 锌就是铜基催化剂的最好助剂,很少量的锌就能使铜基催化剂的活性提高。加入Al2O3,可以使催化剂铜晶体尺寸减小,活性提高。若在CuO ZnO/Al2O3催化剂中再加入Cr,则会表现出良好的助催化作用。在催化剂组成中增添硼、铬、锰、钒及稀土元素等,对合成甲醇具有显著的促进作用。据报道,在铜基催化剂的基础上添加钒、锆等,可以提高合成甲醇的催化活性及催化剂的耐热性能。、 k* {7 a% M V3 铜基催化剂的失活 % v+ F, O2 ~ R8 Q8 催化剂的烧结和热失活是指由高温引起的催化剂结构和性能的变化。高温除了引起催化剂的烧结外,还会引起催化剂化学组成和相组成的变化5 a8 _5 K4 r#

甲醇合成原理方法与工艺

甲醇合成原理方法与工艺 图1煤制甲醇流程示意图 煤气经过脱硫、变换,酸性气体脱除等工序后,原料气中的硫化物含量小于0.1mg/m3。进入合成气压缩机,经压缩后的工艺气体进入合成塔,在催化剂作用下合成粗甲醇,并利用其反应热副产3.9MPa中压蒸汽,降温减压后饱和蒸汽送入低压蒸汽管网,同时将粗甲醇送至精馏系统。 一、甲醇合成反应机理 自CO加氢合成甲醇工业化以来,有关合成反应机理一直在不断探索和研究之中。早期认为合成甲醇是通过CO在催化剂表面吸附生成中间产物而合成的,即CO是合成甲醇的原料。但20世纪70年代以后,通过同位素示踪研究,证实合成甲醇中的原子来源于CO2,所以认为CO2是合成甲醇的起始原料。为此,分别提出了CO和CO2合成甲醇的机理反应。但时至今日,有关合成机理尚无定论,有待进一步研究。 为了阐明甲醇合成反应的模式,1987年朱炳辰等对我国C301型铜基催化剂,分别对仅含有CO或CO2或同时含有CO和CO2三种原料气进行了甲醇合成动力学实验测定,三种情况下均可生成甲

醇,试验说明:在一定条件下,CO和CO2均可在铜基催化剂表面加氢生成甲醇。因此基于化学吸附的CO连续加氢而生成甲醇的反应机理被人们普遍接受。 对甲醇合成而言,无论是锌铬催化剂还是铜基催化剂,其多相(非匀相)催化过程均按下列过程进行: ①扩散——气体自气相扩散到气体一催化剂界面; ②吸附——各种气体组分在催化剂活性表面上进行化学吸附; ③表面吸附——化学吸附的气体,按照不同的动力学假说进行反应形成产物; ④解析——反应产物的脱附; ⑤扩散——反应产物自气体一催化剂界面扩散到气相中去。 甲醇合成反应的速率,是上述五个过程中的每一个过程进行速率的总和,但全过程的速率取决于最慢步骤的完成速率。研究证实,过程①与⑤进行得非常迅速,过程②与④的进行速率较快,而过程③分子在催化剂活性界面的反应速率最慢,因此,整个反应过程的速率取决于表面反应的进行速率。 提高压力、升高温度均可使甲醇合成反应速率加快,但从热力学角度分析,由于CO、C02和H2合成甲醇的反应是强放热的体积 缩小反应,提高压力、降低温度有利于化学平衡向生成甲醇的方向移动,同时也有利于抑制副反应的进行。 二、甲醇合成的主要反应 (1)甲醇合成主要反应 CH3OH CO+2H CO2CH3OH+H2O 同时CO2和H2发生逆变换反应 CO 2CO+H2O

甲醇合成催化剂分类

甲醇合成催化剂分类 (1)锌铬催化剂 锌铬(ZnO/Cr2O3)催化剂是一种高压固体催化剂,由德国BASF公 司于1923年首先开发研制成功。锌铬催化剂的活性较低,为了获得较高的催化活性,操作温度必须在590 K-670 K。为了获取较高的转化率,操作压力必须为25 MPa-35 MPa,因此被称为高压催化剂。锌铬 催化剂的特点是: a)耐热性能好,能忍受温差在100℃以上的过热过程; b)对硫不敏感; c)机械强度高; d)使用寿命长,使用范围宽,操 作控制容易; d)与铜基催化剂相比较, 其活性低、选择性低、精馏困难(产品中杂质复杂)。由于在这类催化剂中Cr2O3的质量分数高达10%, 故成为铬的重要污染源之一。铬对人体是有毒的, 目前该类催化剂已逐步被淘汰[1]。 (2)铜基催化剂 铜基催化剂是一种低温低压甲醇合成催化剂, 其主要组分为 CuO/ZnO/Al2O3(Cu-Zn-Al),由英国 ICI公司和德国Lurgi公司先后研制成功。低(中) 压法铜基催化剂的操作温度为210℃-300℃,压力 为5MPa-10MPa,比传统的合成工艺温度低得多,对甲醇反应平衡有利。其特点是: a)活性好,单程转化率为7% -8%; b)选择性高,大于99%,其杂质只有微量的甲烷、二甲醚、甲酸甲酯,易得到高纯度的精 甲醇; c)耐高温性差,对硫敏感。目前工业上甲醇的合成主要使用铜 基催化剂。

(3)钯系催化剂 由于铜基催化剂的选择性可达99%以上,所以新型催化剂的研制方向在于进一步提高催化剂的活性、改善催化剂的热稳定性以及延长催化剂的使用寿命。新型催化剂的研究大都基于过渡金属、贵重金属等,但与传统(或常规)催化剂相比较,其活性并不理想。例如,以贵重金属钯为主催化组分的催化剂,其活性提高幅度不大,有些催化剂的 选择性反而降低。 (4)钼系催化剂 铜基催化剂是甲醇合成工业中的重要催化剂, 但是由于原料气中存在少量的H2S、CS2、Cl2等,极易导致催化剂中毒,因此耐硫催化剂的研制越来越引起人们的兴趣。天津大学Zhang Jiyan研制出MoS2/K2CO3/MgO-SiO2含硫甲醇合成催化剂,温度为533K,压力为8.1MPa,空速3000 h-1,φ(H2)∶φ(CO)=1.42,含硫质量浓度为1350 mg/L,CO的转化率为36.1%,甲醇的选择性为53.2%。该催化剂虽然单程转化率较高,但选择性只有50%,副产物后处理复杂,距工业化应用还有较大差距。

铜基甲醇催化剂失活因素及解决措施研究进展

2019年第44卷天然气化工—C1化学与化工 甲醇合成反应是一类非常重要的反应,因为甲醇不仅是一种能源载体,更重要的是,甲醇通过MTG、MTO、MTH等过程[1鄄3]转化为高附加值产品越来越受到研究者们的关注。自1923年德国BASF公司第一次实现甲醇工业化以来,用于合成甲醇的催化剂主要分为两类,一类是铜基催化剂,另一类是贵金属催化剂[4,5]。由于贵金属催化剂费用高、污染大等问题,目前甲醇合成反应中使用最普遍的是铜基催化剂。 自从铜基催化剂应用在甲醇合成以来就得到大家的广泛关注,这是由于其较高的活性和选择性。但不幸的是,如果催化剂没有非常好的稳定性,那么其工业应用就会受到很大的阻碍,因此铜基催化剂的稳定性是目前研究的热点。据有关文献报道[6,7],铜基催化剂起始活性的的三分之一在前1000h内会丢失。因此,为了提高催化剂的稳定性,理解催化剂的失活原因是非常必要的。本文对铜基甲醇合成催化剂的失活原因及其提高稳定性的措施进行了综述。 1甲醇合成铜基催化剂失活研究 1.1烧结失活 据文献[8]报道,烧结是催化剂失活的主要原因之一。烧结对催化剂有着非常不利的影响,它能够导致催化剂结构和性能上的变化。首先,烧结会导致可利用的有效活性金属比表面减少,其次,烧结也会导致反应中一些特定的活性位消失,因为较小的粒子包含更多的活性位[9]。目前,据文献报道催化剂的烧结失活机制主要被分为两大类,一种是迁移与团聚,它涉及到两个粒子之间的相互迁移而后长大成一个粒子,另一种是Ostwald熟化,它涉及到较大的粒子将会越来越大,而较小的粒子将会在原位置消失[10,11]。甲醇反应过程中经常伴随着铜粒子烧结现象的发生,这会导致催化剂快速的失活,当然这种烧结现象也被很多研究者观察到。 在早期,有研究者总结了金属的热稳定性,发现金属铜的热稳定性仅仅高于金属银,因此相比于其他类型催化剂,铜基催化剂更容易烧结长大[12]。Sun等[13]专门研究了甲醇合成中Cu/ZnO/Al2O3催化剂的失活,发现在不同转化率下,催化剂的失活程度是和反应气中CO浓度相关,尤其在CO/H2条件下催化剂失活尤为严重,并且活性的丢失是与Cu 表面积丢失成正相关,这表明铜粒子烧结是失活的主要原因。Zhai等[14]研究了浆态床中铜基甲醇合成催化剂的失活行为,选择商业铜基催化剂作为研究对象,为了得到反应后不同程度失活催化剂样品,在同一反应条件下进行不同时长的评价反应。通过XRD、TEM、SEM鄄EDS等表征对反应前后催化剂进行表征,结果发现在反应过程中催化剂的组成没有明显的变化,而铜粒子随着反应时间的加长,烧结程度越来越严重,催化剂活性也越来越低,这表明烧结是催化剂失活的主要原因。此外,Twigg等[12]对铜基催化剂在不同反应中失活行为进行了比较,它 铜基甲醇催化剂失活因素及解决措施研究进展 喻健,任所才,刘斌,陈阔,班红艳,李聪明,李忠(太原理工大学煤化工研究所,煤科学与技术教育部和山西省重点实验室,山西太原030024) 摘要:铜基催化剂是甲醇合成反应中最为普遍使用的催化剂。介绍了铜基催化剂失活原因,包括烧结失活、中毒失活等,结果发现烧结是铜基催化剂失活的主要原因,这是由于催化剂的烧结容易诱导活性中心铜粒子团聚长大而导致有效活性位急剧减少,从而导致催化剂稳定性急剧下降。此外,还介绍了提高催化剂稳定性目前提出的主要解决办法,主要包括加入助剂、形成合金、优化金属与载体之间相互作用、最大化粒子间距离、限域作用等。 关键词:铜基催化剂;甲醇合成;失活;解决方法 中图分类号:O643.3;TQ426;TQ223.121文献标志码:A文章编号:1001鄄9219(2019)01鄄118鄄05 收稿日期:2018鄄04鄄07;基金项目:国家自然科学基金资助项 目(21676176);山西省自然科学基金项目(201601D011016); 大连化物所催化基础国家重点实验室开放基金(N鄄15鄄05); 作者简介:喻健(1989鄄),男,硕士生,Email:153990014@163. com;*通讯作者:李聪明(1974鄄),男,教授,硕导,电话0351鄄 6018526,Email:licongming0523@https://www.wendangku.net/doc/28685395.html,。 118

甲醇合成工艺

第一章概述 1.1甲醇的用途及在化学工业中的地位 甲醇俗称“木精”,是重要的有机化工产品,也是重要的有机化工原料,其分子式为 CH OH,是碳化工的基础。甲醇产品除少量直接用于溶剂,抗凝剂和燃料外,绝大多数被用3 于生产甲醛,农药,纤维,医药,涂料等。 长期以来,人们一直把甲醇作为农药、染料、医药等工业的原料。随着科学技术的不 断发展与进步,突破了甲醇只作传统原料的范围,甲醇的应用领域不断地被开发出来,广 度与深度正在发生深刻变化。随着甲醛等下游产品的不断开发,甲醇在化学工业中的作用 必将越来越重要[1]。 1.2甲醇市场的状况及建厂的可行性 近几十年来,由于传统加工工业的发展和世界能源结构的变化,以甲醇为原料的新产 品的不断开发,世界对甲醇的生产和需求量都大幅增加,表1.1是世界甲醇市场状况,表 1.2是国内甲醇市场状况。 表1.1 世界甲醇生产能力及消耗量及开工率 Table 1.1 World methyl alcohol productivity and consumption, utilization of capacity 年度1987 1991 1993 1995 2000 2020 生产能力万T/年1999 2300 2470 2600 5000 20000 总消耗量万T/年1718 2010 2141 2390 开工率 % 86 87 86.7 92 表1.2 国内甲醇生产能力及消耗量 Table 1.2 Domestic methyl alcohol productivity and consumption 年度1985 1987 1990 1994 1995 2000 生产能力万T/年69 71.1 71.1 125.53 146.9 197.5 生产量万T/年44.3 49.5 64.0 100 消耗量70.7 120 121.4 200 根据预测,世界范围内的生产与需求将持续发展,主要原因是:甲醇下游产品市场的

合成甲醇催化剂的研究进展

化学反应工程论文合成甲醇催化剂的研究进展

摘要:了解甲醇工业的发展现状及前景。从催化剂组成、种类、各组分功能及失活方式对甲醇催化剂进行探究,同时探索甲醇合成的新方法和新工艺,并对甲醇合成催化剂的动力学研究进行总结。 关键词:甲醇合成、催化剂种类、失活、三相床、生物质秸秆、动力学 1.1甲醇工业发展现状 能源问题已经成为制约我国国民经济发展的战略问题。从国家安全角度看,能源资源的稳定供应始终是一个国家特别是依赖进口的国家关注的重点,是国家安全的核心内容。随着中国工业化、城市化进程的加快以及居民消费结构的升级,石油、天然气等清洁高效能源在未来中国能源消费结构中将会占据越来越重要的地位。目前中国石油消费严重依赖进口,石油资源已经和国家安全紧密联系起来,并成为中国能源安全战略的核心o 在我国能源探明储量中,煤炭占94%,石油占5.4%,天然气占0.6%,这种“富煤贫油少气”的能源结构特点,决定了我国能源生产与消费以煤为主的格局将长期占主导地位。国民经济的持续发展,对能源产品尤其是清洁能源的需求持续增长。结合我国以煤为主的能源结构现状,大力发展煤基能源化工成为我国解决能源问题的主要途径。以煤气化为核心的多联产系统则是针对我国面临的能源需求增长、液体燃料短缺、环境污染严重等一系列问题,提出的一条解决我国能源领域可持续发展的重要途径煤经气化后成为合成气,净化以后可用于生产化工原料、液体燃料(合成油、甲醇、二甲醚)和电力。多联产系统所生产的液体燃料,尤其是甲醇和二甲醚可作为煤基车用替代燃料,可以部分缓解我国石油的短缺。同时,甲醇还可以用来生产烯烃和丙烯,以煤化工产品“替代”一部分传统的石油化工产品,对减少石油的消耗量具有重要意义。 甲醇是一种重要的化工原料,又是一种潜在的车用燃料和燃料电池的燃料,因此合成甲醇的研究和探索在国际上一直受到重视。特别是近年来,随着能源危机的出现、C1化学的兴起,作为C1化学重要物质的甲醇,它的应用得到不断的开发,用量猛增,甲醇工业得到了迅猛发展,在世界基础有机化工原料中,甲醇用量仅次于乙烯、丙烯和苯,居第四位。 1.2甲醇发展前景

合成甲醇催化剂研究进展

化学反应工程论文 合成甲醇催化剂的研究进展 摘要:了解甲醇工业的发展现状及前景。从催化剂组成、种类、各组分功能及失活方式对甲醇催化剂进行探究,同时探索甲醇合成的新方法和新工艺,并对甲醇合成催化剂的动力学研究进行总结。 关键词:甲醇合成、催化剂种类、失活、三相床、生物质秸秆、动力学 1.1甲醇工业发展现状 能源问题已经成为制约我国国民经济发展的战略问题。从国家安全角度看,能源资源的稳定供应始终是一个国家特别是依赖进口的国家关注的重点,是国家安全的核心内容。随着中国工业化、城市化进程的加快以及居民消费结构的升级,石油、天然气等清洁高效能源在未来中国能源消费结构中将会占据越来越重要的地位。目前中国石油消费严重依赖进口,石油资源已经和国家安全紧密联系起来,并成为中国能源安全战略的核心o 在我国能源探明储量中,煤炭占94%,石油占5.4%,天然气占0.6%,这种“富煤贫油少气”的能源结构特点,决定了我国能源生产与消费以煤为主的格局将长期占主导地位。国民经济的持续发展,对能源产品尤其是清洁能源的需求持续增长。结合我国以煤为主的能源结构现状,大力发展煤基能源化工成为我国解决能源问题的主要途径。以煤气化为核心的多联产系统则是针对我国面临的能源需求增长、液体燃料短缺、环境污染严重等一系列问题,提出的一条解决我国能源领域可持续发展的重要途径煤经气化后成为合成气,净化以后可用于生产化工原料、液体燃料(合成油、甲醇、二甲醚)和电力。多联产系统所生产的液体燃料,尤其是甲醇和二甲醚可作为煤基车用替代燃料,可以部分缓解我国石油的短缺。同时,甲醇还可以用来生产烯烃和丙烯,以煤化工产品“替代”一部分传统的石油化工产品,对减少石油的消耗量具有重要意义。 甲醇是一种重要的化工原料,又是一种潜在的车用燃料和燃料电池的燃料,因此合成甲醇的研究和探索在国际上一直受到重视。特别是近年来,随着能源危机的出现、C1化学的兴起,作为C1化学重要物质的甲醇,它的应用得到不断的开发,用量猛增,甲醇工业得到了迅猛发展,在世界基础有机化工原料中,甲醇用量仅次于乙烯、丙烯和苯,居第四位。 1.2甲醇发展前景 甲醇作为一种基础化工原料,在化工、医药、轻纺等领域有着广泛的用途。主要用于制造甲醛、氯甲烷、醋酸、甲胺、甲基丙烯酸甲酯、甲酸甲酯(MF)、二甲醚(DME)、碳酸二甲酯(DMC)、对苯二甲酸二甲酯(DMT)、甲基叔丁基醚(MTBE)等一系列有机化工产品。随着甲醇深加工产品的不断增加和化学应用领域的不断开拓,甲醇在许多领域有着广阔的应用前景:

甲醇合成 问答题

甲醇合成1.合成工段的主要任务是什么?答:合成工段是将转化来的含H2、CO、CO2的原料气(3.45Mpa、40℃、81252.26Nm3/h),在一定压力(5.9 Mpa)、温度(220~260℃)、触媒(NC306)作用下,合成粗甲醇,并利用其反应热副产2.1~3.9 Mpa的中压蒸汽,减压至0.7Mpa并入蒸汽管网。 2.合成甲醇的主要反应式及影响因素?答:(1)CO+2H2 =CH3OH+Q (2)CO2+3H2 =CH3OH+H2O+Q 影响因素:操作温度,操作压力,催化剂性能,空速,原料气的氢碳比。 3.合成反应的特点:答:(1)体积缩小的反应;(2)放热反应;(3)可逆反应;(4)气、固相催化反应;(5)伴有多种副反应发生。 4.合成工段的主要控制点有那些?答:(1)合成塔进出口温度;(2)汽包液位;(3)汽包压力;(4)分离器入口温度;(5)分离器液位;(6)系统压力;(7)原料气氢碳比;(8)膨胀槽压力;(9)弛放气压力。 5.压缩机循环段的作用是什么?答:合成塔内是个体积缩小的反应,加上甲醇的冷凝分离和系统阻力,反应后的压力要下降,为了保证系统压力稳定不变,除了补充新鲜气外,还要利用循环段将反应后剩余的气体加压,然后送往合成塔循环利用,以提高气体总转化率。 6.空速的定义及空速对甲醇合成的影响?答:空速:单位时间内,单位体积催化剂所通过的气体流量。提高空速,单程转化率下降,减缓催化反应,有利于保护触媒和提高产量。但提高空速,循环段能耗增加,如果空速过高,反应温度下降明显,有时温度难以维持,产量下降。7.压力对甲醇生产的影响是什么?压力的选择原则是什么?答:甲醇反应是分子数减少的反应,增加压力对正反应有利。如果压力升高,组分的分压提高,因此触媒的生产强度也随之提高。对于合成塔的操作,压力的控制是根据触媒不同时期,不同的催化活性,做适当的调整,当催化剂使用初期,活性好,操作压力可较低;催化剂使用后期,活性降低,往往采用较高的操作压力,以保持一定的生产强度。总之,操作压力的选用须视催化剂活性、气体组成、反应器热平衡、系统能量消耗等方面的具体情况而定。8.温度对甲醇生产的影响是什么?温度的选择原则是什么?答:用来调节甲醇合成反应过程的工艺参数中,温度对反应混合物的平衡和速率都有很大的影响,由H2与CO反应生成甲醇和H2与CO2生成甲醇的反应,均为可逆放热反应。对于可逆放热反应而言,升高温度,虽然可使反应速率常数增大,但平衡常数的数值降低。当反应混合物的组成一定而改变温度时,反应速率受着这两种相互矛盾的因素影响。因此这就需要一个最佳的操作温度。所谓最佳温度就是:对于一定的反应混合物组成,具有最大反应速率时的温度。研究表明:最佳温度值与组成有关,在同一初始组成情况下则与反应速率有关当甲醇含量较低时,由于平衡的影响相对很小,最佳温度就高,随着反应的进行,甲醇含量升高,平衡影响增大,最佳温度就低。即先高后低。实现最佳温度,还要考虑到触媒的特性和寿命,触媒使用初期,活性较好,反应温度可低些,触媒使用后期,温度要适当提高,对铜基触媒而言,其初期,使用温度在220~240℃,中期在250℃左右,后期使用温度可提高到260~270℃。9.循环气中的惰性气体有哪些成分?对合成甲醇有哪些影响?答:惰性气体有:CH4、N2、Ar。惰性气体组分在合成反应中不参与反应,但影响着反应速率。惰性气体含量太高,降低反应速率,生产单位产量的动力消耗增加;维持低惰性气体含量,则放空量增大,有效气体损失多。一般来说,适宜的惰性气含量,要根据具体情况而定,而且也是调节工况的手段之一,触媒使用初期,活性高则可允许较高的惰性气含量;触媒使用后期,一般维持在较低的惰性气含量。目标若是高产则惰性气含量可较低,目标若是低耗,则可维持较高的惰性气含量。10.合成甲醇的原料气中含有少量的CO2对合成甲醇的有利影响表现在哪里?答:(1)从反应式看,CO2也能参加生成甲醇的反应,CO2合成甲醇要比CO多耗1分子H2,同时生成1分子H2O,因此当原料气中H2含量较低的情况下,应使更多的H2和CO生成甲醇。(2)CO2的存在,一定程度上抑制了二甲醚的生成。因为二甲醚是2分子甲醇脱水反应的产物,CO2与H2合成甲醇的反应生1分子H2O,H2O的存在对抑制甲醇脱水反应起到了积极的作用。(3)它阻止CO转化成CO2,这个反应在H2O存在时会发生。(4)更有利于调节温度,防止

甲醇合成的基础知识

甲醇合成的基础知识 一、合成甲醇的化学反应: (1)主反应: CO+2H2=CH3OH+102.5kJ/mol CO2+3H2=CH3OH+H2O+Q kJ/mol (2)副反应: 2 CO+4H2=CH3OCH3+H2O+200.2 kJ/mol CO+3H2=CH4+H2O+115.6 kJ/mol 4CO+8H2=C4H9OH +3H2O+49.62 kJ/mol CO+H2=CO+H2O-42.9 kJ/mol nCO+2nH2=(CH2)n+nH2O+Q kJ/mol 二、一氧化碳与氢气合成甲醇反应热的计算: 一氧化碳与氢气合成甲醇是一个放热反应,在25℃时,反应热为90.8 kJ/mol。 反应热Q T(kJ/mol)与温度的关系式为: Q T=-74893.6-64.77T+47.78×10-3T2-112.926×10-3T3 式中T为绝对温度(K) 一氧化碳和氢气合成甲醇是一个气相可逆反应,压力对反应起着重要作用,用气体分压爱表示的平衡常数可用下面公式表示: k p=p CH3OH /p CO·p H22 式中k p——甲醇的平衡常数 p CH3OH、p CO、p H2——分别表示甲醇、一氧化碳、氢气的平衡分压。 反应温度也是影响平衡的一个重要因素,下面公式用温度来表示合成甲醇的平衡常数: lgKa=3921/T-7.9711lg T+0.002499 T-2.953×10-7T2+10.20 式中Ka——用温度表示的平衡常数; T——反应温度,K。 四、温度对甲醇合成反应的影响: 甲醇的合成反应是一个可逆放热反应。从化学平衡考虑,随着温度的提高,甲醇平

甲醇合成催化剂反应机理及应用1

甲醇合成催化剂的反应机理及应用 新疆广汇新能源有限公司新疆哈密839000 杨林君 摘要:本文介绍了甲醇合成反应的机理,合成催化剂的制备;对XNC-98催化剂的使用情况做了介绍。 关键词:甲醇合成催化剂 甲醇是重要的有机化工原料,碳一化学的母体,广泛用于生产塑料、纤维、橡胶、染料、香料、医药和农药等,还是重要的有机溶剂。甲醇在发达国家其产量仅次于乙烯、丙烯和苯,居第四位。甲醇用作汽车发动机燃料,所谓甲醇汽油,今后随着石油不断开采资源日渐减少,直至枯竭,特别在我国少油多煤的资源下,甲醇用作汽车燃料将达亿吨/年以上,跃升化工产品的首位。研究开发应用推广近代甲醇合成工艺与合成塔技术和建设大型化生产装置,成为我国甲醇工业大发展的必由之路[1]。 随着甲醇工业的发展,以低压法铜基催化剂为代表的甲醇合成技术得到了很大的发展。国内近年来在合成催化剂的反应机理、性能及应用等方面研究不断深入,开发出具有世界先进水平的合成催化剂。 一甲醇合成反应的机理 甲醇合成反应机理与活性中心的研究一直是甲醇合成反应过程的研究重点,其对高效催化剂的开发、实验现象本质特征的解释和反应结果的预测都具有重要意义。一个合理的甲醇合成反应历程能够为反应条件的优化以及催化剂制备过程等催化体系的改进提供理论依据,为工业化生产提供理论支撑。按合成甲醇直接碳源的不同,将机理划分为以下3种:CO与CO2共同作为直接碳源机理、CO作为直接碳源机理以及CO2作为直接碳源机理[2]。 1.1 CO直接作为碳源机理 长期已来,在铜基催化剂上加氢合成甲醇的碳源问题都是研究者争论的焦点问题。Herman 等研究了CO/H2体系在Cu/ZnO/Al2O3催化剂上的反应,认为反应的活性中心是Cu+,H2的解离吸附发生在ZnO上,并提出以下反应机理: CO+*(Cu2O)→CO*(Cu2O) H2+2*(ZnO)→2H*(ZnO) CO*(Cu2O)+H*(ZnO)→HCO*(Cu2O)+*(ZnO) H*(ZnO)+HCO*(Cu2O)→CH2O*(Cu2O)+*(ZnO) 2H*(ZnO)+CH2O*(Cu2O)→CH3OH*(Cu2O)+2*(ZnO) CH3OH*(Cu2O)→CH3OH+*(Cu2O) 式中:*指催化剂的活性吸附位。 1.2 CO2直接作为碳源机理 Graeme等[3]研究了Cu/ZnO/SiO2催化剂上CO2加氢合成甲醇反应机理,认为CO2在反应中首先与吸附在Cu上的表面氧负离子反应生成碳酸根离子,碳酸根离子再通过加氢脱氧反应生成甲酸盐,其中甲酸盐加氢生成甲氧基的反应为反应的控速步骤。反应机理见图1:

甲醇合成催化剂还原方案

合成塔催化剂还原及合成塔导气方案 编写: 校核: 审核: 审定: 批准: 合成车间 二○○一年七月十日

合成塔催化剂还原及合成塔导气方案 1 概述 铜基催化剂必须经过还原后才具有活性。还原反应是一个强放热反应,反应式如下所示: CuO + H 2 ==== Cu + H 2 O + 86.7KJ/mol 因此,在还原过程中应特别注意控制催化剂床层温度,防止催化剂过热发 生铜晶粒烧结而损害催化剂活性。还原操作是开车过程中很重要的一个操作环节。每炉催化剂活性的高低,除与催化剂自身的生产质量和装填质量有关外,很大程度上还取决于催化剂还原质量的好坏,它将对装置的生产能力产生长远的影响。因此,必须严格、细致、认真地按此方案进行还原操作。 催化剂在还原过程中出水量约为催化剂重量的18×10-2~20×10-2,其中物理水3×10-2~5×10-2,化学水13×10-2~15×10-2。 2 编写依据 2.2《甲醇合成操作规程》指导说明书 2.4甲醇合成和合成气压缩机最终PID 3 还原前的准备工作 3.1催化剂装填完毕后,应用清洁的空气(或氮气)将催化剂粉末从合成塔中吹除干净。 3.2公用工程准备就绪。 3.3循环气压缩机、合成气压缩机均已调试合格,并且氮气状况下运行正常。 3.4合成系统气密性试验合格。 3.5合成系统的电器、仪器、仪表已调试合格,仪表已校准(合成塔进出口温度、压力及合成回路中各流量显示仪表必须严格校准)。 3.6合成塔配氢管道已接好,外卖的氫气瓶已运至现场,具备稳定提供还原气H 2 的条件。 3.7化验室分析工作准备就绪。选择好分析取样点,确保能及时、准确地分 析合成塔进出口的H 2 浓度。

相关文档