文档库 最新最全的文档下载
当前位置:文档库 › 部分无机盐定性分析方法 Microsoft Word 文档

部分无机盐定性分析方法 Microsoft Word 文档

部分无机盐定性分析方法 Microsoft Word 文档
部分无机盐定性分析方法 Microsoft Word 文档

部分无机盐定性分析方法

一、碳酸盐、硫酸盐

取少量试样在小烧杯中加水溶解,然后取适量溶液加入小试管中。首先滴入BaCl2水溶液,出现白色沉淀后,滴入稀盐酸,若产生大量气泡且白色沉淀很快消失,说明该试样含有碳酸盐不含硫酸盐。若产生大量气体且白色沉淀不能完全消失,说明该试样不但含有碳酸盐而且含有硫酸盐。

二、硅酸盐

取少量试样溶液加入小试管中,加入稀硝酸至微酸性加热除去CO2 ,冷却后加稀氨水至变为碱性加饱和NH4CL并加热,若有白色凝胶出现,说明含有硅酸盐、否则无硅酸盐。

三、磷酸盐

用小烧杯取少量溶解后试样加稀硝酸至中性在电炉上加热煮沸十分钟,加喹钼柠酮,若有黄色沉淀,说明含有磷酸盐。

2003.12.2

非线性有限元方法及实例分析

非线性有限元方法及实例分析 梁军 河海大学水利水电工程学院,南京(210098) 摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。 关键词:非线性有限元,方程组求解,实例分析 1引 言 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。有限元的线性分析已经设计工具被广泛采用。但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。根据产生非线性的原因,非线性问题主要有3种类型[1]: 1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题 3.接触非线性问题(简称接触非线性或边界非线性) 2 非线性方程组的求解 在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]: ()()()00 021212211=… …==n n n n δδδψδδδψδδδψΛΛΛ (1.1) 其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记 号 []T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3) 上述方程组(1.1)可表示为 ()0=δψ (1.4) 可以将它改写为 ()()()0=?≡?≡R K R F δδδδψ (1.5) 其中()δK 是一个的矩阵,其元素 是矢量的函数,n n ×ij k R 为已知矢量。在位移有限 元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。 在线弹性有限元中,线性方程组

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限单元法与有限元分析

有限单元法与有限元分析 1.有限单元法 在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 随着电子计算机的发展,有限单元法是迅速发展成一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 1.1.有限元法分析本质 有限元法分析计算的本质是将物体离散化。即将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算精度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 1.2.特性分析 1)选择位移模式: 在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。 当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如

第9章 非线性问题的有限单元法

第9章非线性问题的有限单元法 9.1 非线性问题概述 前面章节讨论的都是线性问题,但在很多实际问题中,线弹性力学中的基本方程已不能满足,需要用非线性有限单元法。非线性问题的基本特征是变化的结构刚度,它可以分为三大类:材料非线性、几何非线性、状态非线性。 1. 材料非线性(塑性, 超弹性, 蠕变) 材料非线性指的是材料的物理定律是非线性的。它又可分为非线性弹性问题和非线性弹塑性问题两大类。例如在结构的形状有不连续变化(如缺口、裂纹等)的部位存在应力集中,当外载荷到达一定数值时该部位首先进入塑性,这时在该部位线弹性的应力应变关系不再适用,虽然结构的其他大部分区域仍保持弹性。 2. 几何非线性(大应变, 大挠度, 应力刚化) 几何非线性是有结构变形的大位移引起的。例如钓鱼杆,在轻微的垂向载荷作用下,会产生很大的变形。随着垂向载荷的增加,杆不断的弯曲,以至于动力臂明显减少,结构刚度增加。 3. 状态非线性(接触, 单元死活) 状态非线性是一种与状态相关的非线性行为。例如,只承受张力的电缆的松弛与张紧;轴承与轴承套的接触与脱开;冻土的冻结与融化。这些系统的刚度随着它们状态的变化而发生显著变化。 9.2 非线性有限元问题的求解方法 对于线性方程组,由于刚度方程是常数矩阵,可以直接求解,但对于非线性方程组,由于刚度方程是某个未知量的函数则不能直接求解。以下将简要介绍借助于重复求解线性方程组以得到非线性方程组解答的一些常用方法。 1.迭代法 迭代法与直接法不同,它不是求方程组的直接解,而是用某一近似值代人,逐步迭代,使近似值逐渐逼近,当达到允许的规定误差时,就取这些近似值为方程组的解。 与直接法相比,迭代法的计算程序较简单,但迭代法耗用的机时较直接法长。它不必存贮带宽以内的零元素,因此存贮量大大减少,且计算中舍入误差的积累也较小。以平面问题 为例,迭代法的存贮量一般只需直接法的14左右。在求解非线性方程组时,一般采用迭代 法。 2. 牛顿—拉斐逊方法 ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。然而,非线性结构的行为不能直接用这样一系列的线性方程表示。需要一系列的带校正的线性近似来求解非线性问题。 一种近似的非线性救求解是将载荷分成一系列的载荷增量,即逐步递增载荷和平衡迭代。它可以在几个载荷步内或者在一个载荷步的几个子步内施加载荷增量。在每一个增量的

第八章几何非线性问题的有限元法

第八章 几何非线性问题的有限元法 引言 前面各章所讨论的问题都是在小变形假设的前提下进行的,即假定物体所发生的位移远小于物体自身的几何尺寸,应变远小于1。在此前提下,建立物体或微元体的平衡条件时可以不考虑物体的位置和形状(简称位形)的变化,因此在分析中不必区别变形前后位形的差别,且应变可用一阶无穷小的线性应变表达。 实际上,上述假设有时是不成立的。即使实际应变可能是小的,且不超过材料的弹性极限,但如果需要精确地确定位移,就必须考虑几何非线性,即平衡方程应该相对于变形后的位置得出,而几何关系应该计及二次项。例如平板大挠度理论中,由于考虑了中面内的薄膜应力,求得的挠度比小挠度理论的结果有显著的减低。再如在结构稳定性问题中,当载荷达到一定数值后,挠度比线性解答予示的结果更剧烈地增加,并且确实存在承载能力随继续变形而减低的现象。在冷却塔、薄壁结构及其它比较细长的结构中,几何非线性分析都显得十分重要。 几何非线性问题可以分为以下几种类型: (1)大位移小应变问题。一般工程结构所遇到的几何非线性问题大多属于这一类。例如高层建筑或高耸构筑物以及大跨度网壳等结构的分析常需要考虑到结构大位移的影响。 (2)大位移大应变问题,如金属压力加工中所遇到的问题就属于这一类型。 (3)结构的变形引起外载荷大小、方向或边界支承条件的变化等。 结构的平衡实际上是在结构发生变形之后达到的,对于几何非线性问题来说,平衡方程必须建立在结构变形之后的状态上。为了描述结构的变形需要设置一定的参考系统。一种做法是让单元的局部坐标系始终固定在结构发生变形之前的位置,以结构变形前的原始位形作为基本的参考位形,这种分析方法称作总体的拉格朗日(Lagrange )列式法;另一种做法是让单元的局部坐标系跟随结构一起发生变位,分析过程中参考位形是不断被更新的,这种分析方法称作更新的拉格朗日列式法。 本章首先对几何非线性问题作一般性讨论,从中导出经典的线性屈曲问题的公式;然后建立平板大挠度问题和壳体的大位移(及大转动)分析的有限方法公式;接着还给出了大应变及大位移的一般公式,最后还详细讨论了杆系结构几何非线性问题的有关公式。在讨论中我们采用总体的拉格朗日列式法,但对杆系结构,为应用方便我们给出了两种列式法的公式。 & 一般性讨论 理论基础 无论是对于何种几何非线性问题,虚功原理总是成立的。由虚功原理,单元的虚功方程可以写成如下的形式 {}{}{}{}0=-???**v e eT e eT F dv δσε () 其中{}F 为单元节点力向量,{}e *ε为单元的虚应变,{}e *δ为节点虚位移向量。 增量形式的应变一位移关系可表示为 {}[] {}e e d B d δε= ()

钢筋混凝土梁非线性有限元分析方法

第28卷第1期 V ol.28 No.1 工 程 力 学 2011年 1 月 Jan. 2011 ENGINEERING MECHANICS 82 ——————————————— 收稿日期:2009-06-19;修改日期:2010-03-11 基金项目:国家科技支撑计划项目(2006BA904B03) 作者简介:*周凌远(1968―),男,四川成都人,副教授,工学博士,从事桥梁结构行为分析研究(E-mail: zhoulingyuan@https://www.wendangku.net/doc/2a760011.html,); 李 乔(1954―),男,黑龙江铁力人,教授,工学博士,博导,西南交通大学土木工程学院院长,从事桥梁结构行为分析研究 文章编号:1000-4750(2011)01-0082-05 钢筋混凝土梁非线性有限元分析方法 * 周凌远,李 乔 (西南交通大学土木工程学院,成都 610031) 摘 要:针对钢筋混凝土结构有限元分析中,材料进入非线性阶段后,难以通过梁理论准确描述混凝土截面和钢筋应力状态的问题,提出了基于柔度法和分布式塑性理论的钢筋混凝土梁单元材料非线性方法——网格截面法。这种方法采用平面等参单元将梁单元网格化,由单元轴向积分点位置截面网格积分点的混凝土应力描述单元截面应力分布,同时考虑钢筋对刚度的贡献,并通过对截面网格材料的积分计算积分点位置的截面刚度矩阵,再利用力插值函数和能量原理得到梁单元的柔度矩阵,进而对柔度矩阵求逆计算单元刚度矩阵。通过算例验证该方法在钢筋混凝土承载力分析时的准确性。 关键词:有限元;钢筋混凝土梁;柔度法;网格截面;极限承载力 中图分类号:TU375.1; O241.82 文献标识码:A AN APPROACH OF NONLINEAR FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BEAM * ZHOU Ling-yuan , LI Qiao (School of Civil Eng, Southwest Jiaotong University, Chengdu 610031, China) Abstract: A beam element with a meshed section based on distributed plasticity and flexibility theory is presented for the material nonlinear finite element analysis of a reinforced-concrete framed structure, the sections of a concrete beam element are discretized into the plane isotropic components in this formulation, the stress distribution on the sections is described with the stresses at quadrature points in the mesh, the stiffness matrices of the sections are calculated by integration of the stress-strain relations of the material on the meshes and the contribution of the stiffness by reinforcing steel is also counted, the flexibility matrix of the element is formed by integration of section flexibility matrices with force-interpolation functions, and then it is inverted to obtain the element stiffness matrix. Finally, a numerical example of the ultimate load capacity analysis of a reinforced concrete beam illustrates the accuracy of the formulation. Key words: finite element; reinforced concrete beam; flexibility method; meshed section; load capacity 钢筋混凝土结构的整体承载力问题一直为工程界所关注,材料非线性有限元方法是研究这类问题的有效手段,其分析模型主要包括集中塑性铰 法[1]和纤维模型法,1977年,Kang 提出了基于纤维模型的二维梁单元[2],并运用于预应力混凝土框 架的分析,1993年Izzuddin B A 等提出了三次多项式插值的分布式塑性方法分析空间梁单元[3 ―4] ,通 过对沿梁轴方向两个积分点位置的截面划分监控区域,并假定每个监控区域内的法向应力均匀,得到单元的刚度矩阵和节点力,这样在同一个单元内

有限元分析的基本步骤

一个典型的ANSYS分析过程可分为以下6个步骤: 1定义参数 2创建几何模型 3划分网格 4加载数据 5求解 6结果分析 1定义参数 1.1指定工程名和分析标题 启动ANSYS软件,选择File→Change Jobname命令 选择File→Change Title菜单命令 1.2定义单位 (2) 设置计算类型 ANSYS Main Menu: Preference→Material Props →Material Models →Structural →OK (3) 定义分析类型 ANSYS Main Menu: Preprocessor →Loads →Analysis Type →New Analysis→STATIC →OK 1.3定义单元类型 选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令 单击[Options]按钮,在[Element behavior]下拉列表中选择[Plane strs w/thk]选项,单击确定 1.4定义单元常数 在ANSYS程序主界面中选择Main Menu→Preprocessor→Real Constants→Add/Edit/Delete命令 单击[Add]按钮,进行下一个[Choose Element Type]对话框 1.5定义材料参数 在ANSYS程序主界面,选择Main Menu→Preprocessor→Material Props→Material Models命令 (1)选择对话框右侧Structural→Linear→Elastic→Isotropic命令,并单击[Isotropic]选项,接着弹出如下所示[Linear Isotropic Properties for Material Number 1]对话框。 在[EX]文本框中输入弹性模量“200000”,在[PRXY]文本框中输入泊松比“0.3”,单击OK 2创建几何模型 在ANSYS程序主界面,选择Main Menu→Preprocessor→Modeling→Creat→Areas→Rectangle →By 2Corners命令 选择Main Menu→Preprocessor→Modeling→Creat→Areas→Circle→Solid Circle命令 3网格划分(之前一定要进行材料的定义和分配) 选择Main Menu→Preprocessor→Modeling→Operate→Booleans→Subtract→Arears Circle命令 选择Main Menu→Preprocessor→Meshing→Mesh→Areas→Free命令,弹出实体选择对话框,单击[Pick All]按钮,得到如下所示网格 4加载数据 (1)选择Main Menu→Preprocessor→Loads→Define Loads→Apply→Structural→Displacement→On Lines命令, 出现如下所示对话框,选择约束[ALL DOF]选项,并设置[Displacement value]为0,单击OK。

非线性有限元分析

非线性有限元分析 1 概述 在科学技术领域内,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。 已经发展的数值分析方法可以分为两大类。一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。 另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。 1960年,发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。有限单元法的基本思想是将连续的求解区域离散为一组有限个,且按一定方式相互联接在一起的单元的组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。并且可以利用在每一个单元内假设的近似函数来分片地表示全求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。 现已证明,有限单元法是基于变分原理的里兹法的另一种形式,从而使里兹法分析的所有理论基础都适用于有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法。利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,而且事先不要求满足任何边界条件,因此可以用来处理很复杂的连续介质问题。 在短短四十余年的时间里,有限单元的分析方法已经迅速地发展为适合于使用各种类型计算机解决复杂工程问题的一种相当普及的方法。如今,有限元广泛地应用于各个学科门类,已经成为工程师和科研人员用于解决实际工程问题,进行科学研究不可或缺的有力工具。有限单元法的应用范围已由弹性力学平面问题扩展到空间问题,板壳问题,由静力平衡问题扩展到稳定问题,动力问题和波动问题。分析的对象从弹性材料扩展到塑性,粘弹性,粘塑性和复合材料等,从固体力学扩展到流体力学,传热学等连续介质力学领域。在工程分析中的作用已从分析和校核扩展

国内外主要有限元分析软件比较

有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司。 常见软件 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 软件对比 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1.在世界范围内的知名度 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北

有限单元法作业非线性分析+程序

几何非线性大作业荷载增量法 和弧长法程序设计 系(所):建筑工程系 学号:1432055 姓名:焦联洪 培养层次:专业硕士 指导老师:吴明儿 2015年6月19日

一、几何非线性大作业( Newton-Raphson法) 用荷载增量法(Newton-Raphson法)编写几何非线性程序: (1)用平面梁单元,可分析平面杆系 (2)算例:悬臂端作用弯矩。悬臂梁最终变形形成周长为悬臂梁长度的圆。 1.1 Newton-Raphson算法基本思想 图1.1 Newton-Raphson算法基本思想 1.2 悬臂梁参数 基本参数:L=2m, D=0.03m, A=7.069E-4m2, I=3.976E-08m4 ,E=2.0E11N/m2

图1.2 悬臂梁单元信息 将悬臂梁分成10个单元,如图1.2所示 2.1 MATLAB输入信息 材料信息单元信息 约束信息(0为约束,1为放松)荷载信息(FX,FY,M)

节点信息 2.2 求解过程 梁弯成圆形:理论弯矩M=EIY"=24981.944N.m ,直径为0.642m 运用ABAQUS和MATLAB进行求解对比: 图1.3 加载图 图1.4 ABAQUS变形图

图1.5 MATLAB变形曲线 ABAQUS和MATLAB变形对比,最终在理论荷载作用下都弯成了一个圆,其直径为0.64716m,与理论值相对比值为:(0.64716-0.642)/0.642=0.00804.非常接近。 2.3 加载点荷载位移曲线 图1.5 加载点Y方向的荷载位移曲线

加载点的最大竖向位移分别为1.4525m和1.45246m,相对比值(1.4525-1.45246)/1.45246=2.75395E-05。完全相同,说明MATLAB的计算结果很好。

有限元分析方法在工程中的应用

有限元分析方法在工程中的应用 Application of finite element analysis method in Engineering 一、引言 从20世纪50年代诞生到现在,有限元方法和技术经历了60年的发展历程,已经成为当今科学与工程领域中分析和求解微分方程的系统化数值计算方法。由于有限元分析方法适用性强、形式简单、理论可靠等众多优点,近年来已被推广应用到航空航天、土木建筑、机械等相关科学领域。本文以ANSYS软件为例,介绍其功能和应用,包括几何建模技术、网格划分与有限元建模技术、施加载荷与求解过程、结果后处理技术等。图1是用有限元方法分析工程问题时的具体步骤[1]。 本文以车轮钢的疲劳性能研究为例,介绍有限元分析方法在其中的应用。 图1. 有限元方法进行计算机辅助工程分析的步骤 二、ANSYS操作步骤 ANSYS的基本操作步骤包括建模、划分网格、加载求解和后处理等步骤。进入ANSYS系统后有六个系统,提供使用者和软件之间的交流凭借这六个窗口可以实现输入命令、检查模型的建立、观察分析结果及图形输出与打印。ANSYS

各窗口及工具条如图2所示。 图2. ANSYS的窗口及工具条 1、建立模型 首先必须指定作业名和分析标题,接着使用PREP7前处理器定义单元类型、单元实常数、材料特性,然后建立几何模型。需要注意的是,ANSYS的GUI界面下没有类似WORD中的后退操作按钮,所以就出现了一个常见问题:做错一步操作如何后退?这里可以采用三种方法:(1)建模阶段可以使用Delete(删除)图元命令,划分网格阶段可以使用Clear(清除)单元命令。(2)每完成一个模块的操作,都用SA VE AS保存数据到不同名的数据库文件中,出错后点击Resum Form恢复。(3)使用命令:UNDO,ON以便激活ANSYS内部的返回命令。 本文以车轮钢为例,建立好的模型与图2类似,只是未划分网格。 2、单元网格划分 一个实体模型进行网格划分(meshing)之前必须指定所产生的单元属性(element attribute)。ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。ANSYS软件平台提供了映射网格划分和自由网格划分的策略。映射网格划分用于曲线、曲面、实体的网格划分方法,自由网格划分方法用于空间自由曲面和复杂实体。

有限元法与有限差分法的主要区别资料

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定

有限元分析法

有限元分析法 麻省理工学院 材料科学与工程系 2001 年 2 月 28 日 引言 有限元分析法(FEA )近年来已应用得非常广泛,现已成为年创收达数十亿美元的相关产业的基础。即使是很复杂的应力问题的数值解,现在用有限元分析的常规方法就能得到。此方法是如此的重要,以至于即便像这些只对材料力学作入门性论述的模块,也应该略述其主要特点。 不管有限元法是如何的卓有成效,当你应用此法及类似的方法时,计算机解的缺点必须牢记在心头:这些解不一定能揭示诸如材料性能、几何特征等重要的变量是如何影响应力的。一旦输入数据有误,结果就会大相径庭,而分析者却难以觉察。所以理论建模最重要的作用可能是使设计者的直觉变得敏锐。有限元程序的用户应该为此目标部署设计策略,以尽可能多的封闭解和实验分析作为计算机仿真的补充。 与现代微机上许多字处理和电子制表软件包相比,有限元的程序不那么复杂。然而,这些程序的复杂程度依然使大部分用户无法有效地编写自己所需的程序。可以买到一些预先编好的商用程序1,其价格范围宽,从微机到超级计算机都可兼容。但有特定需求的用户也不必对程序的开发望而生畏,你会发现,从诸如齐凯维奇(Zienkiewicz 2)等的教材中提供的程序资源可作为有用的起点。大部分有限元软件是用Fortran 语言编写的,但诸如felt 等某些更新的程序用的是C 语言或其它更时新的程序语言。 在实践中,有限元分析法通常由三个主要步骤组成: 1、预处理:用户需建立物体待分析部分的模型,在此模型中,该部分的几何形状被分割成若干个离散的子区域——或称为“单元”。各单元在一些称为“结点”的离散点上相互连接。这些结点中有的有固定的位移,而其余的有给定的载荷。准备这样的模型可能极其耗费时间,所以商用程序之间的相互竞争就在于:如何用最友好的图形化界面的“预处理模块”,来帮助用户完成这项繁琐乏味的工作。有些预处理模块作为计算机化的画图和设计过程的组成部分,可在先前存在的CAD 文件中覆盖网格,因而可以方便地完成有限元分析。 2、分析:把预处理模块准备好的数据输入到有限元程序中,从而构成并求解用线性或 非线性代数方程表示的系统 式中,u 和f 分别为各结点的位移和作用的外力。矩阵K 的形式取决于求解问题的类3、分析的早期,用户需仔细地研读程序运算后产生的大量数字,即型,本模块将概述桁架与线弹性体应力分析的方法。商用程序可能带有非常大的单元库,不同类型的单元适用于范围广泛的各类问题。有限元法的主要优点之一就是:许多不同类型的问题都可用相同的程序来处理,区别仅在于从单元库中指定适合于不同问题的单元类型。 后处理:在有限元1 C.A.Brebbia, ed.,有限元系统(Finite Element System ), A Handbook , Springer-Verlag, Berlin, 1982. 2 O. C. Zienkiewicz and R.L. Taylor, 有限元法(The Finite Element Method ), McGraw-Hill Co., London, 1989.

非线性有限元分析(学习总结报告)

非线性有限元 博士研究生专业课课程报告

目录 第一章绪言 (1) 1.1 非固体力学非线性问题的分类[1] (1) 1.2 非线性问题的分析过程[1] (2) 1.3 非线性有限元分析的基本原理 (2) 1.4 钢筋混凝土非线性分析的特点、现状及趋势 (3) 第二章非线性方程组的数值解法 (4) 2.1逐步增量法[3,4,5] (4) 2.2迭代法[3,4,5] (6) 2.3收敛标准 (8) 2.3.1.位移收敛准则 (8) 2.3.2.不平衡力收敛准则 (8) 2.3.3.能量收敛准则 (9) 2.4结构负刚度的处理[4,5] (9) 第三章材料的本构关系 (13) 3.1 钢筋的本构关系 (13) 3.1.1 单向加载下的应力应变关系 (13) 3.1.2 反复加载下的应力应变关系 (14) 3.2 混凝土的本构关系 (14) 3.2.1 单向加载下的应力应变关系 (14) 3.2.2 重复加载下的应力应变关系 (14) 3.2.3 反复加载下的应力应变关系 (14) 3.3 恢复力模型的分类 (14) 3.4 恢复力的获得方法 (15) 第四章非线性有限元在结构倒塌反应中的应用 (17) 4.1 钢筋混凝土结构倒塌反应研究现状 (17) 4.2 钢筋混凝土的有限元模型 (17) 4.2.1分离式模型 (18) 4.2.2组合式模型 (19) 4.2.3整体式模型 (20) 4.3 倒塌反应中RC结构有限元分析方法的选择 (20) 4.3.1隐式有限单元法 (21) 4.3.2显式有限单元法 (22) 4.4 钢筋混凝土框架结构的倒塌反应分析 (22) 4.4.1基于隐式有限单元法的倒塌分析 (22) 4.4.2 基于显式有限单元法的倒塌分析 (23) 4.5显式有限法在倒塌反应分析中的问题 (24)

有限元分析的基本原理

有限元分析的基本原理 有限元原理和基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。 有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。 20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh-Ritz法+分片函数”,即有限元法是Rayleigh-Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh-Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。 对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为:第一步:问题及求解域定义 根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化 将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的

材料非线性有限元法

第四章材料非线性有限元法 以上三章分别研究了线性弹性有限元法,材料非线性本构方程和非线性方程组解法,本章就可以研究材料非线性有限元法了。 在材料非线性基本方程中,除第二章所述的本构方程外,与线性弹性一样,而非线性有限元法又归结为一系列线性弹性问题。因此,只要在第一章中改用第二章的本构方程,就可建立材料非线性有限元法的基本内容。 §4-1 非线性弹性有限元法 第二章提到,非线性弹性本构方程与形变理论弹塑性本构方程在形式上相同,所以与第二章一样,这里也按塑性力学形变理论,研究非线性弹性有限元法,以便把二者统一起来。 1.非线性弹性基本方程为了便于以后直接引用,这里列出全量形式的非线性弹性(或形变理论弹塑性)基本方程,并用矩阵表示。 几何方程: (1.14) 本构方程: =[D ] (2.13)

平衡方程: (在 内) (1.20) 边界条件: (在A 上)(1.22) (在A 上) (1.23) 虚功方程: (1.28) 位能变分方程: =0 ( 1.31) 其中 (1.32)

(4.1) 2.非线性方程组的建立由于虚功方程本身不涉及材料性质,所以第一章由虚功方程得到的单元平衡方程(1.48)式和总体平衡方程(1.109)式完全适用于非线性弹性(或形变理论弹塑性)问题。可见,只要把非线性弹性(或形变理论弹塑性)本构方程代入单元或总体的平衡方程,就可以建立非线性方程组。 (1)割线刚度方程仿照线性弹性有限元法,把(1.36)式代入(2.13)式后,再把(2.13)代入(1.48)式便得单元割线刚度方程,即 (4.2) 其中单元割线刚度矩阵 (4.3) 而割线本构矩阵[ ] ,如(2.14)式所示。 仿照(1.113)式的推导,同样可得总体割线刚度方程 即

相关文档