文档库 最新最全的文档下载
当前位置:文档库 › 10互斥事件与加法公式

10互斥事件与加法公式

10互斥事件与加法公式
10互斥事件与加法公式

互斥事件与加法公式(复习课)

教学目标:复习巩固互斥事件的基本概念及其概率计算的加法公式;

会判断事件是否互斥或对立,并能运用加法公式计算概率。

重点内容:互斥事件的概念及加法公式

难点内容:互斥事件的判断,加法公式的应用

教学过程:

一、复习引入

1、复习:古典概型的概率计算(基本方法和两个公式)

2、引入:

二、正课

1、知识梳理

A

B、加法公式

(1)基本公式:

(2)适用条件:

(3)解决问题:

2、基础练习

(1)两个事件互斥是这两个事件对立的()

A、充分条件

B、必要条件

C、充要条件

D、既不充分也不必要条件

(2)从一批羽毛球产品中任取一个,质量小于4.8 g的概率是0.3,质量不小于4.85 g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是()

A、0.62

B、0.38

C、0.7

D、0.68

(3)甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙二人下成和棋的概率为

A、60%

B、30%

C、10%

D、50%

(4)在20件产品中,有15件一等品、5件二等品,从中任取3件。求至少有1件为二等品的概率。

3、例题选讲

例1、有10张人民币,其中伍元的有2张,贰元的有3张,壹元的有5张,

从中任取3张,求3张中至少有2张的币值相同的概率。

例2、从男女生共有36名的班级中,任意选出2名委员,任何人都有同样

的当选机会,如果选得同性别委员的概率等于2

1,且已知男生多于女生,求男女生各有几人?

例3、9个国家乒乓球队中有3个亚洲国家队,抽签分成甲、乙、丙三组(每

组3队)进行预赛,试求:

(1)三个组各有一个亚洲队的概率;

(2)至少有两个亚洲队分在同一组的概率。

三、全课总结(略)

四、课堂练习

1、从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件

是()

A、至少有1个白球,都是红球

B、至少有1个白球,至多有1个红球

C、恰有1个白球,恰有2个白球

D、至多有1个白球,都是红球

2、袋中有5个白球,3个黑球,从中任意摸出4个,求下列事件发生的概率:

(1)摸出2个或3个白球;(2)至少摸出1个白球;(3)至少摸出1个黑球。

3、有5张卡片分别写有1、2、3、

4、5,把它们混合后再任意排成一排,则所得到

的数能被2或5整除的概率是多少?

4、8个篮球队中有2个强队,先任意将这8个队分成两个组(每组4个队)进行比

赛,则这两个强队被分在一个组内的概率是多少?

3.2.3 互斥事件与对立事件导学案

周至二中高一数学组主备:刘亚惠许静校审:周宗宪 班级组别姓名 § 3.2.3互斥事件与对立事件 课前预习学案 学习目标: 1. 了解互斥事件的概率加法公式; 2. 掌握对立事件的概率计算公式; 3. 熟练应用概率运算法则解决简单的概率问题; 学习重难点: 重点:利用互斥事件及对立事件的概率运算法则求随机事件的概率; 难点:互斥事件及对立事件概率的计算。 预习内容 1.概率的几个基本性质 (1).由于事件的频数总是小于或等于试验的次数. 所以, 频率在0~1之间, 从而随机事件A 的概率为 ①必然事件A的概率: ;; ②不可能事件A的概率: . 2.互斥事件的概念: 3.互斥事件的概率加法公式 4.对立事件的概念: 5.对立事件的概率计算公式 课前自测 1.一个均匀的正方体玩具的各个面上分别标有 1、2、3、4、5、6,将这个玩具先后抛掷两 次,则“向上的数之和是 5”的概率是(). A. 1/9 B. 1/6 C. 1/12 D. 1/3 2.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是() A.至多有一次中靶 B.两次都中靶 C. 只有一次中靶 D. 两次都不中靶 3.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁四人,每人分得一张,那么事件“甲得红牌”与事件“乙分得红牌”是( ) A.对立事件 B. 互斥但不对立事件 C.必然事件 D. 不可能事件 4.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数,事件B为出现2点, 享受生命,享受学习,享受成功。

已知P(A)=1 2,P(B)=1 6 ,求出现奇数点或2点的概率。 5.抛掷两颗骰子,计算: (1)事件“两颗骰子点数相同”的概率; (2)事件“点数之和小于 7”的概率; (3)事件“点数之和等于或小于 11”的概率. 课内探究学案 1.请举例日常生活中的互斥事件与对立事件。 思考1:如果事件A与事件B互斥,那么P(A)+P(B)与1的大小关系如何? 思考2:如果事件A与事件B相互对立,那么P(A)+P(B)与1的大小关系如何? 思考3:若事件A与事件B相互对立,那么事件A与事件B互斥吗?反之,若事件A与事件B互斥,那么事件A与事件B相互对立吗? 2.典型例题 【例 1】某射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A:命中环数大于7环; 事件B:命中环数为10环; 事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环. 【例 2】某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:(1)射中10环或9环的概率;(2)少于7环的概率。

概率的加法公式及应用

概率的加法公式及应用 概率的加法公式是计算概率的一个最基本的公式,根据它可以计算一些复杂事件的概率.在学习时,要注意把握以下几点: 一、注意区分互斥事件与对立事件 互斥事件与对立事件既有联系又有区别.两个事件互斥,它们未必对立;反之,两个事件对立,它们一定互斥.明确了事件间的关系,解复杂事件的概率问题就会有的放矢. 例1 从1 29,,,中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是( ). (A)① (B)②④ (C)③ (D)①③ 解析:首先看是否为互斥事件,然后再看两事件是否必有一个发生,若必有一个发生,则为对立事件,否则,不是对立事件. 因为从1,2,…,9中任取两数,有以下三种情况:两个奇数;两个偶数;一个奇数和一个偶数,所以“至少有一个奇数”的对立事件显然是“两个都是偶数”,故选(C). 二、准确应用互斥事件的概率加法公式 若事件A 与B 互斥,则()()()P A B P A P B =+(推广情况1212()()()()n n P A A A P A P A P A =+++) ,利用这一公式解题体现了化整为零、化难为易的思想.但要注意用此公式时,首先要判断事件是否互斥,如果事件不互斥,就不能用此公式. 例2 甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论,目标被命中的概率为0.650.60 1.25+=,为什么? 解析:不能.因为甲命中目标与乙命中目标两事件不是互斥事件,故不能使用概率加法公式计算,且概率不可能大于1,结论显然不对. 例3 某一时期内,一条河流某处的年最高水位在各个范围内的概率如下: 计算在同一时期内,河流此处的年最高水位在下列范围内的概率:(1)[)1018m ,;(2)[)814 m ,. 解析:记此处河流的年最高水位在[)810,,[)1012,,[)1214,,[)1416,,[)1618(m) ,范围内分别为事件A B C D E ,,,,,则这5个事件是彼此互斥的,据互斥事件概率加法公式: (1)此处河流的年最高水位在[)1018(m ),的概率是()()()()()0.90P B C D E P B P C P D P E =+++=. (2)此处河流的年最高水位在[)814(m),的概率是

相互独立事件的集合关系

相互独立事件的集合关系 互斥事件交集为空,那么相互独立事件呢?有交集的事件一定是相互独立事件吗? 如果相互独立事件没有明确的集合关系,那么它们之间就没有集合图像吗? 我来帮他解答 互斥事件交集为空,那么相互独立事件呢? 独立事件的交集一般不为空,除非某一事件的概率为空. 你画一个正方形□,□内为全体事件,以面积的大小表示事件的多少. 再画一横线,变成了日,日的上面的框内为事件A, 然后画一竖线,变成了田.田的左侧两个框内为事件B, 此时,左上方为事件AB, AB为独立事件. 因为无论你如何上下移动横线,事件AB的面积除以事件A的面积始终等于事件B的面积除以全体事件的面积. 同样,无论如何移动竖线,事件AB的面积除以事件B的面积始终等于事件A的面积除以全体事件的面积. 当你把竖线换成斜线结果就不同了,或者当你把□形换成○形结果也会不同的.你试试,此时的AB就不是独立事件了. 相互独立事件可以这样理解: 在事件A的概率为P(A),事件B的概率为P(B),事件AB的概率为P(AB),则 P(AB)/P(A)=P(B),就是说在发生了A的事件中发生了B的概率的大小(这是条件概率)和所有事件中发生B的概率是相同的. 在不发生事件A的概率为P(A非),事件B的概率为P(B),不发生事件A发生B的概率为P(A非B),则 P(A非B)/P(A非)=P(B),就是说在不发生A的事件中发生了B的概率的大小(这是条件概率)和所有事件中发生B的概率是相同的. 换句话说,是否发生A与发生B的概率无关. 当然将所有的A换成B,将B换成A,上边的说法仍然成立. 有交集的事件一定是相互独立事件吗? 不是的.前面说的将竖线变成斜线后的关系就是反例,我举一个实例: 事件A:今天西安城区平均温度高于30°, 事件B:明天西安城区平均温度高于30°.

互斥及对立事件概率问题求解五例

互斥及对立事件概率问题求解五例 焦景会 055350 河北隆尧一中 在求解稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成彼此互斥的事件的概率 之和;二是先求此事件的对立事件的概率。尤其在涉及“至多”或“至少”问题时,常先求此事件的对立事件的概率,再利用公式()1()P A P A =-求出所求事件的概率。这种解法,称为逆向思考方法,采用这种方法有时可使问题的解答变得简便。下面就互斥及对立事件的概率问题举例分析如下。 例1、 假设某城有10000辆家庭汽车,其牌照编号为E00001到E10000,问:偶然遇到牌照号码中有数字6 的汽车的概率为多大? 解:用A 表示“牌照号码中有6的事件”,用A 表示“牌照号码中不含6的事件”,则A 与 A 是对立事件, 则 44 9 ()10 P A = ,所求概率为4 9()1()1( )0.3410 P A P A =-=-≈。 点评:此题利用对立事件求概率。 例2、 将一个骰子先后抛掷三次,求向上的点数和为6的倍数的概率。 解:点数和为6的倍数的情况有三种:即和为6、12、18。设和为6的事件为 1A ,和为12的事件为2A ,和为18的事件为3A ,彼此互斥。 (1)和为6的点数组有(1、1、4),(1、2、3),(2、2、2),共10个,则13 10()6 P A = (2)和为12的点数组有(1、5、6),(2、4、6),(2、5、5),(3、3、6),(3、4、5)(4、4、4),共有 33323125 A +?+=个,则23 25()6 P A = (3)和为18的点数组有(6、6、6),共一个,则33 1 ()6 P A =。 故所求概率为123123()()()()P A A A P A P A P A ++=++= 3 106 3 256 +3 16 + 361216 6 = = 。 点评:把所求事件概率化成一些彼此互斥事件的概率和。 例3、 口袋里放有12个大小完全相同的球,其中3个红色的,4个白色的,5个蓝色的,从袋中取出4个球 时,求 (1)取出的球的颜色至少是两种的概率。(2)取出的球的颜色是三种的概率。 解:(1)设“从12个球中取出4个球至少是两种颜色”的事件为A ,A 的对立事件为A ,且全为白色有1种,全为蓝色有5种,则4412 12 1 5 2()165 P A C C = + = ,2163()1()1165 165 P A P A ∴=-=- = 。 (2)设取出4球中,“1红、1白、2蓝的事件”为1A ;“1红、2白、1蓝的事件”为2A ;“2红、1白、1蓝的事件”为 3 A ,且事件 12,,A A A 彼此互斥。故所求概率为 1 2 312( )()()()P A A A P A P A P A ++= ++= 12090606 .49549549511 ++= 点评:问题(1)的解法是先求事件的对立事件的概率,问题(2)解法是将所求事件的概率化成一些彼此互

互斥事件与对立事件汇总

______________________________________________________________________________________________________________ 互斥事件与对立事件 一、选择题 1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( ) (A )对立事件 (B )互斥但不对立事件 (C )不可能事件 (D )必然事件 2.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ). A .至少有1个白球,都是白球 B .至少有1个白球,至少有1个红球 C .恰有1个白球,恰有2个白球 D .至少有1个白球,都是红球 3.从装有2个红球和2个黑球的口袋内任取得2个球,那么互斥而不对立的两 个事件是( ) A .至少有1个黑球与都是黑球 B .至少有1个红球与都是黑球 C .至少有1个黑球与至少有1个红球 D .恰有1个黑球与恰有2个黑球 4.两个事件对立是两个事件互斥的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分又不必要条件 5.下列说法中正确的是( ) A.若事件A 与事件B 是互斥事件,则()()1P A P B +=; B.若事件A 与事件B 满足条件:()()()1P A B P A P B ?=+=, 则事件A 与事件B 是 对立事件; C.一个人打靶时连续射击两次,则事件 “至少有一次中靶”与事件 “至多有一次中靶”是对立事件; D.把红、橙、黄、绿4张纸牌随机分给甲、乙、丙、丁 4人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件. 6.若P (A ∪B )=P (A )+P (B )=1,则事件A 与B 的关系是 ( ) A.互斥不对立 B.对立不互斥 C.互斥且对立 D.以上答案都不对 7.从1,2,3,4,5,6,7,8,9这9个数字中任取两个数,分别有下列事件:①恰有一个是奇数或恰有一个是偶数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.其中为互斥事件的是 A .① B .②④ C .③ D .①③ 8.从一批产品(其中正品、次品都多于两件)中任取两件,观察正品件数和次品件数,下列事件是互斥事件的是( ) ①恰有一件次品和恰有两件次品;

概率计算公式(精选课件)

概率计算公式 加法法则 P(A∪B)=P(A)+P(B)-P(AB 条件概率 当P(A)>0,P(B|A)=P(AB)/P(A) 乘法公式 P(AB)=P(A)×P(B|A)=P(B)×P(A|B) 计算方法 “排列组合”的方法计算 记法 P(A)=A 加法法则 定理:设A、B是互不相容事件(AB=φ),P(AB)=0。则P(A∪B)=P(A)+P(B)-P(AB)=p(A)+P(B) 推论1:设A1、A2、…、An互不相容,则:P(A1+A2+.。.+An)= P(A1) +P(A2) +…+ P(An) ...文档交流仅供参考... 推论2:设A1、 A2、…、 An构成完备事件组,则:P (A1+A2+。..+An)=1 推论3:P(A)=1—P(A') 推论4:若B包含A,则P(B—A)= P(B)—P(A) 推论5(广义加法公式):

对任意两个事件A与B,有P(A∪B)=P(A)+P(B)—P(AB) 折叠条件概率 条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B) 条件概率计算公式: 当P(A)>0,P(B|A)=P(AB)/P(A) 当P(B)>0,P(A|B)=P(AB)/P(B) 折叠乘法公式 P(AB)=P(A)×P(B|A)=P(B)×P(A|B) 推广:P(ABC)=P(A)P(B|A)P(C|AB) 折叠全概率公式 设:若事件A1,A2,…,An互不相容,且A1+A2+…+An=Ω,则称A1,A2,…,An构成一个完备事件组....文档交流仅供参考... 全概率公式的形式如下: 以上公式就被称为全概率公式。

互斥事件习题

互斥事件习题 篇一:互斥对立事件练习题互斥对立事件练习题 1.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人, 每人分得1张,事件“甲分得1张红牌”与事件“乙分得1张红牌”是( C ) A.对立事件B.不可能事件 C.互斥但不对立事件 D.以上答案都不对 2.1人在打靶中连续射击2次,事件“至少有1次中靶” 的对立事件是( C ) A.至多有1次中靶 B.2次都中靶 B. C.2次都不中靶 C.只有1次中靶 3.1人在打靶中连续射击2次,事件“2次都中靶” 的对立事件是( B ) A.2次都不中靶 B.至多有1次中靶 C.至少有1次中靶 D.只有1次中靶 4.产品中有正品4件,次品3件,从中任取2件,其中事件:①恰有一件次品和恰有2件次品;②至少有1件次品和全都是次品;③至少有1件正品和至少有一件次品;④至少有1件次品和全是正品。 4组中互斥事件的组数是 ( B) A.1组 B. 2组 C.3组D. 4组 5.某人在打靶中连续射击2次,事件“至少有一次中靶”的互斥事件是( C ) A.至多有一次中靶 B.两次都中靶C.两次都不中靶D.只有一次中靶 6.从装有红球、白球和黑球各2个的口袋内一次取出2个球,给出以下事件:①两球都不是白球;②两球中恰有一白球; ③两球中至少有一个白球.其中与事件“两球都为白球”互斥而非对立的事件是( A ) A.①② B.①③ C.②③ D.①②③ 7.一个人连续射击2次,则下列各事件中,与事件“恰中一次”互斥但不对立的事件是( D ) A.至多射中一次B.至少射中一次 C.第一次射中 D.两次都不中8.抛掷一个骰子,记A为事件“落地时向上的数是奇数”, B为事件“落地时向上的数是偶数”,事件A与B是 ( C ). (A)互斥但不对立事件(B)对立但不互斥事件(C)对立事件(D)不是互斥事件 9.在下列结论中,正确的为 ( B) A.若A与B是两互斥事件,则A?B是必然事件. B.若A与B是对立事件,则A?B是必然事件 . C.若A与B是互斥事件,则A?B是不可能事件. D.若A与B是对立事件,则A?B不可能是必然事件. 10. 在下列结论中正确的为( B) ①互斥事件一定是对立事件;②对立事件不一定是互斥事件③互斥事件不一定是对立事件;④对立事件一定是互斥事件 A.①② B.③④ C.②③ D.②④ 11.从装有5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是( D ) A.至少有一个红球与都是红球 B.至少有一个红球与都是白球 C.至少有一个红球与

概率的加法公式

12.3.1 概率的加法公式 2.任意事件概率的加法公式 任意事件概率的加法公式为 P (A ∪B )=P (A )+P (B )-P (AB ) 公式可以推广到有限个事件的情形。下面给出三个事件的并的概率加法公式: P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (AC )-P (BC )+P (ABC ) 例2 如图12-6(课本)所示的线路中,元件a 发生故障的概率为0.08,元件b 发生故 障的概率为0.05,元件a,b ,同时发生故障的概率为0.004,求线路中断的概率。 解 设A={元件a 发生故障},B={元件b 发生故障},C={线路中断},根据电学知识 可知 C=A ∪B 。根据题意可知,P (A )=0.08, P(B)=0.05, P(AB)=0.004. 由公式12-4得 P(C)=P (A ∪B )=P (A )+P (B )-P (AB )=0.08+0.05-0.004=0.126. 课堂练习 12.3.2概率的乘法公式 1.条件概率 定义 在事件A 发生的条件下发事件B 发生的概率叫条件概率,记作P (B ︱A )。 例3 五个球中有三个白球,二个红球,每次任取一个,不放回抽取两次,试求在第 一次取到红球的条件下第二次取到白球的概率。 解 设A={第一次取到红球},B={第二次取到白球}。 由于事件A 已经发生,而且取出的球不放回,所以5个球中只剩下4个,其中白球仍 有三个,于是由古典概型可知 P (B ︱A )= 43 条件概率有以下计算公式: P (B ︱A )=)()(A P AB P P (A )≠0 P (A ︱B )=) ()(B P AB P P (B )≠0。 (12-6) 课堂练习 2.乘法公式 由条件概率的计算公式可得 P (AB )=P (A )P (B ︱A )=P (B )P (A ︱B ) (12-7) 公式(12-7)称为概率的乘法公式。 例4 设在一个盒子中装有10只晶体管,4只是次品,6只是正品,从中接连取两次, 每次任取一只,取后不再放回。问两次都取到正品管子的概率是多少? 解 设A={第一次取到的是正品管子},B={第二次取到的是正品管子}。 则AB={两次都取到正品管子}。 因为 P (A )=106, P (B ︱A )=9 5, 所以,由公式(12-7)得 P (AB )=P (A )P (B ︱A )= 3195106=?。 概率的乘法公式,可以推广到有限个积事件的情形,下面给出三个事件积的概率公式: P (ABC )=P (A )P (B ︱A )P (C ︱AB )。 12.3.3 事件的独立性 定义 如果事件A (或B )的发生不影响事件B (或A )发生的概率,即P (B ︱A ) =P (B )或P (A ︱B )=P (A ),那么事件A 、B 叫做相互独立事件。 如果事件A 、B 相互独立,那么两事件的积AB 的概率等于两个事件概率的乘积,即

互斥对立事件知识点+练习题

一、知识点复习 1.事件的包含关系 如果事件A发生,则事件B______.则称事件B______事件A. 2.相等事件 若______且______,那么事件A与事件B相等. 3.并(和)事件 若某事件发生当且仅当___________,则称此事件为事件A与B的并事件(或称和事件)记作:A∪B. 4.交(积)事件 若某事件发生当且仅当_________,则称此事件为事件A与B的交事件(或称积事件)记作:A∩B. 5.互斥事件 若A∩B为_________,即A∩B=______,那么称事件A与事件B________. 6.对立事件____________________对立事件. 例如:某同学在高考中数学考了150分,与这同学在高考中考得130分,这两个事件是________. 7.互斥事件概率加法公式 当事件A与B互斥时,满足加法公式: P(A∪B)=P(A)+P(B); 若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=________,于是有P(A)=________. 例如:投掷骰子六点向上的概率为1/6,投得向上点数不为六点的概率为:________. 8.如果事件A与事件B互斥,则____________________;如果事件A与事件B对立,则________________________。 二、练习题 1.在一对事件A,B中,若事件A是必然事件,事件B是不可能事件,那么A和B() A.是互斥事件,不是对立事件 B.是对立事件,但不是互斥事件 C.是互斥事件,也是对立事件 D.既不是对立事件,也不是互斥事件 2.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,每人分得1件,事件“甲分得红牌”与事件“乙分得红牌”是() A.对立事件B.不可能事件 C.互斥但不对立事件D.以上答案都不对 3.给出以下结论: ①互斥事件一定对立②对立事件一定互斥③互斥事件不一定对立④事件A与B的和事件的概率一定大于事件A的概率⑤事件A与B互斥,则有P(A)=1-P(B) 其中正确命题的个数为() A.0个B.1个 C.2个D.3个 4、某县城有甲、乙两种报纸供居民订阅,记事件A为“只订甲报”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报”,事件E为“一种报纸也不订”.判断下列事件是不是互斥事件;如果是,再判断它们是不是对立事件: (1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.

互斥事件和独立事件

互斥事件和独立事件 浙江奉化奉港高级中学 罗永高 315500 互斥事件和独立事件是高中数学概率中的两个重要概念,学生在学习这两个概念时,常常会混淆两着关系而导致判断错误和计算错误,怎样才能有效消除混淆,更好地区别这两个概念,本文结合实例,来阐述这两个概念的关系. 问题 抛掷一颗骰子,记A 为事件“落地向上的数为奇数”,B 为事件“落地向上的数为偶数”,C 为事件“落地向上的数为3的倍数”,D 为事件“落地向上的数为大于3的数”,E 为事件“落地向上的数为7”。判断下列每对事件是否互斥事件?是否对立事件?是否相互独立事件? (1)A 与B ,(2)A 与C ,(3)B 与C ,(4)A 与D ,(5)A 与.E 分析解答 }.7{},6,5,4{},6,3{},6,4,2{},5,3,1{=====E D C B A ,0)(,2 1)(,31)(,21)(,21)(===== E P D P C P B P A P .0)(,61)(,61)(,61)(,0)(=====AE P AD P BC P AC P AB P 得结论如下 归纳方法 1 对于事件,,B A 若B A ,所含结果组成的集合彼此互不相交,则B A ,为互斥事件,其意义为事件A 与B 不可能同时发生. 思考 (1)若B A ,为互斥事件,问A 发生对事件B 发生的概率有影响吗? (2)若)()()(B P A P B A P +=+,问B A ,为互斥事件吗? (3)若,0)(=AB P 问B A ,为互斥事件吗? 2对于事件,,B A 若),()()(B P A P AB P =则B A ,为相互独立事件,其意义为事件(A 或B )发生件B (或)A 发生的概率没有影响,从集合角度看,若.0)(,0)(≠≠B P A P 则事件B A ,所包含的结果一定相交. 3 若B A ,为相互独立事件,则A 与B ,A 与,B A 与B 均为相互独立事件,事件B A B A B A ???,,为互斥事件.

高一数学 互斥事件与对立事件

互斥事件与对立事件 1.抛掷一颗骰子1次,记“向上的点数是4,5,6”为事件A,“向上的点数是1, 2”为事件B,“向上的点数是1,2,3”为事件C,“向上的点数是1,2,3,4” 为事件D。判断下列每对事件是否为互斥事件,如果是,再判断它们是否为对立事件 ⑴A与B ⑵A与C ⑶A与D 2.有一批小包装食品,其中重量在90~95g的有40袋,重量在95~100g的有30袋, 重量在100~105g的有10袋。从中任意抽取一袋,则此袋食品的重量在95~100g 的概率为;此袋食品的重量不足100g的概率为;此袋食品的重量不低于95g的概率为 3.甲、乙两人下棋,甲胜的概率为0.4,甲不输的概率为0.9,则甲、乙两人下和的 概率为 4.某人射击射中10环,9环,8环的概率依次为0.2,0.25,0.3,则他打1枪至少 8环的概率为 5.口袋中有若干红球、黄球与蓝球。摸出红球的概率为0.45,摸出黄球的概率为0.33,则摸出红球或黄球的概率摸出蓝球的概率 6.一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4,则使目标受损但未完全击毁的概率 人排队等候的概率是,至少人排队等候的概率 8.某种彩色电视机的一等品率为90%,二等品率为8%,次品率为2%,某人买了一台该种电视机,则这台电视机是正品(一等品或二等品)的概率为,这台电视机不是一等品的概率 9.经临床验证,一种新药对某种疾病的治愈率为54%,现效率为22%,有效率为12%,其余为无效。则某人患该病使用此药后无效的概率 10.某种彩票是由7位数字组成,每位数字均为0~9这10个号码中的任一个。由摇号得出一个7位数(首位可为0)为中奖号,如果某张彩票的7位数与中奖号相同即得一等奖;若有6位相连数字与中奖号的相应数位上的数字相同即得二等奖;若有5位相连数字与中奖号的相应数位上的数字相同即得三等奖;各奖不可兼得。某人买了10张不同号码的彩票。 ⑴.求其获得一等奖的概率; ⑵.求其获得三等奖及以上奖的概率

对立事件与互斥事件习题讲课

幻灯片1 对立事件与互斥事件习题 幻灯片2 互斥事件:不可能同时发生的两个事件叫做互斥事件. {1}{2}{3} {4}{5}{6} ======123456 如C 出现点;C 出现点;C 出现点C 出现点;C 出现点;C 出现点即C1,C2是互斥事件 其中必有一个发生的互斥事件叫做对立事件 对立事件: {}{}G H =如:出现的点数为偶数;=出现的点数为奇数①首先G 与H 不能同时发生,即G 与H 互斥 ②然后G 与H 一定有一个会发生,这时说G 与H 对立 进一步理解:对立事件一定是互斥的 幻灯片3 互斥事件与对立事件的区别与联系 联系:都是两个事件的关系, 对立事件是互斥事件,是互斥中的特殊情况 但互斥事件不一定是对立事件 区别:互斥事件是不可能同时发生的两个事件 对立事件除了要求这两个事件不同时发生之外要求二者之一必须有一个发生 幻灯片4 互斥事件与对立事件的区别: ①互斥事件可以是两个或两个以上事件的关系,而对立事件只针对两个事件而言。 ②从定义上看,两个互斥事件有可能都不发生, 也可能有一个发生,也就是不可能同时发生; 而对立事件除了要求这两个事件不同时发生外, A B C

还要求这二者之间必须要有一个发生,因此, 对立事件是互斥事件,是互斥事件的特殊情况, 但互斥事件不一定是对立事件。 A、B、C彼此互 斥但不独立 A B ③从集合角度看,几个事件彼此互斥,是指这 几个事件所包含的结果组成的集合的交集为空 集;而事件A的对立事件是指A在全集中的补集。 A、B互斥且独 立 幻灯片5 例题讲评 例1.(1)某战士在打靶中,连续射击两次,事件“至少有一次中靶”的对立事件是()(A)至多有一次中靶(B)两次都中靶 (C)两次都不中靶(D)只有一次中靶 C 至少有一次中靶 分析:某战士打靶两次,出现四个结果,分别记为 {中靶,中靶} {中靶,脱靶} {脱靶,中靶} {脱靶,脱靶}

高一下互斥事件与相互独立事件月考题

互斥事件相对立事件的概率与几何概型 1.从装有黑球和白球各2个的口袋内任取2个球,那么互斥而不对立的两个事件是 ( ) A .至少有1个黑球,至少有1个白球 B .恰有一个黑球,恰有2个白球 C .至少有一个黑球,都是黑球 D .至少有1个黑球,都是白球 2.设某种产品分两道独立工序生产,第一道工序的次品率为10%,第二道工序的次品率为3%, 生产这种产品只要有一道工序出次品就将生产次品,则该产品的次品率是 ( ).A .0.873 B.0.13 C.0.127 D.0.03 3.一批零件共100个,其中有95件合格品,5件次品,每次任取1个零件装配机器,若第2次取 到合格品的概率是2p ,第1次取到合格品的概率是1p ,则( ) A . 2p >1p B . 2p =1p C . 2p <1p D .不能确定 4.将一颗质地均匀的骰子先后抛掷2次,至少出现一次6点向上的概率是 ( ) 5.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于 25 cm 2与49 cm 2之间的概率为( ) 6.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂 色,每个图形只能涂一种颜色,则三个形状颜色不全相同的事件的对立事件的概率为( ) 7.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则 求两人会面的 概率为( ) A . B . C . D . 8.如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率 为( ) A . B . C . D . 9.如图,有一圆盘其中的阴影部分的圆心角为 ,若向圆内投镖,如果某人每 次都投入圆内,那么他投中阴影部分的概率为( ) A . B . C . D . 10.商场开展促销抽奖活动,摇奖器摇出的一组中奖号码是6,5,2,9,0,4.参抽奖的每位顾客从0,1…,9这十个号码中抽出六个组成一组.如果顾客抽出的六个号码中至少有5个与摇奖器摇出的号码相同(不计顺序)就可以得奖,某位顾客可能获奖的概率为 ( ) 11.若过正三角形的顶点任作一条直线,则与线段相交的概率为( ) 12.. 13.某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 .(结果用分数表示) 14.一个口袋中共有10个红、绿两种颜色小球,不放回地每次从口袋中摸出一球,若第三次摸到 红球的概率为5 4,则袋中红球有 个. 15.随机向边长为2的正方形ABCD 中投一点P,则点P 与A 的距离不小于1的概率是_______________.

互斥事件及其和事件的概率优质课教案

3.1.3《互斥事件及其和事件的概率》教学设计 课题:3.1.3 《互斥事件及其和事件的概率》 教材分析: 《必修三》在第三章引进概率后,首先介绍了概率的定义,以及古典概型、几何概型概率公式,为了将一些较复杂的概率的计算化成较简单的概率的计算,就要根据不同事件之间的联系和关系,将我们所考虑的事件作出相应的正确运算本节将围绕着解决求较复杂事件概率的问题,介绍互斥事件以及事件的和的意义 率 学情分析: 学生在此之前学习了概率的定义,并且学会运用古典概型,几何概型的相关公式公对一些简单的等可能随机事件求概率,但对于较复杂概率问题,如果学生直接根据概率的定义来进行计算是很不方便的,由于概率这一章所涉及到的内容与他们生活联系较紧密,学生有相对较大的兴趣,对于问题的解决都能够有自己的想法,然而想法是建立在他们的生活经验上,并没有理论知识的支持,而对于较复杂问题,仅凭已有认知和自己的生活经验,并不能够真正解决问题,他们需要学习新的理论知识,需要通过书本上的知识与已有认知的结合,从而完善他们的认知结构,解决更多的概率问题。 教法分析: 本节课主要采用的教学方法是讲授法,在设计教学内容的过程中,站在学生思维的角度,根据学生的最近发展区创设问题情景,引导学生从集合间的关系类比分析事件之间的关系,感悟数学划归的思想方法,将复杂的求概率的问题转化成几个互斥事件概率和的问题,或者是求其对立事件概率的问题,从而达到解决问题的目的,进而引导学生归纳猜想,得到多个事件彼此互斥的概率公式,通过验证、练习巩固、总结反思。整个教学过程以学生为主体,站在学生的角度,换位思考,通过预测学生的心理需求,预判学生的思维活动,预设课堂重点关注的问题,引导学生把所学、所悟、所感、所创激发出来,促进他们积极发现数学的内在规律、理解数学的本质、感悟数学的精神.教师也时刻监控学生的认知与思维过程,用鼓励性的语言与学生进行交流、探讨,帮助学生发现问题、解决问题。 教学重难点: 【教学重点】互斥事件的概念及其概率的求法。 【教学难点】对立事件与互斥事件的关系,事件A+B的概率的计算方法。 教学过程: 一、讲解新课:

互斥事件、相互独立事件的概率单元练习题

§11.2 互斥事件、相互独立事件的概率 一、选择题: 1.若1)(=+B A P ,则事件A 与B 的关系是( ) A .A 、 B 是互斥事件 B .A 、B 是对立事件 C .A 、B 不是互斥事件 D .以上都不对 2.两个事件对立是这两个事件互斥的( ) A .充分但不是必要条件 B .必要但不是充分条件 C .充分必要条件 D .既不充分又不必要条件 3.今有光盘驱动器50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为( ) A .35035C C B .350352515 C C C C ++ C .3503451C C - D .350 1452524515C C C C C + 4.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射一个目标,则他们都中靶的概率是( ) A .1514 B .2512 C .43 D .5 3 5.某产品分甲、乙、丙三级,其中乙、丙两级均属次品若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为( ) A .0.99 B .0.98 C .0.97 D .0.96 6.甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个上螺母,其中有180个A 型的,现从甲、乙两盒中各任取一个,则能配成A 型的螺栓概率为( ). A .201 B.1615 C .53 D .20 19 7.流星穿过大气层落在地面上的概率为0.002,则流星数量为10个的流星群穿过大气层有4个落在地面上的概率约为( ) A .51032.3-? B .81032.3-? C .51064.6-? D .81064.6-? 8.有10门炮同时向目标各发射一发炮弹,如果每门炮的命中率都是0.1,则目标被击中的概率约为( )

互斥对立事件练习题

互斥对立事件练习题 1.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人, 每人分得1张,事件“甲分得1张红牌”与事件“乙分得1张红 牌”是( C ) A.对立事件B.不可能事件 C.互斥但不对立事件D.以上答案都不对 2.1人在打靶中连续射击2次,事件“至少有1次中靶” 的对立事件是( C ) A.至多有1次中靶B.2次都中靶 B.C.2次都不中靶C.只有1次中靶 3.1人在打靶中连续射击2次,事件“2次都中靶” 的对立事件是( B ) A.2次都不中靶B.至多有1次中靶 C.至少有1次中靶D.只有1次中靶 4.产品中有正品4件,次品3件,从中任取2件,其中事件: ①恰有一件次品和恰有2件次品;②至少有1件次品和全都是次品; ③至少有1件正品和至少有一件次品;④至少有1件次品和全是正品。 4组中互斥事件的组数是 ( B ) A.1组B.2组C.3组D.4组 5.某人在打靶中连续射击2次,事件“至少有一次中靶”的互斥事件是( C ) A.至多有一次中靶B.两次都中靶 C.两次都不中靶D.只有一次中靶 6.从装有红球、白球和黑球各2个的口袋内一次取出2个球,给出以下 事件:①两球都不是白球;②两球中恰有一白球;③两球中至少有一 个白球.其中与事件“两球都为白球”互斥而非对立的事件是( A ) A.①②B.①③ C.②③D.①②③ 7.一个人连续射击2次,则下列各事件中,与事件“恰中一次”互斥但 不对立的事件是( D ) A.至多射中一次B.至少射中一次 C.第一次射中D.两次都不中 8.抛掷一个骰子,记A为事件“落地时向上的数是奇数”,B为事件“落

地时向上的数是偶数”,事件A与B是 ( C ). (A)互斥但不对立事件(B)对立但不互斥事件 (C)对立事件(D)不是互斥事件 9.在下列结论中,正确的为 ( B ) +是必然事件. A.若A与B是两互斥事件,则A B +是必然事件 . B.若A与B是对立事件,则A B +是不可能事件. C.若A与B是互斥事件,则A B +不可能是必然事件. D.若A与B是对立事件,则A B 10. 在下列结论中正确的为 ( B ) ①互斥事件一定是对立事件;②对立事件不一定是互斥事件 ③互斥事件不一定是对立事件;④对立事件一定是互斥事件 A.①②B.③④ C.②③D.②④ 11.从装有5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是( D ) A.至少有一个红球与都是红球B.至少有一个红球与都是白球 C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有两个红球12.从装有4个黑球和3个白球的口袋内任取3个球,下列事件①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球;其中互为对立事件的是( B ) A.①B.②C.③D.④

试探互斥事件与相互独立事件的区分方法

试探互斥事件与相互独立事件的区分方法 随机试验中事件的概率计算何时使用互斥事件概率的加法公式,何时使用相互独立事件概率的乘法公式,常是初学这部分知识的人难以把握的问题,引起麻烦的根源主要是无法确定事件间的关系究竟属于互斥事件还是独立事件。 判断两个事件之间的关系首先从定义入手,互斥事件发生在一次试验可能出现的不同结果中,这两个(或多个)事件不可能同时发生,而相互独立事件发生互不干涉的不同试验中,一个事件发生与否对另一个事件发生的概率不产生影响。 其次,从事件发生的结果入手判断事件间的关系,互斥事件若有一个发生,那么其他事件在试验中就不能再发生了;而相互独立事件中一个事件在试验中发生,对其它事件是否发生不产生任何影响。 再之,从事件的来源入手,即从产生事件的试验入手,互斥事件发生在同一次试验中,两个互斥事件A和B不会同时发生,但它们的概率相互影响,总有0≤P(A)+P(B)≤1相互独立事件发生于不同试验中,两个相互独立事件A和B是否发生互斥影响,产生事件的试验也相互独立互不影响,概率关系同样互不影响,总有0≤P(A)≤1、0≤P(B)≤1。 从两个概率公式入手,分析适应的事件关系也可以判断事件间的关系,对于互斥事件有一个发生的概率加法公式P(A+B)=P(A)+P(B),要求事件A、B之一发生(且只能有一个发生),具有明确的排斥性;对于相互独立事件的概率乘法公式P(A·B)=P(A)·P(B),要求事件A、B同时发生,如果满足不了同时发生的条件,那么这两个事件肯定不是相互独立事件。 从两个概率公式的适用条件看,是否能够分清事件A和B的关系(这些事件是一次试验的结果还是几次独立试验的结果)到关重要,下面举两个例子加以阐述。 例1:甲乙两人各进行一次射击,如果两人击目标的概率都是0.8计算: (1)工人都击中目标的概率 (2)其中恰有一人击中目标的概率 (3)至少有一人击中目标的概率 解(1):把甲射击目标的过程看作一次试验,记“甲射击一次击中目标”为事件A,“乙射击一次击中目标”为事件B,两人各射击一次,这两个试验相互之间互不影响,因此,A、B为两个相互独立事件,2人都击中目标是A发生且B发生,即A、B同时发生,因此求解应利用相互独立事件的乘法公式。 P(A·B)=P(A)·P(B)=0.8×0.8=0.64 即甲乙两人都击中目标的概率为0.64 (2)”其中恰有一人击中目标”这一要求是把甲乙两人各射击一次的过程看作一次试验,这次试验含有两个过程,在由这两个过程形成的每一个事件中都抱括两种同时发生的情况,“恰有一人击中”包括A击中B没有击中(事件A·B,在这里A和B又是相互独立事件),或A没有击中B击中(事件A·B,在这里A和B相互独立)两个互斥事件,所以首先要利用相互独立事件的概率乘法公式分别计算A·B和A·B,再利用互斥事件的概率加法公式求A·B+A·B,所以其中恰有一人击中目标的概率为P(A·B+A·B)

高三一轮复习《互斥事件、独立事件与条件概率》

高三一轮复习《互斥事件、独立事件与条件概率》 考纲考点:1、互斥事件的意义,会用互斥事件的概率加法公式计算事件的概率 2、独立事件的意义,会用独立事件的概率乘法公式计算事件的概率 3、条件概率的概念,会用条件概率公式计算条件概率 考情分析:互斥事件、独立事件(相互独立事件同时发生、独立重复)与条件概率是高考考查的中点内容,主要以应用题形式考查,以现实生活为背景,但实质仍是对互斥事件、独立事件与条件概率的考查。考查中选、填、解答题中都可出现。理科试题中往往与分布列、期望结合起来考查。试题总体难度不大。 知识点: 1、互斥事件:叫做互斥事件 互斥事件A、B有一个发生的概率计算公式:,则) P = 。 A (B 2、对立事件:叫做对立事件;A的对立事件通常 用表示,且) p= 。对立事件与互斥事件的关系:。 (A 3、独立事件:(1)若A、B为两个事件,如果,则称事件A与B 相互独立,即相互独立事件同时发生的概率满足乘法公式。 (2)独立重复试验:在相同条件下重复做n次试验,各次试验结 果相互不影响,那么就称为n次独立重复试验。若每次试验 事件A发生的概率都为p,则n次独立重复试验中事件A恰 = 。 好发生k次的概率) P (k n 4、条件概率:对于两个事件A和B,在已知事件A发生的条件下事件B发生的 概率,称为事件A发生的条件下事件B的。记为,且B P= 。 | ) (A 题型一、事件的判断 1、下列说法正确的是() A、事件A、B中至少有一个发生的概率一定比A、B恰有一个发生的概率大 B、只有当事件A、B为对立事件时,A、B中至少有一个发生的概率才等于 事件A发生的概率加上B事件发生的概率 C、互斥事件一定是对立事件,对立事件不一定是互斥事件 D、互斥事件不一定是对立事件,对立事件一定是互斥事件 2、从装有3个红球和2个白球的口袋内任取2个球,那么互斥而不对立的是() A、至少有一个白球;都是白球 B、至少有一个白球;至少有一个红球 C、至少有一个白球;都是红球 D、恰有一个白球;恰有2个红球 3、掷一颗质地均匀的骰子,观察所得的点数a,设事件A=“a为3”,B=“a为 4”,C=“a为奇数”,则下列结论正确的是() A、A与B为互斥事件 B、A与B为对立事件 C、A与C为对立事件 D、A与C为互斥事件 题型二、互斥事件与对立事件的概率及应用 1、中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军

相关文档