文档库 最新最全的文档下载
当前位置:文档库 › 基于MATLAB的水温与流量串级控制系统设计

基于MATLAB的水温与流量串级控制系统设计

基于MATLAB的水温与流量串级控制系统设计

自动控制系统课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:自动控制理论课程设计 设计题目:直线一级倒立摆控制器设计 院系:电气学院电气工程系 班级: 设计者: 学号: 指导教师: 设计时间:2016.6.6-2016.6.19 手机: 工业大学教务处

*注:此任务书由课程设计指导教师填写。

直线一级倒立摆控制器设计 摘要:采用牛顿—欧拉方法建立了直线一级倒立摆系统的数学模型。采用MATLAB 分析了系统开环时倒立摆的不稳定性,运用根轨迹法设计了控制器,增加了系统的零极点以保证系统稳定。采用固高科技所提供的控制器程序在MATLAB中进行仿真分析,将电脑与倒立摆连接进行实时控制。在MATLAB中分析了系统的动态响应与稳态指标,检验了自动控制理论的正确性和实用性。 0.引言 摆是进行控制理论研究的典型实验平台,可以分为倒立摆和顺摆。许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等,都可以通过倒立摆系统实验直观的表现出来,通过倒立摆系统实验来验证我们所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。 本次课程设计中以一阶倒立摆为被控对象,了解了用古典控制理论设计控制器(如PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,掌握MATLAB仿真软件的使用方法及控制系统的调试方法。 1.系统建模 一级倒立摆系统结构示意图和系统框图如下。其基本的工作过程是光电码盘1采集伺服小车的速度、位移信号并反馈给伺服和运动控制卡,光电码盘2采集摆杆的角度、角速度信号并反馈给运动控制卡,计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,通过皮带带动小车运动从而保持摆杆平衡。

水温自动控制系统实验报告汇总

水温控制系统(B题) 摘要 在能源日益紧张的今天,电热水器,饮水机和电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费。但是利用AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成的控制系统却能解决这个问题。单片机可将温度传感器检测到的水温模拟量转换成数字量,并显示于1602显示器上。该系统具有灵活性强,易于操作,可靠性高等优点,将会有更广阔的开发前景。 水温控制系统概述 能源问题已经是当前最为热门的话题,离开能源的日子,世界将失去一切颜色,人们将寸步难行,我们知道虽然电能是可再生能源,但是在今天还是有很多的电能是依靠火力,核电等一系列不可再生的自然资源所产生,一旦这些自然资源耗尽,我们将面临电能资源的巨大的缺口,因而本设计从开源节流的角度出发,节省电能,保护环境。 一、设计任务 设计并制作一个水温自动控制系统,控制对象为 1 升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 二、要求 1、基本要求 (1)温度设定范围为:40~90℃,最小区分度为1℃,标定温度≤1℃。 (2)环境温度降低时温度控制的静态误差≤1℃。 (3)能显示水的实际温度。 第2页,共11页

2、发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变时,自动打印水温随时间变化的曲线。 (4)其他。 一系统方案选择 1.1 温度传感器的选取 目前市场上温度传感器较多,主要有以下几种方案: 方案一:选用铂电阻温度传感器。此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。 方案二:采用热敏电阻。选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此选用方案三。 1.2温度显示模块 方案一:采用8个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有低能耗,低损耗、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,动态显示时要加驱动电路,硬件电路复杂。 方案二:采用带有字库的12864液晶显示屏。12864液晶显示屏具有低功耗,轻薄短小无辐射危险,平面显示及影像稳定、不闪烁、可视面积大、画面

基于单片机的水温控制系统设论文(经典)

目录 摘要 (4) 第1节课题任务要求 (5) 第2节总体方案设计 (5) 2.1 总体方案确定 (6) 2.1.1 控制方法选择 (6) 2.1.2 系统组成 (7) 2.1.3 单片机系统选择 (7) 2.1.4 温度控制 (7) 2.1.5 方案选择 (7) 第3节系统硬件设计 (8) 3.1 系统框图 (8) 3.2 程序流程图 (12) 第4节参数计算 (16) 4.1 系统模块设计 (16) 4.1.1 温度采集及转换 (16) 4.1.2 传感器输出信号放大 (17) 4.1.3模数转换 (18) 4.1.4 外围电路设计 (19) 4.1.5 数值处理及显示部分 (19) 4.1.6 PID算法介绍 (19) 4.1.7 A/D转换模块 (20) 4.1.8 控制模块 (21) 4.2 系统硬件调试 (21) 第5节 CPU软件抗干扰 (24) 5.1 看门狗设计 (24) 第6节测试方法和测试结果 (27) 6.1 系统测试仪器及设备 (27) 6.2 测试方法 (27) 6.3 测试结果 (27) 结束语 (29)

参考文献 (30) 基于单片机的水温控制系统设计 摘要: 本系统以AT89C51,AT89C2051单片机为核心,主要包括传感器温度采集,A/D模/数转换,按扭操作,单片机控制,数码管数字显示等部分。本系统采用PID算法实现温度控制功能,通过串行通信完成两片单片机信息的交互而实现温度设定、控制和显示。本设计还可以通过串口与上位机(电脑)连接,实现电脑控制。系统设计有体积小、交互性强等优点。为了实现高精度的水温控制,本单片机系统采用PID算法控制和PWM脉宽调制相结合的技术,通过控制双向可控硅改变电炉和电源的接通、断开,从而改变水温加热时间的方法来实现对水温的控制。本系统由键盘显示和温度控制两个模块组成,通过模块间的通信完成温度设定、实温显示、水温升降等功能。具有电路结构简单、程序简短、系统可靠性高、操作简便等特点。 第1节课题任务与要求: 1.基本要求 一升水由1kw的电炉加热,要求水温可以在一定围由人工设定,并能在环境温度降低时实现自动调整,以保持设定的温度基本不变。

过程控制系统课程设计报告报告实验报告

成都理工大学工程技术学院《过程控制系统课程设计实验报告》 名称:单容水箱液位过程控制 班级:2011级自动化过程控制方向 姓名: 学号:

目录 前言 一.过程控制概述 (2) 二.THJ-2型高级过程控制实验装置 (3) 三.系统组成与工作原理 (5) (一)外部组成 (5) (二)输入模块ICP-7033和ICP-7024模块 (5) (三)其它模块和功能 (8) 四.调试过程 (9) (一)P调节 (9) (二)PI调节 (10) (三)PID调节 (11) 五.心得体会 (13)

前言 现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。 首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。通过对基础训练设施的 集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、 电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。 其次,工程实训的内容应一定程度地体现技术发展的时代特征。为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。 第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

计算机温度控制系统课程设计

目录摘要2 1.设计目的3 2.设计要求和设计指标3 3. 总体方案设计 3 4.硬件选择以及相关电路设计3 温度传感器的选择3 模数转换器4 内部结构4 信号引脚5 工作时序与使用说明6 控制器89C51 7 数码管显示电路8 LED数码管的组成8 数码管显示方式9 控制算法10 6. 各子程序流程图11 PID控制程序流程图11 A/D转换程序流程图11 显示程序流程图11 温度控制总程序流程图12 心得体会12

参考文献13 附录1:温度控制系统总电路图14 附录2:温度控制系统程序清单16 摘要 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本设计介绍了以AD590集成温度传感器为采集器、AT89C51为控制器、ADC0809为A/D转换器对温度进行智能控制的温度控制系统。其主要过程如下:利用传感器对将非电量信号转化成电信号,转换后的电信号再入A/D转换成数字量,传递给单片机进行数据处理,并向外围设备发出控制信号。 论文首先介绍了单片机控制系统的整体方案设计及原理,然后具体介绍了控制系统的温度传感器部分、A/D转换部分、控制器89C51部分以及数码管显示和键盘控制部分,接着相信介绍了温度控制系统各个单元电路的设计,最后阐述了温度控制系统软件设计的主程序和各个子程序。 关键字:单片机89C51 温度传感器A/D转换器温度控制

计算机温度测控系统 1.设计目的 设计制作和调试一个由工业控制机控制的温度测控系统。通过这个过程学习温度的采样方法,A/D变换方法以及数字滤波的方法。通过实践过程掌握温度的几种控制方法,了解利用计算机进行自动控制的系统结构。 2.设计要求和设计指标 1、每组4~5同学,每个小组根据设计室提供的设备及设计要求,设计出实际电路组成一个完整的计算机温度测控系统。 2、根据设备情况以及被控对象,选择1~2种合适的控制算法, 框图和源程序,并进行实际操作和调试通过。 编制程序温度指标:60~80℃之间任选;偏差:1℃。 总体方案设计 本系统主要由数据采集、信号放大、模数转换等模块构成。设计思想是通过温度传感器将温度信号转变为电流(电压)信号,但我们要知道经温度变化引起电流(电压)信号的改变是非常小的,此时如果被模数转换器采集的话效果是非常不明显的,因此我们将其通过一个信号放大模块进行放大。再通过模数转换器后送入单片机AT89C51,而单片机通过PID算法控制烘箱的电炉加热,并且使数码管显示实时温度,从而实现温度的高精度控制。 4.硬件选择以及相关电路设计 温度传感器的选择 传感器的选取目前市场上温度传感器繁多就此我们提出了以下三种选取方案:方案一:选用铂电阻温度传感器,此类温度传感器在各方面特性都比较优秀,但其成本较高。 方案二:采用热敏电阻,选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:选用美国Analog Devices 公司生产的二端集成电流传感器AD590,此器件具有体积小、质量轻、线形度好、性能稳定等优点。其测量范围在-50℃--+150℃,满刻度范围误差为±℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±℃,其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此此次设计选用方案三。

智能温度控制系统设计

目录 一、系统设计方案的研究 (2) (一)系统的控制特点与性能要求 (2) 1.系统控制结构组成 (2) 2.系统的性能特点 (3) 3.系统的设计原理 (3) 二、系统的结构设计 (4) (一)电源电路的设计 (4) (二)相对湿度电路的设计 (6) 1.相对湿度检测电路的原理及结构图 (6) 3.对数放大器及相对湿度校正电路 (7) 3.断点放大器 (8) 4.温度补偿电路 (8) 5.相对湿度检测电路的调试 (9) (三)转换模块的设计 (9) 1.模数转换器接受 (9) 2.A/D转换器ICL7135 (9) (四)处理器模块的设计 (11) 1.单片机AT89C51简介及应用 (11) 2.单片机与ICL7135接口 (14) 3.处理器的功能 (15) 4.CPU 监控电路 (15) (五)湿度的调节模块设计 (15) 1.湿度调节的原理 (15) 2.湿度调节的结构框图 (16) 3.湿度调节硬件结构图 (16) 4.湿度调节原理实现 (16) (六)显示模块设计 (17) 1.LED显示器的介绍 (17) 2.单片机与LED接口 (17) (七)按键模块的设计 (18) 1.键盘接口工作原理 (18) 2.单片机与键盘接口 (19) 3.按键产生抖动原因及解决方案 (19) 4.窜键的处理 (19) 三、软件的设计及实现 (19) (一)程序设计及其流程图 (20) (二)程序流程图说明 (21) 四、致谢 (22) 参考文献: (22)

智能温度控制系统设计 摘要: 此系统采用了精密的检测电路(包刮精密对称方波发生器、对数放大及半波整流、温度补偿及温度自动校正及滤波电路等几部分电路组成),能够自动、准确检测环境空气的相对湿度,并将检测数据通过A/D转换后,送到处理器(AT89C51)中,然后通过软件的编程,将当前环境的相对湿度值转换为十进制数字后,再通过数码管来显示;而且,通过软件编程,再加上相应的控制电路(光电耦合及继电器等部分电路组成),设计出可以自动的调节当前环境的相对湿度:当室内空气湿度过高时,控制系统自动启动抽风机,减少室内空气中的水蒸气,以达到降低空气湿度的目的;当室内空气湿度过低时,控制系统自动启动蒸汽机,增加空气的水蒸气,以达到增加湿度的目的,使空气湿度保持在理想的状态;键盘设置及调整湿度的初始值,另外在设计个过程当中,考虑了处理器抗干扰,加入了单片机监视电路。 关键词: 湿度检测; 对数放大; 湿度调节; 温度补偿 一、系统设计方案的研究 (一)系统的控制特点与性能要求 1.系统控制结构组成 (1)湿度检测电路。用于检测空气的湿度[9]。 (2)微控制器。采用ATMEL公司的89C51单片机,作为主控制器。 (3)电源温压电路。用于对输入的200V交流电压进行变压、整流。 (4)键盘输入电路。用于设定初始值等。 (5)LED显示电路。用于显示湿度[10]。 (6)功率驱动电路(湿度调节电路)

自动控制课程设计~~~

指导教师评定成绩: 审定成绩: 重庆邮电大学 移通学院 自动控制原理课程设计报告 系部: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:2013年12 月 重庆邮电大学移通学院制

目录 一、设计题目 二、设计报告正文 摘要 关键词 设计内容 三、设计总结 四、参考文献

一、设计题目 《自动控制原理》课程设计(简明)任务书——供2011级机械设计制造及其自动化专业(4-6班)本科学生用 引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。 一设计题目:I型二阶系统的典型分析与综合设计 二系统说明: 该I型系统物理模拟结构如图所示。 系统物理模拟结构图 其中:R=1MΩ;C =1uF;R0=41R 三系统参量:系统输入信号:x(t); 系统输出信号:y(t);

四设计指标: 设定:输入为x(t)=a×1(t)(其中:a=5) 要求动态期望指标:M p﹪≤20﹪;t s≤4sec; 五基本要求: a)建立系统数学模型——传递函数; b)利用根轨迹方法分析和综合系统(学号为单数同学做); c)利用频率特性法分析和综合系统(学号为双数同学做); d)完成系统综合前后的有源物理模拟(验证)实验; 六课程设计报告: 1.按照移通学院课程设计报告格式写课程设计报告; 2.报告内容包括:课程设计的主要内容、基本原理; 3.课程设计过程中的参数计算过程、分析过程,包括: (1)课程设计计算说明书一份; (2)原系统组成结构原理图一张(自绘); (3)系统分析,综合用精确Bode图一张; (4)系统综合前后的模拟图各一张(附实验结果图); 4.提供参考资料及文献 5.排版格式完整、报告语句通顺; 6.封面装帧成册。

热交换器温度控制系统课程设计报告书

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。 图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

过程控制系统课程设计报告

~ 过程控制系统课程设计报告 · 题目:温度控制系统设计 姓名: 学号: 班级: 指导教师: ` )

温度控制系统设计 一、设计任务 设计电热水壶度控制系统方案,使系统满足85度至95度热饮需要。 二、预期实现目标 通过按键设定温度,使系统水温最终稳定在设定温度,达到控制目标。( 三、设计方案 (一)系统数学模型的建立 要分析一个系统的动态特性,首要的工作就是建立合理、适用的数学模型,这也是控制系统分析过程中最为重要的内容。数学模型时所研究系统的动态特性的数学表达式,或者更具体的说,是系统输入作用与输出作用之间的数学关系。 在本系统中,被控量是温度。被控对象是由不锈钢水壶、2Kw电加热丝组成的电热壶。在实验室,给水壶注入一定量的水,将温度传感器放入水中,以最大功率加热水壶,每隔30s采样一次系统温度,记录温度值。在整个实验过程中,水量是不变的。 经过试验,得到下表所示的时间-温度表: 表1 采样时间和对应的温度值

采样时间 t 8 》 9 10 11 12 13 温度值℃ 64 · 72 79 86 93 98 以采样时间和对应的温度值在坐标轴上绘制时间-温度曲线,得到图1所示的曲线: < 图1 时间-温度曲线 采用实验法——阶跃响应曲线法对温箱系统进行建模。将被控过程的输入量作一阶跃变化,同时记录其输出量随时间而变化的曲线,称为阶跃响应曲线。 从上图可以看出输出温度值的变化规律与带延迟的一阶惯性环节的阶跃曲线相似。因此我们选用 ()1s ke G s Ts τ-= + (式中:k 为放大系数;T 为过程时间常数;τ为纯滞后时间)作为内

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

温度控制系统课程设计

前言 温度是一种最基本的环境参数,日常生活和工农业生产中经常要检测温度。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过AD 转换环节获得数字信号后才能与单片机等微处理器接口,使得硬件电路结构复杂,制作成本较高。近年来,美国DALLAS公司生产的DSI18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。 随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中.其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等. 智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶.目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路.有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。 为了准确获取现场的温度和方便现场控制,本系统采用了软硬件结合的方式进行设计,利用LED数码管显示温度,利用DS18B20检测当前的温度值,通过和设定的参数进行比较,若实测温度高于设定温度,则通过555定时器产生频率可变的报警信号,若实测温度低于设定温度,则加热电路自动启动,到达设定温度后停止。在软件部分,主要是设计系统的控制流程和实现过程,以及各个芯片的底层驱动设计已达到所要求的功能。在近端与远端通信过程中,采用串行MAX232标准,实现PC机与单片机间的数据传输。

水温自动控制系统设计

水温自动控制系统设计 摘要 水温自动控制系统在工业及日常生活中应用广泛,在生产中发挥着重要作用。实现水温控制的方法很多,如单片机控制、PLC控制等等。而其中用单片机控制实现的水温控制系统,具有可靠性高、价格低、简单易实现等多种优点。单片机用于工业控制是近年来发展非常迅速的领域,现在许多自动化的生产车间里,都是靠单片机来实现的。 温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能很难提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因此设计一种较为理想的温度控制系统是非常有价值的。 为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS 8位单片机为核心,以PID算法控制以及PID参数整定相结合的方法来实现的水温控制系统,其硬件电路包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。 关键词:AT89S52;温度控制;PT1000;PID

Design of Temperature Automatic Control System ABSTRACT The temperature is one of the mainly charged parameters which are industrial control targets. It is difficult to enhance the control performance due to the characteristics of the temperature charged object. Such as inertia, hysteresis and non-linear, etc…Its temperature control process will have a direct impact on the quality of the product in some technological process. Therefore it is absolute valuable to design a ideal temperature control system. In order to realize the high accuracy survey and control of water temperature. Systematic core is AT89S52, which is a low-power loss, high-performance 8-bit MCU of Atmel Company. The system unifies PID control algorithm and PID parameter tuning to control the water temperature. Its hardware circuit also includes temperature gathering, temperature control and temperature display, keyboard input and RS232 interfaces. The system can realize to survey the water temperature, and it can adjust the temperature according to the setting value. Keywords:AT89S52; temperature control; PT1000; PID

过程控制系统课程设计报告

过程控制系统课程设计报告 题目:温度控制系统设计 姓名: 学号: 班级: 指导教师:

温度控制系统设计 一、设计任务 设计电热水壶度控制系统方案,使系统满足85度至95度热饮需要。 二、预期实现目标 通过按键设定温度,使系统水温最终稳定在设定温度,达到控制目标。 三、设计方案 (一)系统数学模型的建立 要分析一个系统的动态特性,首要的工作就是建立合理、适用的数学模型,这也是控制系统分析过程中最为重要的内容。数学模型时所研究系统的动态特性的数学表达式,或者更具体的说,是系统输入作用与输出作用之间的数学关系。 在本系统中,被控量是温度。被控对象是由不锈钢水壶、2Kw电加热丝组成的电热壶。在实验室,给水壶注入一定量的水,将温度传感器放入水中,以最大功率加热水壶,每隔30s采样一次系统温度,记录温度值。在整个实验过程中,水量是不变的。 经过试验,得到下表所示的时间-温度表: 表1 采样时间和对应的温度值

以采样时间和对应的温度值在坐标轴上绘制时间-温度曲线,得到图1所示的曲线: 图1 时间-温度曲线 采用实验法——阶跃响应曲线法对温箱系统进行建模。将被控过程的输入量作一阶跃变化,同时记录其输出量随时间而变化的曲线,称为阶跃响应曲线。 从上图可以看出输出温度值的变化规律与带延迟的一阶惯性环节的阶跃曲线相似。因此我们选用 ()1s ke G s Ts τ-= + (式中:k 为放大系数;T 为过程时间常数;τ为纯滞后时间)作为内胆温度系统的数学模型结构。 (1)k 的求法:k 可以用下式求得: ()(0) y y k x ∞-= (x :输入的阶跃信号幅值)

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

过程控制系统课程设计

步进式加热炉控制系统设计 一、步进式加热炉工艺流程 1. 步进式加热炉简介 ⑴步进式加热炉步进式加热炉是一种靠炉底或水冷金属梁的上升、前进、下降、后退的动作 把料坯一步一步地移送前进的连续加热炉。 炉子有固定炉底和步进炉底,或者有固定梁和步进梁。前者叫做步进底式炉,后者叫做步进梁式炉。轧钢用加热炉的步进梁通常由水冷管组成。步进梁式炉可对料坯实现上下双面加热。 (2)步进式炉的几种类型 步进式炉从炉子构造上分目前有:单面供热步进式炉、两面供热步进式炉、钢料可以翻转的步进式炉、交替步进式炉、炉底分段的步进式炉等等。 单面供热步进式炉也称步进底式炉,钢料放置在耐火材料炉底或铺设在炉底上的钢枕上。钢坯吸热主要来自上部炉膛,由于一面受热,这种炉子的炉底强度较低。它适用于加热薄板坯、小断面方坯或有特殊要求的场合。 两面供热步进式炉也称步进梁式炉,活动梁和固定梁上都安设有能将钢坏架空的炉底水管。在钢坯的上部炉膛和下部炉膛都设置烧嘴,因此炉底强度较高,适用于产量很高的板坯或带钢轧前加热。 钢坯可以翻转的步进式炉是每走一步炉内钢料可以翻转某一角度,步进梁和固定梁都带有锯齿形耐热钢钢枕,这是加热钢管的步进式炉,每走一步钢管可以在锯齿形钢枕上滚动一小段距离,使受热条件较差的底面逐步翻转到上面,以求加热均匀。 交替步进式炉则有两套步进机构交替动作。运送过程中,钢坯不必上升和下降,振动较小,底面不会被划伤,表面质量较好 炉底分段的步进式炉的加热段和预热段可以分开动作。例如预热段每走一步,加热段可以

走两步或两步以上。这种构造是专门为易脱碳钢的加热而设计的。钢坯在预热段放置较密,可以得到正常的预热作用,在加热段钢坯前进较快,达到快速加热,以减少脱碳。 (3)步进式炉的优缺点 步进式炉是借机械将炉内钢坯托着一步一步前进,因此钢坯与钢坯还不必紧挨着,其间距可根据需要加以改变。 原始的步进式炉只用于加热推钢机无法推进的落板坯或异形坯,随着轧机的大型化和连续化,推钢式炉已不能满足轧机产量和质量的要求。在这种情况下,近十年来造价较高的步进式炉得到了快速发展,其结构也日趋完善。 步进式炉具有以下特点:(1)炉子长度不受钢坯厚度的限制,不会拱钢,炉子可以建得很长,目前有些炉子已接近60 米长,一个步进式炉可以代替1.5—2 个推钢式炉。(2)操作上灵活性较大,可以通过改变装料间隙调节钢坯加热时间,且更换品种方便。(3)炉内钢料易于清空,减少停炉时清除炉内钢料的时间。(4)钢坯在炉内不与水管摩擦,不会造成通过轧制还不能消除的伤痕。(5)水管黑印小,即能得到尺寸准确的轧材。(6)两面加热步进式炉可以不要实底均热段,因此加热能力比推钢式炉稍大。(7)没有出料滑坡,减少了由于滑坡高差作用而吸入炉内的冷空气。(8)钢坯有侧面加热,这样可实现三面或四面加热,因此加热时间短,钢坯氧化少。( 9)生产能耗大幅度降低,从炼钢连铸后开始全连续的直接生产。( 10)产量大幅度提高,在100* 104t/a 以上。( 11)生产自动化水平非常高,原加热炉的控制系统大都是单回路仪表和继电器逻辑控制系统,传动系统也大多是模拟量控制式供电装置,现在的加热炉的控制系统大多数都具有二级过程控制系统和三级生产管理系统,传动系统都是全数字化的直流或交流供电装置。 步进式炉的缺点是炉底机械设备庞大,维护和检修都较复杂,炉子造价太高。两面供热的步进式炉炉底水管较多,热损失大。单面供热的步进式炉虽然无水冷热损失,但产量较低。因此,尽管步进式炉有很多优点,仅由于它造价太高,目前在中小型厂全面推广还不适宜。

相关文档
相关文档 最新文档