文档库 最新最全的文档下载
当前位置:文档库 › Modelling of the hydro-mechanical response of sedimentary rocks of southern

Modelling of the hydro-mechanical response of sedimentary rocks of southern

Modelling of the hydro-mechanical response of sedimentary rocks of southern
Modelling of the hydro-mechanical response of sedimentary rocks of southern

Modelling of the hydro-mechanical response of sedimentary rocks of southern Ontario to past glaciations

O.Nasir a ,M.Fall a ,?,T.S.Nguyen a ,b ,E.Evgin a

a Department of Civil Engineering,University of Ottawa,Canada b

Canadian Nuclear Safety Commission (CNSC),Canada

a b s t r a c t

a r t i c l e i n f o Article history:

Received 17July 2010

Received in revised form 27June 2011Accepted 10July 2011

Available online 12August 2011Keywords:

Past glaciations

Hydro-mechanical coupled processes Deep geological repositories Sedimentary rocks Modeling

Nuclear waste

Glaciation is considered as one of the main natural processes that can have a signi ?cant impact on the long term performance of a deep geological nuclear waste repository (DGR)located in the Northern Hemisphere.The northern part of the American continent has been subjected to a series of strong glaciation and deglaciation events over the past million years.The last glacial cycle in the Northern Hemisphere started approximately 110,000year ago.During that cycle,southern Ontario was buried under a continental ice sheet,with a maximum thickness of up to 3000m at about 20,000years ago.The ice cap retreated approximately 10,000years ago.However,?eld data from deep boreholes in sedimentary rocks of southern Ontario show anomalous pore water pressure including underpressure and overpressure zones.In this paper,a large-scale coupled hydro-mechanical (HM)model is developed to investigate the hydro-mechanical (HM)response of the sedimentary rocks of southern Ontario to past glacial cycles.Particular emphasis has been placed on the evolution of pore water pressures and surface displacements.The HM model is veri ?ed using analytical solutions.The results of the large-scale HM modeling study shows that the past glaciation,particularly the second cycle (22,000apb)had signi ?cant impact on the pore water pressure gradient and effective stress distribution in the sedimentary rocks of southern Ontario.Furthermore,good agreement between the large scale modeling results and anomalous pressures leads us to the conclusion that these anomalies could be glacially induced.The results of this research can provide information that will contribute to a better understanding of the impact of future glaciations on the long term performance of DRGs in sedimentary rocks.

?2011Elsevier B.V.All rights reserved.

1.Introduction

The climate of the Earth is a dynamic system due to its response to external and/or internal forcing mechanisms,such as orbital forcing,tectonic,volcanic,oceanic circulation,atmospheric circulation,and anthropogenic activities (Broecker et al.,1985;Winograd et al.,1988;Maslin and Christensen,2007),which result in dynamic climate outputs of temperature and precipitation.For this study,the main interesting outputs of the climate change are the long term temporal and spatial variation in precipitation and temperature,and in particularly,glaciation –deglaciation.

In the past million years,periodic advance and retreat of major continental ice sheets occurred in many parts of the world,and in particular,the Northern Hemisphere.Geomorphological evidence,including a large number of end moraines,have been used to form the

basis for the reconstruction of the deglacial chronology and the extent of Quaternary glaciers and ice sheets in North America (Sibrava et al.,1986).Models of ice sheets showed that the estimated maximum ice thickness was about 3000m in southern Ontario during the last glacial period (Boulton et al.,1985),with predominant NW –SE direction of ice movement.Glacial cycles are characterized by strong climatic variations with short but intensely cold periods followed by the formation of continental ice sheets,which are responsible for a signi ?cant change in the topography and groundwater regime (Vidstrand et al.,2008).

A key interest for nuclear waste is the long term stability of both the geosphere and engineered components of the geological disposal system (Vidstrand et al.,2008).Climate change is predicted to occur cyclically within the life span of repositories,resulting in the formation of continental ice sheets (Ericsson et al.,1994).The cyclic advance –retreat of these ice sheets is considered as the main natural processes that can signi ?cantly affect deep geological repository (DGR)systems (Nguyen et al.,1993;Chan et al.,2005).Glaciations induce modi ?cations to the thermal,mechanical,hydraulic and chemical conditions at the earth's crust,potentially causing thermo-hydro-mechanical-chemical (THMC)changes at depths where a DGR could be located.The stability of the DGR system can be affected by glaciation –deglaciation cycles.

Engineering Geology 123(2011)271–287

?Corresponding author at:Department of Civil Engineering,University of Ottawa,161Colonel by,Ottawa (Ontario)Canada K1N 6N5.Tel.:+16135625800#6558;fax:+16135625173.

E-mail address:mfall@uottawa.ca (M.

Fall).0013-7952/$–see front matter ?2011Elsevier B.V.All rights reserved.doi:

10.1016/j.enggeo.2011.07.008

Contents lists available at SciVerse ScienceDirect

Engineering Geology

j o u rn a l h o m e p a g e :w ww.e l s evi e r.c o m /l o c a t e /e n g g e o

Advance and retreat of the ice sheets results in a mechanical loading–unloading sequence at the surface that perturb the stress and strain and water pressure regimes in the host rock at depths.Meltwater produced at deglaciation can also potentially in?ltrate the host rock to depths determined by its permeability(e.g.,Hansson et al.,1995).

Modeling the future evolution of a repository site,with emphasis on how this evolution affects the repository safety functions,is a key component of repository performance and safety assessment(SA) (Tsang et al.,2009).The THMC processes are coupled,and can be analyzed by using numerical modeling.

During the last two decades,considerable attention has been given to THMC coupled processes in rocks.These efforts are mainly driven by the concern over the role of such couplings in the performance and safety assessment of heat-releasing nuclear waste repository in the subsurface(Tsang et al.,2009).In addition,THMC coupling has a wider application in geosystems,such as geothermal energy extraction,gas production and others.The?rst studies were performed on binary couplings such as HM.However,for the performance assessment of the repository,it is essential to study the full triple interactive THM coupling,and also THMC coupling.

Internationally,two main cooperative projects dealt with coupled THMC processes:the DECOVALEX project(abbreviation for the international co-operative project for the development of coupled models and their validation against experiments in nuclear waste isolation)and the BENCHPAR project,sponsored by the European Commission(EC)(Chan et al.,2005;Vidstrand et al.,2008).In the above two projects,glaciation effects have been assessed for Scandinavian and Canadian granitic rock formations.

The safety assessment of DGRs,particularly the transport of radionuclides,requires knowledge of groundwater?ow(hydraulic process)(Rasilainen et al.,1999),which is considered the main agent responsible for radionuclide migration.On the other hand,signi?cant mechanical processes,represented by considerable pressure due to ice loading,play an important role in the hydraulic process.The main objective of the present study is to build a hydro-mechanical(HM)model for the area of southern Ontario to perform coupled HM modeling which can provide the necessary information for the assessment of the in?uence of ice loading on the groundwater regime in sedimentary rocks in southern Ontario.The intended use of the model is to assess the impact of future glaciations on the performance of a DGR in sedimentary rocks in southern Ontario.However,before such an assessment could be performed with con?dence,the model should be used to interpret the effects of past glaciation cycles in light of the hydraulic data obtained from regional studies and existing site-speci?c information.Therefore,the effect of past glaciations is the focus of this paper.

In the?rst section of the paper,we will provide a description of the characteristics of the study area.In the second section,we will show the development of the relevant partial differential equations(PDEs) related to the HM coupled processes.In the third section,the modeling approach for site speci?c conditions is described.The fourth section presents some signi?cant simulation results of the effect of past glaciations on the main processes.Finally,the conclusions and recommendations are presented.

2.Characteristics of the study area

The study area is located in southern Ontario,near the Eastern margin of the Michigan Basin,on the eastern side of the Huron Lake as shown in Fig.1.A two dimensional(2D)model domain encompasses a cross section that is approximately520km in width and1.6k m in depth with the Michigan Basin as the dominant part.A DGR for low and intermediate level nuclear wastes is being proposed at a depth of approximately680m in an argillaceous limestone formation within the study area.A multi-year site investigation program is being conducted at the site of the proposed DGR,consisting of seismic surveys,and a series of deep vertical and inclined boreholes,and hydraulic,petro-graphic,geochemical and mechanical testing performed in-situ and in the laboratory(e.g.,Gartner Lee Limited,2008;Jensen et al.,2009

).

Fig.1.Location of the study area.

272O.Nasir et al./Engineering Geology123(2011)271–287

2.1.Geology and hydrogeology of the study area

A large amount of data related to the geology of southern Ontario is available,including existing published literature,government open ?le reports,etc..Mazurek (2004)and Gartner Lee Limited (2008)compiled signi ?cant geological data for the study area which is situated on the Western margin of the Michigan Basin,consisting of Paleozoic sedimentary formations overlying the Precambrian basement (Figure 2).The geology of the study area (Gartner Lee Limited (2008)seems to be characterized by continuous and predictable stratigraphy as shown in Fig.3.Structurally,the study area is characterized as simple,with no active faults (Gartner Lee Limited,2008).The Michigan Basin started to form more than 450million years ago,during the Paleozoic era.In general,sedimentary rock formations in the Michigan Basin can be typically characterized by:carbonates,shale,limestone,evaporate and sandstone which are located above the pre-Cambrian crystalline basement.The proposed DGR would be located in a Middle Ordovician limestone overlain by approximately 200m of Upper Ordovician shale and an additional 190m of argillaceous dolostones and evaporates of the Upper Silurian Salina Group as shown in Fig.3.The thicknesses and dips of each layer within the Paleozoic formation are variable with increasing thicknesses towards the southwest direction until a maximum total thickness of 4500m is reached at the center of the Michigan Basin and decreasing thicknesses towards the Algonquin

Arch.

Fig.2.Geology of southern Ontario (Source:Sykes et al.,2008

).

Fig.3.Cross section through the Michigan Basin which shows rock formations and location of the proposed hypothetical DGR (vertical is depth).

273

O.Nasir et al./Engineering Geology 123(2011)271–287

Hydrogeologically,the study area includes three main horizons:shallow,intermediate and deep groundwater zones (Sykes et al.,2008).The intermediate and deep zones are mainly characterized by high total dissolved solid of up to 300g/L (Sykes et al.,2008).Moreover,?eld measurements of pore water pressure showed anomalous water pressure distributions with respect to hydrostatic,including under pressure within the Middle and Upper Ordovician formations and over pressure within the Cambrian formation (Jensen et al.,2009).

In this study,and for the purpose of a two dimensional model construction,a geological cross section A –B is constructed as shown in Figs.2and 3.The location and direction of the cross section is selected

based on the NW –SE direction of the ice sheet advance and retreat during the last ice ages which was observed through geomorphologic records (Piotrowski,1987).The cross section is selected as 520km in long and 1653m deep in order to include most of the north east part of the Michigan Basin,and in particular,the formations outcrop up to the Pre-Cambrian basement.2.2.Material properties

Hydraulic and mechanical properties,speci ?cally,hydraulic conductivity,elastic modulus and Poisson's ratio of the

rock

Fig.4.Variation of hydraulic conductivity with

depth.

Fig.5.Variation of elastic modulus with depth used in the model.

274O.Nasir et al./Engineering Geology 123(2011)271–287

formations within the model as shown in Figs.4and 5are collected from the literature and the preliminary site investigations (Lo,1978;Mazurek,2004:Jensen et al.,2009)and used as material property input data for the mathematical model.These numbers represent the average value of the above properties.

Fig.4shows the pro ?le of the horizontal hydraulic conductivity (K h )at the study area.Based on the numerical value of K h ,three main levels can be identi ?ed:the ?rst level (0–600m in depth)which includes the Devonian and Silurian formations with a K h range from 10?11m/s to 10?9m/s,the second level (600–900m in depth)which includes the Upper and Mid-Ordovician formations with a K h range from 10?14m/s to 10?12m/s,and the third level (900–1000m in depth)which includes the Cambrian formation with K h about 10?8m/s.

Fig.5shows the pro ?le of the modulus of elasticity (E)at the study area.Based on the numerical value of E,three main levels can be recognized:the ?rst level (0–650m in depth)which includes the Devonian and Silurian formations with an E ranging from 20to 25GPa,the second level (650–900m in depth)which includes the Upper and Mid-Ordovician formations with an E of about 35GPa,and the third level (900–1000m depth)which includes the Cambrian formation with an E of about 10GPa.An estimated value of 0.2was used for the value of Poisson's ratio based on the available published ?eld data (Lo,1978;Mazurek,2004).

3.Model development 3.1.Introduction

In this work,hydraulic (H)and mechanical (M)processes are presented.Each one of those processes can be the “agent ”that affects the other processes,which are the “objects ”,for example:

Agent ?Object ,H (Agent )?M (Object )will be Hydro-Mechanical (HM)coupled processes,which represent mechanical processes affected by hydraulic processes,while:M (Agent )?H (Object )are MH coupled processes and for that,MH ≠HM.In general,the total number of coupling =n (n ?1),where n=number of processes.

The inclusion of more processes in a model would in theory lead to a closer representation of reality but would substantially increase its complexity as shown in Fig.6.Moreover,this increase in complexity would increase the level of input data requirements and also the reliability of these data.In practice,judgment is required to decide what level of complexity is needed as “it is important to judge whether a given process has relevance to the repository performance and whether increasing the complexity of characterization and modeling is actually required ”(Hudson et al .,2005).In this work,fully coupled Hydro-Mechanical (two-way coupling for both MH and HM)are taken into account.

The hydraulic process represented by the groundwater ?ow is considered as one of the important processes in the safety analysis of a repository system which can be modeled using Darcy's law (Hudson et al.,2005).On the other hand,the mechanical process mainly includes rock deformation and rock stresses.The coupling of H –M processes by determining the transient response of H –M state variables (pore water pressure,effective stress and deformation)has been considered as potentially signi ?cant by most research groups (Hudson et al.,2005).Continuum mechanics that use a macroscopic scale has been commonly adopted and applied to solve partial differential equations (PDEs)derived from conservation principles in porous media (De Marsily,1986).In addition to those PDEs that capture the fundamental physical laws of conservation of mass,momentum,and energy,mathematical equations called constitutive relationships also have to be derived based on the speci ?c experimental behaviour of the porous media under consid-eration (stress –strain relationship,Fourier's law of heat conduction,Darcy's law of pore ?uid ?ow,etc.)(Nguyen,1995;Gatmiri

and

Fig.6.Modeling complexity and acceptable

error.

Fig.7.Ice loading (interpolated from The University of Toronto Glacial Systems Model (GSM)“Peltier's Model ”model nn9930(Peltier,2008)).

275

O.Nasir et al./Engineering Geology 123(2011)271–287

Delage,1997;Yang,2005).Numerical methods such as ?nite difference,boundary element or ?nite element methods (FEMs)are usually employed to solve the partial differential equations with corresponding boundary and initial conditions.In this work,the FEM code COMSOL Multiphysics is used to model HM coupled processes in sedimentary rock in southern Ontario due to past cycles of glaciations.

COMSOL Multiphysics is a well known commercial software for solving https://www.wendangku.net/doc/23771424.html,SOL Multiphysics performs various types of analysis including:stationary and time-dependent,linear and non-linear,eigen-frequency and modal analysis by using the ?nite element method (FEM)with adaptive meshing and error control capabilities and with a variety of numerical solvers (COMSOL,2009).

3.2.Model conceptualization

The host rock could be conceptualized as a porous medium with a solid skeleton and pores,cracks and microcracks ?lled with a ?uid

such as water (the porewater)or a mixture of ?uids (water,gas and/or air).When an ice sheet forms on the surface of the host rock,it imposes a mechanical load that attained maximal values of the order of 30MPa in the last glaciation cycle.According to classical poromechanics theory,that load is shared between the solid skeleton and the pore ?uid in a transient manner.At early stages,most of the load will be taken by the pore ?uid resulting in an increase in pressure and a change in hydraulic gradients.That change in pressure gradients result in pore ?uid redistribution at a rate proportional to the porous medium permeability,according to Darcy's law.Simultaneously with pore ?uid redistribution,the solid skeleton starts to gradually assume parts of the imposed load,and would deform in response to the stress changes.The ice sheet,in addition to the mechanical load due to its weight,would also affect the thermal and hydraulic conditions at the interface between its base and the surface of the host rock.Permafrost conditions might prevail at that interface,at the forefront of the advancing ice sheet.Variable hydraulic conditions can also exist at that interface,that can vary between a “wet ”base case,where a perched water table exist throughout the thickness of the sheet,and a “dry ”base scenario where the interface could be free draining.The model described in this paper is developed based on the above conceptualization,within the framework of poromechanics.In addition,we adopt the following assumptions:

1-Ice loading and surface water pressure due to the last glaciation –deglaciation cycle is generated by the University of Toronto Glacial Systems Model (GSM)“Peltier's model ”(Peltier,2008)as shown in Fig.7.Different loading scenarios are used to apply the top boundary conditions of the model;

2-Permafrost is ignored at the base of the ice sheet and the effect of temperature is not included in this phase of the study,and;

3-The main PDEs are developed to include the HM processes in porous media based on the conservation of mass (solid and ?uid)and momentum for porous media fully saturated with water.This assumption is based on the large scale of the domain which is mainly located under the ground water table.However,it should be mentioned that recent results from the site investigation program has indicated that a separate gas phase might be present in the host rock.The effect of potential gas phase will be implemented in a further study.4)One-dimensional (1-D)and two-dimensional

(2-D).

Fig.8.Ice sheet parabolic

distribution.

500100015002000250030003500

40004500

Distance with respect to ice sheet direction (km)

I c e t h i c k n e s s (m )

Fig.9.Ice sheet parabolic distribution with time (kabp:in kilo year before present)with respect to study area.

276O.Nasir et al./Engineering Geology 123(2011)271–287

Fig.7shows the time history of the normal stress on the ground surface due to the ice during the past 70,000years for sites A and B,both located on the selected geological cross section A –B for the study area.Along the line A –B,the pro ?le of the ice sheet load is a parabolic shape with increasing height towards the northwest direction as shown in Fig.7for the time of 19,500abp (annum before the present).

The direction of the line A –B will be assigned an assumed x-coordinate parallel to the direction of ice sheet movement,as shown in Fig.8.In order to take into account the actual parabolic shape of the ice load distribution with respect to time and location in southern Ontario,a steady-state ice sheet on a horizontal bed is assumed with a parabolic ice sheet distribution (as shown in Fig.7,modi ?ed after

Paterson (Paterson,1994))which can be represented by the following equation:h =3:4L ?x eT

1=2

e1T

This equation can be used to estimate the length of the covered area (L,in the direction of the ice sheet movement)beyond the highest thickness h point (at x =0):

L =

h 211:

56

Fig.10.Two dimensional model

mesh.

Fig.11.Initial pore water pressure at time 70,000year before present.

277

O.Nasir et al./Engineering Geology 123(2011)271–287

The history of the maximum thickness of the ice used to estimate L is adopted from the Peltier's model (Peltier,2008).Fig.9shows the pro ?le of the ice thickness for six selected times (63,000abp to 14,000abp).In this ?gure distance is measured along line A –B,with distance=0and 375km at A and B,respectively.

It should be emphasized that the aforementioned GSM or Peltier's model (1988)incorporates a number of interacting components including:a 3D thermo-mechanically coupled ice-sheet model that

includes a model of sub-surface thermal evolution,a representation of fast ?ow due to subglacial till-deformation,a model of visco-elastic bedrock response,a surface mass-balance module,an ice calving module,and ?nally a fast dynamical melt water surface routing and storage solver (Tarasov and Peltier,2004).The most important element is the deterministic model of continental ice sheet evolution (Tarasov and Peltier,1999,2002,2004,2006).Peltier (2008)executed the GSM over the past 120ka in North America with a 1.0°longitude by 0.5°latitude grid resolution in order to produce a data set for surface elevation,ice sheet thickness,relative sea level and subglacial melt rate.The GSM model has a large number of parameters,many of which are well known.Many parameters are “ensemble parameters ”that lie within a given range.The ensemble parameters have been undergoing calibration for North American deglaciation against a large set of observational constraints,including,a large set of high-quality relative sea-level histories,a space geodetic observation of the present-day rate of vertical motion of the crust from Yellowknife and a traverse of absolute gravity measurements from the west coast of Hudson Bay southward into Iowa (Tarasov and Peltier,2004).In the study area,the Laurentide Ice Sheet covered the region during the Last Glacial Maximum (around 18,000years BP).By 14,000years BP,the ice sheet had rapidly https://www.wendangku.net/doc/23771424.html,rge proglacial lakes formed in front of the retreating ice sheet.During the advance and retreat of the ice sheet,ice-induced hydraulic loading at the ice/bed interface is in ?uenced by many factors,including temperature and melting pressure,surface transmissivity,surface geometry,glacial lake,and tunnel channel system utilization (e.g.,Brennand et al.,2006;McIntosh and Walter,2006).

3.3.Initial conditions

For the 2D model shown in Fig.10,the initial hydraulic conditions are set as linear hydrostatic as for the initial condition,and at the same time,the self-weight of the rock formations is assumed to be based on a rock density of 2500kg/m3for the mechanical initial stresses at 10million years before the present.The above time is selected after several trials for achieving self weight mechanical and hydraulic equilibrium.At the time of equilibrium,both hydraulic pressure and effective stresses were used as initial conditions for the analysis before the application of ice loading.Fig.11shows the pore water pressure

Table 1

Material properties for the validation model.Parameters

Value Hydraulic conductivity (m/s)2E ?8Initial water pressure (Pa)0Modulus of elasticity (Pa)4E7Poisson ratio

0.3

Fig.12.Boundary conditions for the veri ?cation 1D

model.

https://www.wendangku.net/doc/23771424.html,parison between modelling results (COMSOL)and Terzaghi's analytical solution.

278

O.Nasir et al./Engineering Geology 123(2011)271–287

distribution used as the initial pore water pressure at the start of the last glaciation cycle.3.4.Boundary conditions

The advance and retreat of ice sheet caused transient mechanical and hydraulic boundary conditions.Boulton et al.(2009)suggested that there is a coupling between subglacial channels and groundwater which play an important role in the subglacial hydraulic pressure regime,and thereby the glacier dynamic regime.Boulton et al.(2007a,b)developed a channel-groundwater ?ow theory.In this theory,it is suggested that water pressure along tunnels is low and predictable,which draws groundwater to ?ow toward tunnels.In addition to that,surface melted water drainage and pressure represented by the frequencies of eskers are affected by surface rocks,in which there are higher frequencies for the shield area as compared to younger sedimentary rocks (Clark and Walder,1994;Boulton et al.,2009).In contrast,evidence from Quaternary glacial environments supports the cold base glacial theory.Lloyd Davies et al.(2009)work addressed the behaviour of cold based glaciers and ice sheets.In this study,three scenarios of surface water pressure are considered as explained below.

In this work,the hydraulic boundary conditions are set as no ?ux at both sides and the bottom.On the other hand,to cover the diversity in theories,spatial and temporal variation of subglacial pore water pressure (e.g.,Boulton et al.,2007a,b;Jansson and N?slund,2009),

Formation Pressure (kPa)

D e p t h (m B G S )

0100200300400500600700800900

010*******

400500600700800900

02000

4000

6000

8000

10000

D e p t h (m B G S )

Formation Pressure (kPa)

DGR3COMSOL (1D)Hydrostatic (0 TDS)

a

b

https://www.wendangku.net/doc/23771424.html,parison of experimental ?eld surface).a.)Free draining conditions.b.)Comparison of three hydraulic boundary at the surface (1/3p,);and (iii)hydraulic head equal to 80%of the ice thickness at the surface (80%p,).Kv:vertical hydraulic conductivity;Kh:horizontal permeability.

279

O.Nasir et al./Engineering Geology 123(2011)271–287

two cases of the surface hydraulic boundary conditions are assumed.The ?rst case is a zero pressure hydraulic boundary conditions,and the second case is a transient condition as a function of the ice loading history.However,in this paper we mainly focus on the ?rst case as shown in Fig.10.The stress at the ground surface due to ice is directly adopted from the main outputs of the (GSM)(Peltier,2008)and the geometry of water pressure at the ice/bed interface is assumed to be linearly related to the surface stress and taken as a fraction of the stress at surface with different value of fraction (0,1/3and 80%)to cover a wide range of potential ice/bed interface boundary conditions results presented in Fig.14for 1D model.

For the mechanical conditions,roller boundary conditions are assumed for the two sides and bottom and free deformation at the surface.Transient normal stress which represents the ice load is applied at the surface as shown in Fig.10.

3.5.Finite element discretization

A ?nite element mesh is generated by dividing the rectangular domain of 520km×1653m into 3539elements using Lagrange-quadratic triangular elements.These types of elements are chosen for

their irregular subdomain shapes.The mesh for the 2D model is shown in Fig.10.

3.6.Mathematical formulations

The governing PDEs are derived from the consideration of conservation of mass and momentum.In the following,Eqs.2and 3express the conservation of mass for both ?uid and solid,respectively,which can be written as (De Marsily,1986):?·ρf U f +?ρf n +ρf q =0

e2T

?·ρs U s eT+

?

?t ρs

1?n eTeT+ρq =0e3T

where:ρis density,U are ?ctitious velocities,t is time,n is porosity,q is mass source,s is the solid and f is the ?uid.In the above equations,the mean velocities for ?uid and solid can be de ?ned as:u =U n ,and u s =U s

Fig.15.Surface displacement history at the location of the study

area.

Fig.16.Pore water pressure history at the Proposed DGR level.

280O.Nasir et al./Engineering Geology 123(2011)271–287

Darcy's law can be expressed in terms of the mean velocities as:u ?u s eT=?

κη

?p +ρf g ?D

e4T

where:κis permeability,ηis dynamic viscosity,p is pressure,D is the direction of gravitational acceleration (g).

Combining Eqs.2and 3,and using Darcy's law we obtain (De Marsily,1986):

?·ρf κη?p +ρf g ?D

!=n ?ρf +ρf ?n ?ρn ρs d ρS e5T

Based on the compressibility of ?uid,solid and skeleton of the rock

components,the term ?n

?t

(time variation in porosity)can be

represented with:dn

dt

=α?n eTde ff dt

+

α?n eTK s dp dt

+?α?n eTβ+1?n eTβ?βS eTeTdT

dt

e6T

The ?nal equation of pore ?uid and solid mass conservation is:?·ρf κη?p +ρf g ?D !=n γeT?C ?t

+ρf α0de ff

+ρf eα0s ?n S +n K f T

dp dt

+ρf en βS ?α0

β+β?βS eT?n βf T

dT

e7Twhere α0=α?n eT1?n eT,α=1?K D

K S ,K D ,K S and K f are the bulk moduli of the solid matrix,solid grains and water ?uid,respectively,β,βs and βf are

thermal expansion coef ?cients for the solid matrix,solid grains and

water ?uid,respectively.

Eq.7includes the concentration (C)of dissolved solids in the pore ?uid and the local average temperature (T)of the porous medium.The density of the pore ?uid is assumed to vary with dissolved solid concentration according to the following equation:ρf =ρfo +γC

e8T

where ρfo is the initial ?uid density,and γis a concentration –density

coef ?cient.The numerical values of both ρfo and γare taken to be 1000kg/m 3and 2/3for a range of C from 0to 300kg/m 3(Sykes et al.,2008).

The total dissolved solid in the pore ?uid is assumed to be able to migrate by advection,dispersion and molecular diffusion mechanisms.With the consideration of mass conservation for the total dissolved solids and the above transport mechanisms,the governing equation of transport can be derived as follows (e.g.Fetter,1999):θs

?c

?t

+?·?θs D L ?c +u c ? =S c e9T

where:θs is porosity;D L is the hydrodynamic dispersion tensor;u is vector of pore ?uid velocities;and S c is the solute source.

Assuming isotropic linearly elastic rocks and Biot's effective stress principle,the equation of momentum conservation,becomes (see e.g.Nguyen,1995):

G ?2u i j j +G +λeT?2

u j i j ?α?p i ?βK D ?T

i

+F i =0e10

T

Fig.17.Pore water pressure history at different depths.

281

O.Nasir et al./Engineering Geology 123(2011)271–287

where:u is the displacement,G is the shear modulus,λis Lamé's?rst parameter,αis Biot coef?cient,and T is the temperature.

Mechanical deformation is an important process because it can affect the porosity and the intrinsic permeability,hence the hydraulic conductivity of sedimentary rocks.In this work,the change in intrinsic permeability due to change in porosity is modeled using the Carman–Kozeny relationship(Kozeny,1927;Carman, 1937):

k t=

n3

1?n2

àá

"#

t1?n2

n3

2

4

3

5

initial

k initial

where k t[L2]represents permeability at time t,and k initial [L2]represents the initial permeability.In this work,initial poro-sity and permeability are assumed to be equal to the current?eld values.

3.7.Model testing for con?dence building

Before a numerical model could be used for predictive purposes, con?dence must be gained in its adequacy to accurately solve the equations it is supposed to solve,and also to adequately capture the main physical processes that occur in reality.The?rst activity,called veri?cation,is usually performed by comparing the numerical results with the results of analytical solutions when they exist.The second activity is sometimes called validation,however there is a tendency to avoid that term in the geoscienti?c community,since no model can exactly replicate the real world.We will show here the results of the above two activities.

Time=65,000 year before present MPa Time=63,000 year before present MPa

Time=59,000 year before present MPa Time=55,000 year before present MPa

Horizontal distance (m)

Time=55,500 year before present MPa Time=40,000 year before present MPa

Fig.18.Pore water pressure history and distribution of65,000to40,000years before the present for part of the Michigan Basin.

282O.Nasir et al./Engineering Geology123(2011)271–287

3.7.1.Veri ?cation with analytical solution

For that veri ?cation purpose,the results obtained from the model are compared with the analytical solution for one and two dimensional consolidation equations by Terzaghi (1943).

u 0z ;t eT=Δσv ∑m =02sin M z exp ?M 2T v :::8eTM =π2m +1eT=2;and T v =c v t H

where:u ’is the pore water pressure,Δσv is the change in vertical stress,z is depth,H is drainage path length and c v is the coef ?cient of consolidation.

Table 1shows the material properties and initial conditions for the veri ?cation model,while Fig.12shows the hydraulic and mechanical boundary conditions.As explained in Section 3.3,the assumed boundary conditions are:zero ?ux for the bottom and sides,zero

pressure for the surface,roller (mechanical)for the bottom and sides,and free deformation for the surface.The results obtained by using the developed HM model (COMSOL)show a very good agreement with the analytical solution proposed by Terzaghi (1943)as indicated in Fig.13.

3.7.2.Simulation of present day pore water pressure pro ?les

A 1-D HM model,using the input data pro ?le as shown in Figs.4and 5is used to simulate the present pore pressure pro ?le in response to the past glaciation cycle.The calculated pressure pro ?le is compared with ?eld pore water pressure pro ?le (Jensen et al.,2009)as shown in Fig.14a.Despite some differences in modeling

Time=30,000 year before present MPa Time=24,000 year before present MPa

Time=19,500 year before present MPa Time=14,000 year before present MPa

Time=11,500 year before present MPa Time=0 year before present (Now) MPa

Horizontal distance (m)

V e r t i c a l d i s t a n c e (m )

Fig.19.Pore water pressure history and distribution 30,000years before the present to now for part of the Michigan Basin.

283

O.Nasir et al./Engineering Geology 123(2011)271–287

(COMSOL)results and ?eld data at a greater depth,good agreement is achieved for the depth range of 0to 700m which includes the location of a potential DGR.These results are consistent with the

?eld measurements.The differences in results may be due to some assumptions adopted in this work,such as a linear elastic model,homogenous and isotropic materials in addition to uncertainties in geological and glacial data.

The measured ?eld pore water pressure is also compared with the modeling results for the three potential cases of surface hydraulic boundary conditions as discussed in Section 3.2:(i)free draining conditions (0p,Figure 14b);(ii)hydraulic head equal to 30%of the ice thickness at the surface (1/3p,Figure 14b);and (iii)hydraulic head equal to 80%of the ice thickness at the surface (80%p,Figure 14b).The comparison results are shown in Fig.14b.From this ?gure,it can be observed that the 0p shows an underpressure in the Ordovician that is closest to the ?eld data,however,no overpressure is predicted for the Cambrian.For the 1/3p case,the underpressure in the Ordovician formation is predicted,however it is much lower than the measured one.The 1/3p case calculates overpressure in the Cambrian which is consistent with the ?eld measurements.The 80%p case overestimates the pressure,especially in the Ordovician.

4.Simulation of the hydro-mechanical response of the study area The HM model is used to simulate the impact of the past glacial cycle on the hydraulic and mechanical responses of sedimentary rocks by using one and two dimensional

models.

Fig.20.Pore water pressure pro ?le history (65,000years before the present to now with the uppermost line at 19,500years before the present).

Time=65,000 year before present MPa

Time=63,000 year before present MPa

Time=59,000 year before present MPa

Time=55,000 year before present MPa

Horizontal distance (m)

Time=55,500 year before present MPa Time=40,000 year before present MPa

V e r t i c a l d i s t a n c e (m )

Fig.21.Effective stress history and its distribution over 65,000–40,000years before the present for part of the Michigan Basin.

284O.Nasir et al./Engineering Geology 123(2011)271–287

Some selected results are presented,particularly the time evolution of surface displacement and water pressure pro ?le.Fig.15shows the surface displacement under the impact of the past glaciations cycle.Two main episodes of loading –unloading,with peaks at approximately 60and 20kybp (Figure 7),can be detected;each one is mainly characterized by the shape of surface loading with a maximum surface displacement of about 1.2m.This displacement is only due to the mechanical deformation and consolidation of the rock formations relative to the base of the model.It does not include the ?ow of the mantle underneath the earth crust,which contributes to the majority of the absolute displacement of the earth surface.It can be seen that the surface displacement is consistent with the ice loading history (Figure 7).This is a result of fast consolidation as compared to the time of loading.

The variation of water pressure with time at a depth of 680m (the same depth as the proposed DGR)is presented in Fig.16.Two peaks are noticed which are related to each glaciation episode with a slight drop in water pressure after the second ice unloading (around 11,000years before the present).That drop is induced by an elastic rebound.It takes a signi ?cant amount of time for the pressure drop induced by unloading to recover.The model predicts that the pressure at 680m in depth is slightly lower than the hydrostatic pressure.In general,the shape of the time history of pore water pressure at a depth of 680m is still similar to the ice loading history (Figure 7)due to the fast consolidation as compared to the loading rate.The HM response of the host rock is mainly affected by two main factors,?rst the location within the host rock with respect to its surface boundary,and the second factor is the hydro-mechanical properties.Fig.17shows the pore water pressure history at different depths.At a depth of 650m where the hydraulic conductivity is very low;the hydraulic response is characterized by a signi ?cant drop in the pore water pressure following the unloading stage.This prediction is consistent with ?eld measurements from boreholes at the site which shows an under-pressure zone at the same level.However,the value of the predicted underpressure at present time is smaller than the measured ones.Differences between the measured and predicted values could be related to the assumed boundary conditions,assumed homogeneity in material properties and more sources of pore pressure change (such as chemical reaction,and gas pressure).

Time and space transient mechanical conditions,represented by ice sheet loading (shown in Figure 9)will mainly in ?uence the groundwater ?ow.This change can be presented in the form of water pressure changes.Figs.18and 19show the predicted changes in water pressure for selected times during the last 65,000years.

It can be seen that the maximum water pressure is accrued at the time around 19,500years before the present (Figure 19)at the Cambrian formation,with an excess water pressure of about 15MPa,causing a pressure of up to 25MPa at a depth of 1000m.However,the water pressure at the upper formation (Devonian)has a higher

Time=30,000 year before present MPa Time=24,000 year before present MPa

Time=19,500 year before present MPa

Time=14,000 year before present MPa

Time=11,500 year before present MPa Time=0 year before present (Now) MPa

Horizontal distance (m)

V e r t i c a l d i s t a n c e (m )

Fig.22.Effective stress history and its distribution over 30,000years before present to now for part of the Michigan basin.

285

O.Nasir et al./Engineering Geology 123(2011)271–287

dissipation rate due to its location near the free draining surface,as well as a relatively high hydraulic conductivity of 10E ?8m/s.Starting from 14,000ybp,the pore water pressure distribution starts to return to the hydrostatic conditions,with some underpressure and over-pressure that are still evident as shown in Fig.19.

Fig.20shows the pro ?le of water pressure with depth for different times (65,000years before the present to now).In this ?gure,pressure dissipation is relatively fast in the upper 600m.In addition to that,under pressure due to unloading accrued at a depth of 600m to 700m,particularly at the Upper Ordovician formation with a maximum value of 2.5MPa,as compared to a hydrostatic pressure of 6.4MPa (about a reduction of 4MPa).At the same time,the deeper parts of the Cambrian formation have an excess water pressure of about 10MPA (causing a pressure increase from 17.5MPa to 27.5MPa).The underpressure and overpressure is consistent with ?eld observations.The persistence of these anomalous pressures for more than ten thousand years could only be possible with very low permeability of the Ordovician layers that results in low rates of hydraulic dissipation.

In addition to its effect on the hydraulic regime,large normal stress due to ice loading also contributes to signi ?cant changes of effective stress.Figs.21and 22show the normal effective stress distribution and its development with time (65,000years before present to now).In general,the trend of normal effective stress follows the trend of loading and unloading,except at the early stages of loading,where the effective stress decreases as a result of increase in excess water pressure.However,some formations have a different response than others due to different poroelastic response;for example,the Devonian formation will have a quick response as compared to the Ordovician formation due to the differences in both hydraulic conductivity and modulus of elasticity.

Two distinctive layers can be identi ?ed from Fig.22:the ?rst is the Mid-Ordovician with lower effective stress due to higher excess pore pressure,and the lower Silurian with higher effective stress due to fast consolidation.

Fig.23shows the change in effective stresses at the level of the proposed DGR.It can be seen that the general trend of change is similar to the trend of loading (Figure 7).However,at the DGR level,a small amount of effective stress reduction is observed during the early time of loading (65,000and 23,000years before the present)due to high excess of pore water pressure at the early loading stages,and then,the evolution of the effective stress starts to follow that of the ice load as the time of loading is much longer than the time of excess pore

water pressure dissipation.On the other hand,at a depth of 100m,the change in effective stress is about three times the change in effective stress at a depth of 680m.This result could explain the low RQD values recorded at shallow depths (?rst 200m)in the study area and high RQD values (almost 100%)at higher depths,thereby providing an additional argument for long term safety under the impact of future glaciations.5.Conclusions

In this paper,a numerical study for the HM processes associated with past glaciation cycles in sedimentary rocks in southern Ontario using a 2D model has been conducted.The main HM coupled equations are derived from the conservation of mass and momentum,coupled with Darcy's law for pore water ?ow,Terzaghi's effective stress principle,and Hooke's law of linear elasticity for the solid skeleton.The initial hydraulic conditions for 700,000years before the present is assumed as hydrostatic,and ice loading on the surface is generated based on the University of Toronto Glacial Systems Model (GSM).Based on the results obtained from this study,the following conclusions can be drawn.First,past glaciation,particularly the second cycle (22,000abp)had a great impact on the pore water pressure gradient and effective stress distribution.The results are consistent with the ?eld observations of persistent pressure to the present time.However,the predicted values of anomalous water pressure is less than the observed values at the site,which could be attributed to additional sources,such as gas or somatic pressure.Moreover,additional factors such as thermal,chemical and 3D effects should be included into the developed model.Data uncertainties also need to be included using suitable statistical methods.Furthermore,in this study we focused only on one loading history with three scenarios of water pressure at surface.Thus,varying loading histories and (thermal,hydraulic,mechanical)boundary conditions should be incorporated in the future model to improve the analysis ability of the developed model.

The results of this research can provide valuable information that will contribute to a better understanding of the impacts of future glaciations on the long term performance of DGRs in sedimentary rocks.

Acknowledgement and disclaimer

The authors would like to thank the Canadian Nuclear Safety Commission (CNSC)and the University of Ottawa (UO)for their ?nancial support.The opinions expressed in this paper are the authors ’and do not necessarily re ?ect the UO's or CNSC's.References

Boulton,G.S.,Smith,G.D.,Jones, A.S.,Newsome,J.,1985.Glacial geology and

glaciology of the last mid-latitude ice sheets.Journal of the Geological Society of London 142(3),447–474.

Boulton,G.S.,Lunn,R.,Vidstrand,P.,Zatsepin,S.,2007a.Subglacial drainage by

groundwater –channel coupling,and the origin of esker systems:Part I –Glaciological observations.Quaternary Science Reviews 26,1067–1090.

Boulton,G.S.,Lunn,R.,Vidstrand,P.,Zatsepin,S.,2007b.Subglacial drainage by

groundwater –channel coupling,and the origin of esker systems:Part II –theory and simulation of a modern system.Quaternary Science Reviews 26,1091–1105.Boulton,G.S.,Hagdorn,M.,Maillot,P.B.,Zatsepin,S.,2009.Drainage beneath ice sheets:

Groundwater-channel coupling,and the origin of esker systems from former ice sheets.Quaternary Science Reviews 28(7–8),621–638.

Brennand,T.A.,Russell,H.A.J.,Sharpe, D.R.,2006.Tunnel channel character and

evolution in central southern Ontario.In:Knight,P.G.(Ed.),Glacier science and environmental change.Blackwell Publishing,Oxford,pp.37–39.

Broecker,W.S.,Peteet,D.M.,Rind,D.,1985.Does the ocean-atmosphere system have

more than one stable mode of operation?Nature 315(6014),21–26.

Carman,P.C.,1937.Fluid ?ow through granular beds,Transactions.Institution of

Chemical Engineers,London 15,150–166.

Chan,T.,Christiansson,R.,Boulton,G.S.,Ericsson,L.O.,Hartikainen,J.,Jensen,M.R.,Mas

Ivars,D.,Stanchell,F.W.,Vistrand,P.,Wallroth,T.,2005.DECOVALEX III BMT3/BENCHPAR WP4:The thermo-hydro-mechanical responses to a glacial cycle

and

Fig.23.Vertical effective stress history at the proposed DGR level.

286O.Nasir et al./Engineering Geology 123(2011)271–287

their potential implications for deep geological disposal of nuclear fuel waste in a fractured crystalline rock mass.International Journal of Rock Mechanics and Mining Sciences42(5–6SPEC.ISS.),805–827.

Clark,P.U.,Walder,J.S.,1994.Subglacial drainage,eskers,and deforming beds beneath the laurentide and eurasian ice sheets.Geological Society of America Bulletin106(2),304–314.

Comsol Multiphysics3.5a,2009.https://www.wendangku.net/doc/23771424.html,2009.

De Marsily,G.,1986.Quantitative Hydrogeolcgy.Acad.Press,New York,pp.100–101. Ericsson,L.O.,Boulton,G.S.,Wallroth,T.,1994.Analysis of long-term geological and hydrogeological changes in the Swedish programme for?nal disposal of nuclear waste.OECD documents.Disposal of radioactive waste—characterisation of long-term geological changes for disposal sites.Proceedings of an NEA Workshop,Paris, France,19–21September.Nuclear Energy Agency,Paris.

Fetter,C.W.,1999.Contaminant Hydrogeology.Prentice Hall.

Gartner Lee Limited,2008.Phase I Regional Geology,Southern Ontario.Supporting technical report.OPG00216-REP-01300-00007-R00.

Gatmiri, B.,Delage,P.,1997.A formulation of fully coupled thermal-hydraulic-mechanical behavior of saturated porous media–numerical approach.Interna-tional Journal for Numerical and Analytical Methods in Geomechanics21(3), 199–225.

Hansson,H.,Stephansson,O.,Shen,B.,1995.Far-?eld rock mechanics modelling for nuclear waste disposal.SKI Technical Report95:40.Swedish Nuclear Power Inspectorate,Stockholm.

Hudson,J.A.,Stephansson,O.,Andersson,J.,2005.Guidance on numerical modelling of thermo-hydro-mechanical coupled processes for performance assessment of radioactive waste repositories.International Journal of Rock Mechanics and Mining Sciences42(5–6SPEC.ISS.),850–870.

Jansson,P.,N?slund,J.O.,2009.Spatial and temporal variations in glacier hydrology on Storglaci?ren,Sweden.Technical Report TR-09-13.

Jensen,M.,Lam,T.,Luhowy,D.,McLay,J.,Semec,B.,Frizzel,R.,2009.Ontario Power generation's Proposed L&ILW Deep Geologic Repository:An Overview of Geoscienti?c Studies.Canadian Geotechnical Conference,GeiHalifax2009. Kozeny,J.,1927.Uber Kapillare Leitung Des Wassers in Boden,Wien.Akademie Wissenschaften136(1927),271.

Lloyd Davies,M.T.,Atkins,C.B.,van der Meer,J.J.M.,Barrett,P.J.,Hicock,S.R.,2009.

Evidence for cold-based glacial activity in the Allan Hills,Antarctica.Quaternary Science Reviews28(27–28),3124–3137.

Lo,K.Y.,1978.Regional distribution of in situ horizontal stresses in rocks of southern Ontario.Canadian Geotechnical Journal15(3),371–381.

Maslin,Mark A.,Christensen,Beth,2007.Tectonics,orbital forcing,global climate change,and human evolution in Africa:introduction to the African paleoclimate special volume.Journal of Human Evolution53,443–464.

Mazurek,M.,2004.Long-term used nuclear fuel waste management-Geoscienti?c review of the sedimentary sequence in southern Ontario.Technical Report TR04–01.Institute of Geological Sciences,University of Bern,Switzerland.

McIntosh,J.C.,Walter,L.M.,2006.Paleowaters in silurian-devonian carbonate aquifers:Geochemical evolution of groundwater in the great lakes region

since the late Pleistocene.Geochimica et Cosmochimica Acta70(10), 2454–2479.

Nguyen,Thanh Son,https://www.wendangku.net/doc/23771424.html,putational modeling of thermal-hydrological mechanical processes in geological media,Ph.D Thesis,McGiIl University, Montreal,Quebec.

Nguyen,T.S.,Polischuk,V.,Selvadurai,A.P.S.,1993.Effects of glaciation on the nuclear fuel waste repository.Proceedings of the46th annual Canadian Geotechnical Conference,Saskatoon,Saskatchewan,Canada.

Paterson,W.S.B.,1994.The physics of glaciers,3rd edition.PREGAMON,pp.241–242. Peltier,W.R.,2008.Phase I long term climate change study.Supporting technical report.

OPG00216-REP-01300-00004-R00.

Piotrowski,J.A.,1987.Genesis of the woodstock drumlin?eld,Southern Ontario, Canada.Boreas16(3),249–265.

Rasilainen,K.,Luukkonen,A.,Niemi,A.,Olin,M.,P?ll?,J.,1999.The feasibility of modelling coupled processes in safety analysis of spent nuclear fuel disposal.VTT Technical Research Centre of Finland,Espoo.

Sibrava,V.,Bowen,D.Q.,Richmond,G.M.,1986.Quaternary glaciations in the northern hemisphere.Quaternary Science Reviews5.

Sykes,J.F.,Sykes,E.A.,Normani,S.D.,Yin,Y.,Park,Y.J.,2008.Phase I Hydrogeologic modeling.Supporting technical report.OPG00216-REP-01300-00009-R00. Tarasov,L.,Peltier,W.R.,1999.Impact of thermomechanical ice sheet coupling on a model of the100kyr ice age cycle.Journal of Geophysical Research D:Atmospheres 104(D8),9517–9545.

Tarasov,L.,Peltier,W.R.,2002.Greenland glacial history and local geodynamic consequences.Geophysical Journal International150(1),198–229.

Tarasov,L.,Peltier,W.R.,2004.A geophysically constrained large ensemble analysis of the deglacial history of the North American ice sheet complex.Quaternary Science Reviews23,359–388.

Tarasov,L.,Peltier,W.R.,2006.A calibrated deglacial drainage chronology for the north american continent:Evidence of an arctic trigger for the younger dryas.Quaternary Science Reviews25(7–8),659–688.

Terzaghi,K.,1943.Theoretical Soil Mechanics.John Wiley and Sons,New York. Tsang,C.-F.,Stephansson,O.,Jing,L.,Kautsky,F.,2009.DECOVALEX project:From1992 to2007.Environmental Geology57(6),1221–1237.

Vidstrand,P.,Wallroth,T.,Ericsson,L.O.,2008.Coupled HM effects in a crystalline rock mass due to glaciation:Indicative results from groundwater?ow regimes and stresses from an FEM study.Bulletin of Engineering Geology and the Environment 67(2),187–197.

Winograd,I.J.,Szabo,B.J.,Coplen,T.B.,Riggs,A.C.,1988.A250,000-year climatic record from great basin vein calcite:Implications for Milankovitch theory.

Science242(4883),1275–1280.

Yang,L.,2005.Theoretical Analysis of the Coupling Effect for the Seepage Field,Stress Field,and Temperature Field in Underground Coal Gasi?cation',Numerical Heat Transfer.Numerical Heat Transfer,Part A:Applications48(6),585–606.

287

O.Nasir et al./Engineering Geology123(2011)271–287

尊重的素材

尊重的素材(为人处世) 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺术,也是仁爱的情操。—刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚 尊重别人,才能让人尊敬。———笛卡尔 谁自尊,谁就会得到尊重。———巴尔扎克 人应尊敬他自己,并应自视能配得上最高尚的东西。———黑格尔 对人不尊敬,首先就是对自己的不尊敬。———惠特曼

每当人们不尊重我们时,我们总被深深激怒。然而在内心深处,没有一个人十分尊重自己。———马克·吐温 忍辱偷生的人,绝不会受人尊重。———高乃依 敬人者,人恒敬之。———《孟子》 人必自敬,然后人敬之;人必自侮,然后人侮之。———扬雄 不知自爱反是自害。———郑善夫 仁者必敬人。———《荀子》 君子贵人而贱己,先人而后己。———《礼记》 尊严是人类灵魂中不可糟蹋的东西。———古斯曼 对一个人的尊重要达到他所希望的程度,那是困难的。———沃夫格纳 经典素材 1元和200元 (尊重劳动成果) 香港大富豪李嘉诚在下车时不慎将一元钱掉入车下,随即屈身去拾,旁边一服务生看到了,上前帮他拾起了一元钱。李嘉诚收起一元钱后,给了服务生200元酬金。 这里面其实包含了钱以外的价值观念。李嘉诚虽然巨富,但生活俭朴,从不挥霍浪费。他深知亿万资产,都是一元一元挣来的。钱币在他眼中已抽象为一种劳动,而劳动已成为他最重要的生存方式,他的所有财富,都是靠每天20小时以上的劳动堆积起来的。200元酬金,实际上是对劳动的尊重和报答,是不能用金钱衡量的。 富兰克林借书解怨 (尊重别人赢得朋友)

那一刻我感受到了幸福_初中作文

那一刻我感受到了幸福 本文是关于初中作文的那一刻我感受到了幸福,感谢您的阅读! 每个人民的心中都有一粒幸福的种子,当它拥有了雨水的滋润和阳光的沐浴,它就会绽放出最美丽的姿态。那一刻,我们都能够闻到幸福的芬芳,我们都能够感受到幸福的存在。 在寒假期间,我偶然在授索电视频道,发现(百家讲坛)栏目中大学教授正在解密幸福,顿然引起我的好奇心,我放下了手中的遥控器,静静地坐在电视前,注视着频道上的每一个字,甚至用笔急速记在了笔记本上。我还记得,那位大学教授讲到了一个故事:一位母亲被公司升职到外国工作,这位母亲虽然十分高兴,但却又十分无奈,因为她的儿子马上要面临中考了,她不能撇下儿子迎接中考的挑战,于是她决定拒绝这了份高薪的工作,当有人问她为什么放弃这么好的机会时,她却毫无遗憾地说,纵然我能给予儿子最贵的礼物,优异的生活环境,但我却无当给予他关键时刻的那份呵护与关爱,或许以后的一切会证明我的选择是正确的。听完这样一段故事,我心中有种说不出的感觉,刹那间,我仿拂感觉那身边正在包饺子的妈妈,屋里正在睡觉的爸爸,桌前正在看小说的妹妹给我带来了一种温馨,幸福感觉。正如教授所说的那种解密幸福。就要选择一个明确的目标,确定自已追求的是什么,或许那时我还不能完全诠释幸福。 当幸福悄悄向我走来时,我已慢慢明白,懂得珍惜了。 那一天的那一刻对我来说太重要了,原本以为出差在外的父母早已忘了我的生日,只有妹妹整日算着日子。我在耳边唠叨个不停,没想到当日我失落地回到家中时,以为心中并不在乎生日,可是眼前的一切,让我心中涌现的喜悦,脸上露出的微笑证明我是在乎的。

爸爸唱的英文生日快乐歌虽然不是很动听,但爸爸对我的那份爱我听得很清楚,妈妈为我做的长寿面,我细细的品尝,吃出了爱的味道。妹妹急忙让我许下三个愿望,嘴里不停的唠叨:我知道你的三个愿望是什么?我问:为什么呀!我们是一家人,心连心呀!她高兴的说。 那一刻我才真正解开幸福的密码,感受到了真正的幸福,以前我无法理解幸福,即使身边有够多的幸福也不懂得欣赏,不懂得珍惜,只想拥有更好更贵的,其实幸福比物质更珍贵。 那一刻的幸福就是爱的升华,许多时候能让我们感悟幸福不是名利,物质。而是在血管里涌动着的,漫过心底的爱。 也许每一个人生的那一刻,就是我们幸运的降临在一个温馨的家庭中,而不是降临在孤独的角落里。 家的感觉就是幸福的感觉,幸福一直都存在于我们的身边!

关于我的幸福作文八篇汇总

关于我的幸福作文八篇汇总 幸福在每个人的心中都不一样。在饥饿者的心中,幸福就是一碗香喷喷的米饭;在果农的心中,幸福就是望着果实慢慢成熟;在旅行者的心中,幸福就是游遍世界上的好山好水。而在我的心中,幸福就是每天快快乐乐,无忧无虑;幸福就是朋友之间互相帮助,互相关心;幸福就是在我生病时,母亲彻夜细心的照顾我。 幸福在世间上的每个角落都可以发现,只是需要你用心去感受而已。 记得有一次,我早上出门走得太匆忙了,忘记带昨天晚上准备好的钢笔。老师说了:“今天有写字课,必须要用钢笔写字,不能用水笔。”我只好到学校向同学借了。当我来到学校向我同桌借时,他却说:“我已经借别人了,你向别人借吧!”我又向后面的同学借,可他们总是找各种借口说:“我只带了一枝。”问了三四个人,都没有借到,而且还碰了一鼻子灰。正当我急的像热锅上的蚂蚁团团转时,她递给了我一枝钢笔,微笑的对我说:“拿去用吧!”我顿时感到自己是多么幸福!在我最困难的时候,当别人都不愿意帮助我的时候,她向我伸出了援手。 幸福也是无时无刻都在身旁。 当我生病的时候,高烧持续不退时,是妈妈在旁边细心

的照顾我,喂我吃药,甚至一夜寸步不离的守在我的床边,直到我苏醒。当我看见妈妈的眼睛布满血丝时,我的眼眶在不知不觉地湿润了。这时我便明白我有一个最疼爱我的妈妈,我是幸福的! 幸福就是如此简单!不过,我们还是要珍惜眼前的幸福,还要给别人带来幸福,留心观察幸福。不要等幸福悄悄溜走了才发现,那就真的是后悔莫及了! 这就是我拥有的幸福,你呢? 悠扬的琴声从房间里飘出来,原来这是我在弹钢琴。优美的旋律加上我很强的音乐表现力让一旁姥爷听得如醉如痴。姥爷说我是幸福的,读了《建设幸福中国》我更加体会到了这一点。 儿时的姥爷很喜欢读书,但当时家里穷,据姥爷讲那时上学可不像现在。有点三天打鱼两天晒网,等地里农活忙了太姥爷就说:“别去念书了,干地里的活吧。”干活时都是牛马拉车,也没机器,效率特别低。还要给牲口拔草,喂草,拾柴火,看书都是抽空看。等农闲时才能背书包去学校,衣服更是老大穿了,打补丁老二再接着穿,只有盼到过年时才有能换上件粗布的新衣服。写字都是用石板,用一次擦一次,那时还没有电灯,爱学习的姥爷在昏暗的煤油灯下经常被灯火不是烧了眉毛就是燎了头发。没有电灯更没有电视,没有电视更没有见过钢琴,只知道钢琴是贵族家用的。

小学生作文《感悟幸福》范文五篇汇总

小学生作文《感悟幸福》范文五篇 小草说,幸福就是大地增添一份绿意;阳光说,幸福就是撒向人间的温暖;甘露说,幸福就是滋润每一个生命。下面是为大家带来的有关幸福650字优秀范文,希望大家喜欢。 感悟幸福650字1 生活就像一部壮丽的交响曲,它是由一篇一篇的乐章组成的,有喜、有怒、有哀、有乐。每一个人都有自己丰富多彩的生活,我也有自己的生活。我原本以为,吃可口的牛排,打电脑游戏,和朋友开心玩乐就是幸福。可是,我错了,幸福并不仅仅如此。 记得有一次,我放学回到家里放下书包就拿起一包饼干来吃。吃着吃着,突然我觉得牙齿痛了起来,而且越来越痛,痛得我连饼干也咬不动了。我放下饼干,连忙去拿了一面镜子来看。原来这又是那一颗虫牙在“作怪”。“哎哟哟,哎哟哟,痛死我了……”我不停地说着。渐渐地,那牙疼得越来越厉害,疼得我坐立不安,直打滚。后来在妈妈的陪伴下去了医院,治好了那颗虫牙。跨出医院大门时,我觉得心情出奇的好,天空格外的蓝,路边的樟树特别的绿,看什么都顺眼,才猛然一悟,幸福是简单而平凡的,身体健康就是一种幸福! 这学期我发现我的英语退步了,我决定要把这门功课学好,于是,我每天回

家做完作业后,都抽出半小时时间复习英语,在课上也听得特别认真,一遇到不懂的题目主动请教老师。经过一段时间的努力,终于,在上次考试的时候,我考了97分。妈妈表扬了我,我心里美滋滋的。我明白了经过自己的努力享受到成功的喜悦,这也是一种幸福。 …… 每个人都无一例外的渴望幸福。不同的人有不同的感受,其实,幸福就是那种能在平凡中寻找欢乐、能在困境中找到自信的一种心境。同学们,幸福其实很简单,就在我们的身边,触手可及。用心去认真地品味吧,它一直未曾离开我们身边! 感悟幸福650字2 有的人认为幸福就是腰缠万贯,有的人认为幸福就是找到意中人,“采菊东篱下,悠然见南山”是陶渊明对邪恶幸福,“从明天起做一个幸福人,喂马、劈柴、周游世界。从明天起,关心蔬菜和粮食,我有一所房子,面朝大海,春暖花开。”这是海子的幸福。一千种人就有一千种对幸福的理解。 我对幸福的理解就是幸福使简单而平凡的,是无处不在的! 我的牙疼得奇怪而顽强不是这颗牙疼就是那颗牙疼;不是吃冷的疼就是吃热

关于以幸福为话题的作文800字记叙文5篇

关于以幸福为话题的作文800字记叙文5篇 ----WORD文档,下载后可编辑修改---- 下面是作者为各位家长学生收集整理的作文(日记、观后感等)范本,欢迎借鉴参考阅读,您的努力学习和创新是为了更美好的未来,欢迎下载! 以幸福为话题的作文800字记叙文1: 那是我生病后的第三天,妈妈从早上五点就起来为我准备早点。她蹑手蹑脚地走着“针步”,下楼煮早点,“啪”的一声,妈妈打开了煤气。在拿肉丝,打鸡蛋的她全然不知我正躲在楼梯口“监视”着她的一举一动。不一会儿,蛋炒好了。 她开始切肉丝,一不小心,妈妈的手指切破皮了,鲜血正一滴一滴地流下来,为了不影响我的睡眠,她把手指放在嘴里吸了一下,坚持把剩下的肉丝切完。 此时的我,心中犹如打翻了五味瓶,眼里的泪像断了线的珍珠般掉了下来,我再也忍不住了,一个劲地冲到妈妈面前,她赶紧把手背了过去,生怕让我知道了什么。 她吃惊地问我:“妈妈太吵了,吵到你了?”“不,不,没有”她见我这么早起来就让我再回去补个觉。我关心地问:“妈,你的手没事吧?”她吱唔着说:“没事,擦破点皮,不碍事!”我仔细地帮她清洗了伤口,贴了一片创可贴。 吃饭时,妈妈一直地往我碗里夹肉,“孩子,病刚好,多吃点!”可是我见她始终都没吃一块肉。我也夹了两块放在她的碗里。“儿子懂事了,你自己快点吃吧!补身体要紧!”我冲她点点头笑了笑,“嗯。” 这就是幸福,一份简简单单的幸福!我祈祷这幸福能伴我成长。 以幸福为话题的作文800字记叙文2: 在我眼中,成长就是记录我们长大过程中一点一滴的小事情的,而幸福就在这点点滴滴中。 在我的成长记忆中,永不磨灭的是2017年11月的一天。妈妈要去云南,妈妈早上四点半要到指定地点集合,这么早,妈妈要两三点就起来,可是最近我咳嗽比较严重,所以天天给我煮萝卜汤喝。 “叮铃铃,叮铃铃”闹钟叫了起来,把我从睡梦中吵醒,一醒来,去找妈妈,

尊重议论文

谈如何尊重人尊重他人,我们赢得友谊;尊重他人,我们收获真诚;尊重他人,我们自己也 获得尊重;相互尊重,我们的社会才会更加和谐. ——题记 尊重是对他人的肯定,是对对方的友好与宽容。它是友谊的润滑剂,它是和谐的调节器, 它是我们须臾不可脱离的清新空气。“主席敬酒,岂敢岂敢?”“尊老敬贤,应该应该!”共和 国领袖对自己老师虚怀若谷,这是尊重;面对许光平女士,共和国总理大方的叫了一 声“婶婶”,这种和蔼可亲也是尊重。 尊重不仅会让人心情愉悦呼吸平顺,还可以改变陌生或尖锐的关系,廉颇和蔺相如便是 如此。将相和故事千古流芳:廉颇对蔺相如不满,处处使难,但蔺相如心怀大局,对廉颇相 当的尊重,最后也赢得了廉颇的真诚心,两人结为好友,共辅赵王,令强秦拿赵国一点办法 也没有。蔺相如与廉颇的互相尊重,令得将相和的故事千百年令无数后人膜拜。 现在,给大家举几个例子。在美国,一个颇有名望的富商在散步 时,遇到一个瘦弱的摆地摊卖旧书的年轻人,他缩着身子在寒风中啃着发霉的面包。富 商怜悯地将8美元塞到年轻人手中,头也不回地走了。没走多远,富商忽又返回,从地摊上 捡了两本旧书,并说:“对不起,我忘了取书。其实,您和我一样也是商人!”两年后,富商 应邀参加一个慈善募捐会时,一位年轻书商紧握着他的手,感激地说:“我一直以为我这一生 只有摆摊乞讨的命运,直到你亲口对我说,我和你一样都是商人,这才使我树立了自尊和自 信,从而创造了今天的业绩??”不难想像,没有那一 句尊重鼓励的话,这位富商当初即使给年轻人再多钱,年轻人也断不会出现人生的巨变, 这就是尊重的力量啊 可见尊重的量是多吗大。大家是不是觉得一个故事不精彩,不够明确尊重的力量,那再 来看下一个故事吧! 一家国际知名的大企业,在中国进行招聘,招聘的职位是该公司在中国的首席代表。经 过了异常激烈的竞争后,有五名年轻人,从几千名应聘者中脱颖而出。最后的胜出者,将是 这五个人中的一位。最后的考试是一场面试,考官们都 作文话题素材之为人处世篇:尊重 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺 术,也是仁爱的情操。———刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚

最新整理高中关于幸福的议论文800字范文3篇

最新整理高中关于幸福的议论文800字范文3篇 范文一 什么是幸福?当我把一个棒棒糖递给六岁的邻居小妹妹时,她满足的笑容告诉我,这是她的幸福。当我轻轻地走过妹妹的写字台时,我瞥见埋在桌上的妹妹的僵硬的表情。我笑笑,走近,她抬头,水汪汪的眼睛望着我,似乎带着某种渴求。我说:出去玩吧!她笑了,蹦蹦跳跳地跑了出去。我诧异,这么真诚的笑。玩耍是她的幸福。 暑假到了,马上面临实习的哥哥回来了。可没过几天,就不见人影了,好容易盼他回来,暑假也结束了。他说他去了内蒙的好多地方。我关切的问他累吗?他说:累啊!随后又骄傲地说:“可是我学会了许多东西,我相信那对我以后的人生路是有帮助的。”我笑,大声地喊:哥,你是我的榜样。在他看来,他的暑假是充实的,他是幸福的! 夜幕降临,繁星点点。隔着一层帘,我看见常年劳作的父亲坐在那里,默默地吸着一支烟。灯光打在他的脸上,我看不清他的表情,只有那斑白的鬓角依稀可见。父亲真的老了,每天早出晚归来支撑这个家,他一定很累了。眼泪盈满了眼眶,最后还是不争气的流了下来……“咳、、咳、、”一阵剧烈的咳嗽声传来。我擦干眼泪,走到父亲旁边,父亲把那支烟熄灭,慈祥的笑笑,说:爸爸老了,不中用了。我说:没有啊!父女两开怀的笑了,笑声混着一个个烟圈飘向远方……我问父亲:爸,这么多年付出,这么多年劳作,你幸福吗?他坚定地告诉我,幸福!他说:“只要你们开开心心快快乐乐地成长,我做的一切都值得。”他又说:“霞,好好读书,爸爸赚钱供你上大学,我还没老呢,至少还能干XX年,20年……然后是一片寂静,我和父亲看着远方,那里有希望。 年迈的姥姥是家里的大长辈,他常常念叨:平安就是福。那也许是经历了人生的酸甜苦辣后的感悟吧!每逢新春,一大家人在姥姥家围着看电视时,那应该是她的幸福吧! 幸福是什么?它不是你一个人拥有一座豪宅,它是一家人在并不宽敞的屋子里谈笑风生。它不是你一个人有拥山珍海味,它是一家人和和乐乐的吃一些普通

感受幸福作文(15篇)

感受幸福作文(15篇) 感受幸福作文第1篇: 幸福是什么?这是许多同学要问的问题。 很小的时候,我就明白钱能够买来一大盒巧克力;钱能够买来玩具汽车;钱能够买许多的美丽的洋娃娃;钱能够买来一个大楼…… 我以为有钱就是幸福。 倡我错了,钱虽然能够买来一屋子巧克力,但买了甜蜜,钱虽然能买到房子,可是却买来家庭幸福;钱虽然能买来药,可是却买来健康,钱虽然能买来闹钟,可是买来时间……那时,我又明白了有钱必须幸福。 以前,我总是为了一条连衣裙而朝思暮想,盼望有一天能够穿上裙子,去放风筝。那时候,我以为拥有就是幸福。 最终有一天,妈妈给我买了这条连衣裙,我高兴的一宿都没有睡觉。可是几天的新鲜劲没有了,穿上裙子后,我并没有什么改变,依然是一个黄毛丫头。于是把它扔到箱子里。几个月后,我又把它翻出来,可是已经小了,穿下了。我又明白了,虽然裙子很美,但都是暂时的,完美的时光总是转瞬消失。 “幸福是什么?”我依然没有感受到。 几年后,我在街上看到了一对耄耋老人,他们虽然履蹒跚,可是互相搀扶,有时抬头看看天上的云卷云舒,有时望望西天如血的残阳,她们脸上洋溢着的是满足和幸福。 噢,我明白幸福就是真情。虽然他们很穷,可是他们很

相爱。他们彼此珍惜,从感叹世界对他们的公平。往往有的有钱人,他们虽然很有钱,可是他们并幸福,因为他们的心总是被金钱和权势所占据了,根本享受了这天伦之乐。 幸福其实很简单,就是和爸爸、妈妈吃一顿饭,和他在一齐聊聊天。 感受幸福作文第2篇: 夜,悄悄地打开了黑暗,散布着一如既往的宁静,天上的繁星披上了闪装,正对着我的眼,似乎害怕我听到它们之间的悄悄话。 知何时,甘寂寞的虫儿起劲地奏起了动听的乐曲,清凉的微风夹杂着泥土的芳香悄悄地将白天的烦闷与喧嚣赶跑。夜,显得更加宁静而诗意了。 静静的,左思,右想,就这样静静地坐在楼顶上,感受着夜馈赠我的美妙。就连天上偶尔飘过的云朵,也像是怕惊动了夜的宁静,如绒毛在平静水面滑过般,显得那么轻柔而迷人。 今夜独处在空旷的夜空下,感受着夜带给我的美妙,幸福惬意溢满于心。原先自我一向以来苦苦追寻的幸福其实就在自我的身边。 以往,有人努力打拼,渴望生活富裕来获得幸福,可一辈子的艰辛拼搏使自我逐渐沦为金钱的奴隶,苦苦追寻的幸福也越寻越远,最终留给自我的是岁月无情地染白的头发。其实,幸福并非是追寻能得到的,幸福是一种感受,仅有用心感受身边的一切,你就能发现,幸福无处在,譬如,管贫

尊重他人的写作素材

尊重他人的写作素材 导读:——学生最需要礼貌 著名数学家陈景润回厦门大学参加 60 周年校庆,向欢迎的人们说的第一句话是:“我非常高兴回到母校,我常常怀念老师。”被人誉为“懂得人的价值”的著名经济学家、厦门大学老校长王亚南,曾经给予陈景润无微不至的关心和帮助。陈景润重返母校,首先拜访这位老校长。校庆的第三天,陈景润又出现在向“哥德巴赫猜想”进军的启蒙老师李文清教授家中,陈景润非常尊重和感激他。他还把最新发表的数学论文敬送李教授审阅,并在论文扉页上工工整整写了以下的字:“非常感谢老师的长期指导和培养——您的学生陈景润。”陈景润还拜访了方德植教授,方教授望着成就斐然而有礼貌的学生,心里暖暖的。 ——最需要尊重的人是老师 周恩来少年时在沈阳东关模范学校读书期间 , 受到进步教师高盘之的较大影响。他常用的笔名“翔宇”就是高先生为他取的。周恩来参加革命后不忘师恩 , 曾在延安答外国记者问时说:“少年时代我在沈阳读书 , 得山东高盘之先生教诲与鼓励 , 对我是个很大的 促进。” 停奏抗议的反思 ——没有礼仪就没有尊重 孔祥东是著名的钢琴演奏家。 1998 年 6 月 6 日晚,他在汕头

举办个人钢琴独奏音乐会。演出之前,节目主持人再三强调,场内观众不要随意走动,关掉 BP 机、手提电话。然而,演出的过程中,这种令人遗憾的场面却屡屡发生:场内观众随意走动, BP 机、手提电话响声不绝,致使孔祥东情绪大受干扰。这种情况,在演奏舒曼作品时更甚。孔祥东只好停止演奏,静等剧场安静。然而,观众还误以为孔祥东是在渴望掌声,便报以雷鸣般的掌声。这件事,令孔祥东啼笑皆非。演出结束后,孔祥东说:有个 BP 机至少响了 8 次,观众在第一排来回走动,所以他只得以停奏抗议。 “礼遇”的动力 ——尊重可以让人奋发 日本的东芝公司是一家著名的大型企业,创业已经有 90 多年的历史,拥有员工 8 万多人。不过,东芝公司也曾一度陷入困境,土光敏夫就是在这个时候出任董事长的。他决心振兴企业,而秘密武器之一就是“礼遇”部属。身为偌大一个公司的董事长,他毫无架子,经常不带秘书,一个人步行到工厂车间与工人聊天,听取他们的意见。更妙的是,他常常提着酒瓶去慰劳职工,与他们共饮。对此,员工们开始都感到很吃惊,不知所措。渐渐地,员工们都愿意和他亲近,他赢得了公司上下的好评。他们认为,土光董事长和蔼可亲,有人情味,我们更应该努力,竭力效忠。因此,土光上任不久,公司的效益就大力提高,两年内就把亏损严重、日暮途穷的公司重新支撑起来,使东芝成为日本最优秀的公司之一。可见,礼,不仅是调节领导层之间关

感悟幸福(作文)(20篇)

感悟幸福(作文)(20篇) 篇一篇的乐章组成的,喜、怒、哀、乐。每一个人都自我丰富多彩的生活,我也自我的生活。我原本以为,吃可口的牛排,打电脑游戏,和朋友开心玩乐就是幸福。可是,我错了,幸福并不仅仅如此。 记得一次,我放学回到家里放下书包就拿起一包饼干来吃。吃着吃着,突然我觉得牙齿痛了起来,并且越来越痛,痛得我连饼干也咬不动了。我放下饼干,连忙去拿了一面镜子来看。原先这又是那一颗虫牙在“作怪”。“哎哟哟,哎哟哟,痛死我了”我不停地说着。渐渐地,那牙疼得越来越厉害,疼得我坐立不安,直打滚。之后在妈妈的陪伴下去了医院,治好了那颗虫牙。跨出医院大门时,我觉得心境出奇的好,天空格外的蓝,路边的樟树异常的绿,看什么都顺眼,才猛然一悟,幸福是简单而平凡的,身体健康就是一种幸福! 这学期我发现我的英语退步了,我决定要把这门功课学好,于是,我每一天回家做完作业后,都抽出半小时时间复习英语,在课上也听得异常认真,一遇到不懂的题目主动请教教师。经过一段时间的努力,最终,在上次考试的时候,我考了97分。妈妈表扬了我,我心里美滋滋的。我明白了经过自我的努力享受到成功的喜悦,这也是一种幸福。

每个人都无一例外的渴望幸福。不一样的人不一样的感受,其实,幸福就是那种能在平凡中寻找欢乐、能在困境中找到自信的一种心境。同学们,幸福其实很简单,就在我们的身边,触手可及。用心去认真地品味吧,它一向未曾离开我们身边! 感悟幸福(作文) 第8篇: 幸福无时没,幸福无处不在。儿时,你的幸福就是当你跌倒失声痛苦时,母亲抱起你,拍打着你背时的那句“别哭。”;成年时,你的幸福就是在你结婚时你身旁的那位拉起你的手问你的那句“你愿意吗”;老年时,你的幸福就是在椅子背后孙子的那句“奶奶我帮你敲背!”。家庭中,幸福是一家子的和乐融融;学校里,幸福是同学间的互相竞争;赛场上,幸福是队友间的默契配合。 然而,幸福不全然是唾手可得的,想不付出任何代价而得到幸福,那是神话。张志新说;“苦换来的是知识真理,坚持真理,就应自觉的欣然理解痛苦,那时,也仅那时,痛苦才将化为幸福。”仅心身遭受过痛苦的洗涤,幸福才会来到,痛得越深,苦得越彻,幸福得就越甜。鲁迅说:“穿掘到灵魂的深处,使人受了精神的苦刑而得到的创伤,又即从这得伤和养伤的愈合中,得到苦的涤除,而上了苏生的路。”从而得到了幸福的真谛。拉罗什夫科说过:“幸福后面是灾祸,灾祸后面是幸福。”你想成为幸福的人吗愿你首先吃得

尊重_议论文素材

尊重_议论文素材 "礼遇"的动力 --尊重可以让人奋发 日本的东芝公司是一家著名的大型企业,创业已经有90 多年的历史,拥有员工8 万多人。不过,东芝公司也曾一度陷入困境,土光敏夫就是在这个时候出任董事长的。他决心振兴企业,而秘密武器之一就是"礼遇"部属。身为偌大一个公司的董事长,他毫无架子,经常不带秘书,一个人步行到工厂车间与工人聊天,听取他们的意见。更妙的是,他常常提着酒瓶去慰劳职工,与他们共饮。对此,员工们开始都感到很吃惊,不知所措。渐渐地,员工们都愿意和他亲近,他赢得了公司上下的好评。他们认为,土光董事长和蔼可亲,有人情味,我们更应该努力,竭力效忠。因此,土光上任不久,公司的效益就大力提高,两年内就把亏损严重、日暮途穷的公司重新支撑起来,使东芝成为日本最优秀的公司之一。可见,礼,不仅是调节领导层之间关系的纽带,也是调节上下级之间关系,甚至和一线工人之间关系的纽带。世界知识产权日 --尊重知识 在2000 年10 月召开的世界知识产权组织第35 届成员国大会上,我国提议将 4 月26 日定为"世界知识产权日"。这个提案经世界知识产权组织成员国大会得到了确定。2001 年4 月26 日成为第一个"世界知识产权日"。这是我国尊重知识的具体表现。 屠格涅夫与乞丐 --尊重比金钱更重要 俄罗斯文豪屠格涅夫一日在镇上散步,路边有一个乞丐伸手向他讨钱。他很想有所施与,从口袋掏钱时才知道没有带钱袋。见乞丐的手伸得高高地等着,屠格涅夫面有愧色,只好握着乞丐的手说:"对不起,我忘了带钱出来。"乞丐笑了,含泪说:"不,我宁愿接受您的握手。" 孙中山尊重护士 --尊重不分社会地位 有一天,孙中山先生病了,住院治疗。当时,孙中山已是大总统、大元帅了。但是,他对医务人员很尊重,对他们讲话很谦逊。平时,无论是早晨或是晚间,每当接到护士送来的药品,他总是微笑着说声"谢谢您",敬诚之意溢于言辞。 1925 年孙中山患肝癌,弥留之际,当一位护理人员为他搬掉炕桌时,孙中山先生安详地望着她,慈祥地说:"谢谢您,您的工作太辛苦了,过后您应该好好休息休息,这阵子您太辛苦了! "听了这话,在场的人都泣不成声。 毛泽东敬酒 --敬老尊贤是一种美德 1959 年6 月25 日,毛泽东回到离别30 多年的故乡韶山后,请韶山老人毛禹珠来吃饭,并特地向他敬酒。毛禹珠老人说:"主席敬酒,岂敢岂敢! "毛泽东接着说:"敬老尊贤,应该应该。" 周恩来不穿拖鞋接待外宾 --衣着整齐体现对人的尊重 周恩来晚年病得很重,由于工作的需要,他还要经常接待外宾。后来,他病得连脚都肿起来了,原先的皮鞋、布鞋都不能穿,他只能穿着拖鞋走路,可是,有些重要的外事活动,他还是坚持参加。他身边的工作人员出于对总理的爱护和关心,对他说:"您就穿着拖鞋接待外

关于尊重的论点和论据素材

关于尊重的论点和论据素材 关于尊重的论点 1.尊重需要理解和宽容。 2.尊重也应该坚持原则。 3.尊重知识是社会进步的表现。 4.尊重别人就要尊重别人的劳动。 5.尊重人才是社会发展的需要。 6.人与人之间需要相互尊重。 7.只有尊重别人才会受到别人的尊重。 8.尊重能促进人与人之间的沟通。 9.我们应该养成尊重他人的习惯。 10.对人尊重,常会产生意想不到的善果。 关于尊重的名言 1.仁者必敬人。《荀子》 2.忍辱偷生的人决不会受人尊重。高乃依 3.尊重别人的人不应该谈自己。高尔基 4.尊重别人,才能让人尊敬。笛卡尔 5.谁自尊,谁就会得到尊重。巴尔扎克 6.君子贵人而贱己,先人而后己。《礼记》 7.卑己而尊人是不好的,尊己而卑人也是不好的。徐特立 8.对人不尊敬,首先就是对自己的不尊敬。惠特曼

9.为人粗鲁意味着忘记了自己的尊严。车尔尼雪夫斯基 10.对人不尊敬的人,首先就是对自己不尊重。陀思妥耶夫斯基 11.对于应尊重的事物,我们应当或是缄默不语,或是大加称颂。尼采 12.尊重老师是我们中华民族的传统美德,我们每一个人都不应该忘记。xx 13.尊重劳动、尊重知识、尊重人才、尊重创造。《xx 大报告》 14.对别人的意见要表示尊重。千万别说:你错了。卡耐基 15.尊重人才,培养人才,是通用电器长久不败的法宝。杰克韦尔奇 16.君子之于人也,当于有过中求无过,不当于无过中求有过。程颐 17.施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺术,也是仁爱的情操。刘墉 18.要尊重每一个人,不论他是何等的卑微与可笑。要记住活在每个人身上的是和你我相同的性灵。叔本华 19.要喜欢我们所不尊重的人是很难的;但要喜欢

感受幸福作文范文5篇

感受幸福作文范文5篇 幸福是一种心灵的振颤。它像会倾听音乐的耳朵一样,需要不断地训练。下面给大家了感受幸福范文5篇,仅供参考。 我曾经填了一份读者反馈表,得了个二等奖,奖品是三百元钱。拿着那张三百元汇款单回家,我却不大开心。在路上,我想起了从前看过的一部电影,片名好像是《小鞋子》。 主人公小阿里在参加比赛时,一心只想跑第三名,以拿到梦寐以求的奖品——一双小鞋子。他想让妹妹穿着它,而不是光着脚去上学。 他被别人推倒了又爬起来再跑,情急之下,竟然冲到了第一名。 老师欣喜若狂地祝贺他,主办单位安排大官和他合影,阿里却难过地流下了眼泪。 尽管冠军有着很高的荣誉,能得到更为丰富的奖品,但那不是阿里最需要的,他需要那双并不漂亮的小鞋子。结果,他不仅没有得到,反而连仅有的一双鞋子也跑坏了。

在那个时候,我们或许可以这样解释幸福:幸福就是得到你急需的东西。 一个吃斋念佛的饥饿的人,面对着驰名中外的北京烤鸭,是不会有幸福感的,因为那不是他需要的,他急需的,可能只是两个馒头,一盘素炒豆芽而已;独自住在乡下的老人,总是能收到城里儿子寄来的钱物,很让乡亲们羡慕,但老人最想要的不是这些,而是儿孙膝下承欢的天伦之乐;在炎炎烈日下赶路的人,急需的是一片树阴,一阵凉风;一把扇子,一眼清凉的泉水,而不是一件名贵的貂皮大衣;大海是富饶的,它哺育了各种各样的生物,珍藏着无数的宝藏和财富。但在海上迷航的人,急需的却是普普通通的淡水。 聪明的你,可能已经猜到, ___不开心了。是的,我不需要三百元钱,钱我家里人会给我。我原本只想得个三等奖,三等奖的奖品是一百元钱。我想留为己用,不想让家里人知道。尽管这样做很不合理,但我还是想,因为我想。 幸福,是团聚;是分享快乐;是帮助他人;是朋友团结互助;是一个美梦;是……幸福无处不在,只要用心体会,就能感受到幸福的存在。

关于学会尊重的高中作文1000字以上_作文素材

关于学会尊重的高中作文1000字以上 尊重是一杯清茶,只有真正懂它的人才能忽略它的寡淡,品出它深处的热烈。下面橙子为大家搜集整理有关学会尊重的高中作文,希望可以帮助到大家! 高中作文学会尊重曾经听说这样一个故事: 一位商人看到一个衣衫破烂的铅笔推销员,顿生一股怜悯之情。他不假思索地将10元钱塞到卖铅笔人的手中,然后头也不回地走开了。走了没几步,他忽然觉得这样做不妥,于是连忙返回来,并抱歉地解释说自己忘了取笔,希望不要介意。最后,他郑重其事地说:“您和我一样,都是商人。” 一年之后,在一个商贾云集、热烈隆重的社交场合,一位西装革履、风度翩翩的推销商迎上这位商人,不无感激地自我介绍道:“您可能早已忘记我了,而我也不知道您的名字,但我永远不会忘记您。您就是那位重新给了我自尊和自信的人。我一直觉得自己是个推销铅笔的乞丐,直到您亲口对我说,我和您一样都是商人为止。” 没想到商人这么—句简简单单的话,竟使一个不无自卑的人顿然树立起自尊,使—个处境窘迫的人重新找回了自信。正是有了这种自尊与自信,才使他看到了自己的价值和优势,终于通过努力获得了成功。不难想象,倘若当初没有那么—句尊重鼓励的话,纵然给他几千元也无济于事,断不会出现从自认乞丐到自信自强的巨变,这就是尊1 / 7

重,这就是尊重的力量! 尊重,是—种修养,一种品格,一种对别人不卑不亢的平等相待,一种对他人人格与价值的的充分肯定。任何人都不可能尽善尽美,完美无缺,我们没有理由以高山仰止的目光审视别人,也没有资格用不屑一顾的神情去嘲笑他人。假如别人在某些方面不如自己,我们不能用傲慢和不敬去伤害别人的自尊;假如自己在有些地方不如他人,我们不必以自卑或嫉妒去代替理应有的尊重。一个真正懂得尊重别人的人,必然会以平等的心态、平常的心情、平静的心境,去面对所有事业上的强者与弱者、所有生活中的幸运者与不幸者。 尊重是一缕春风,一泓清泉,一颗给人温暖的舒心丸,一剂催人奋进的强心剂。它常常与真诚、谦逊、宽容、赞赏、善良、友爱相得益彰,与虚伪、狂妄、苛刻、嘲讽、凶恶、势利水火不容。给成功的人以尊重,表明了自己对别人成功的敬佩、赞美与追求;表明了自己对别人失败后的同情、安慰与鼓励。只有要尊重在,就有人间的真情在,就有未来的希望在,就有成功后的继续奋进,就有失败后的东山再起。 尊重不是盲目的崇拜,更不是肉麻的吹捧;不是没有原则的廉价逢迎,更不是没有自卑的低三下四。懂得了尊重别人的重要,并不等于学会了如何尊重别人,从这个意义上说,尊重他人也是一门学问,学会了尊重他人,就学会了尊重自己,也就学会和掌握了人生的一大要义。 2 / 7

感受幸福作文600字叙事 感受幸福作文600字初二

感受幸福作文600字叙事感受幸福作文600字初二 对于我们来说,什么是幸福?幸福就是一家人整整齐齐的坐在一起吃一顿饭,幸福就是自己在乎的人没病没痛,健健康康的.....今天小编和同学们分享几篇关于感受幸福的作文,希望帮到有需要的同学们。感受幸福作文600字【1】有人说,幸福是一种感觉,幸福是一种心境,幸福是一种体验,幸福,更是一种品格。忧伤时,贴心好友的一个拥抱是幸福;思乡时,电话那头响起的家人声音是幸福;听着音乐,啜着咖啡,悠然自在地写点感想是幸福……那么,朋友,你感受到了幸福了吗?幸福,有些人看来很渺远,有些人看来却近在咫尺。其实,世界并不缺少幸福,而是缺少发现幸福的眼睛。“猫吃鱼,狗吃肉,奥特曼打小怪兽”各求所需,心满意足,这,就是所谓的“幸福”。年轻的父母在逗弄牙牙学语的孩童;亲密爱人在携手漫步;父母端上热腾腾的饭菜;孩子熟睡后嘴角的微笑……这点点滴滴不都是幸福的剪影吗?幸福无处不在……有一次,妈妈烧了红烧鱼,刚要端上桌,我贪婪的目光就随着鱼的移动而移动。妈妈忙把好吃的鱼肚子夹给我,说:“来,吃吧!”“咦?你不是最爱吃这个吗?”我反问道。“现在不爱吃了,你吃吧!”妈妈说道。我拗不过妈妈,只好吃了。刹时间,幸福的感觉洋溢全身。只有在菜里放入了爱,才能让人感受到幸福。平凡的红烧鱼,不平凡的味道,不平凡的爱……幸福,往往是一个瞬间,只有有爱的人,才能发现幸福,感受幸福。朋友,感受你身边的幸福吧!幸福,无处不在……感受幸福作文600字【2】 人生若是一夜星空,幸福便是那耀眼的星星,琳琅满目。当你仔细观察时,你会发现,每一颗都独一无二。——题记 抬头仰望星空,看着那琳琅满目的星星,每一颗都独一无二。当我的眼神扫到最亮的那一颗时,我的思绪立马随着那颗星星穿越到过去。“神经病啊你,我都说过几百遍几千吧几万遍了,我的东西你别碰,你为什么就是讲不通听?好了,现在玻璃球打碎了,可以了吧?你舒服了吧?”扯着嗓子喊的是一个七岁的小女孩,她的对面站着一个五六岁的小女孩,那小女孩有着圆圆的脑袋,一头乌黑发亮的头发下有一双水灵灵的大眼睛,高挺的鼻梁下一张樱桃小嘴,模样甚是可爱。只是那眼眶湿润着,泪水如断了线的珍珠,不断地往外涌。她的小嘴蠕动了好几次,却始终没有说话,小女孩颤颤巍巍地向前走去,用颤抖的小手慢慢地拾起地下的玻璃碎片,转身离开。第二天清晨,当那个七岁的小女孩睁开眼时,就看到桌上有一个玻璃球和小纸条。纸条上写着歪歪扭扭的小字:姐姐对不起,我不是故意的,我只是觉得玻璃球很漂亮。现在我又帮你重新买了一个一模一样的玻璃球,希望姐姐不要生气了。童年的易满足心,那个小女孩果真没有生气了,她和那个小妹妹和好如初了。但偶然的一天,她却发现,玻璃球不是小妹妹打破的……原来是邻居的两岁小弟弟,看到那个玻璃球很漂亮,在伸手拿它时,因为太滑,玻璃球滚了下来……于是,她拿着自己最爱的零食和棒棒糖去和小妹妹道歉。没想到妹妹却如小大人一般说:“都过去了,你依旧是我的好姐姐,我永远是你的调皮妹妹……”回想到这里,我的眼眶早已红润。那个七岁的小女孩不就是我吗?那个小妹妹不就是自己的妹妹吗?顿时明白了妹妹的用意,顿时发现:幸福就像空气,无时无刻萦绕在我们身边,只是我们未曾发觉罢了。现在的我发觉了,也感受到了。人生若是一夜星空,幸福便是那耀眼的星星,琳琅满目。当你仔细观察时,你会发现,每一颗都独一无二。感受幸福作文600字【3】 什么是幸福?幸福是空气,它普遍的你随处都可以感受到它的存在;幸福是小鸟,它调皮的你怎么也抓不住它;幸福又是一杯水,平平淡淡才是真。幸福无时没有,幸福无处不在。儿时,你的幸福就是当你跌倒失声痛苦时,母亲抱起你,拍打着你背时的那句“别哭。”;成年时,你的幸福就是在你结婚时你身旁的那位拉起你的手问你的那句“你愿意吗?”;老年时,你的幸福就是在椅子背后孙子的那句“奶奶我帮你敲背!”。家庭中,幸福是一家子的和乐融融;学校里,幸福是同学间的互相竞争;赛场上,幸福是队友间的默契配合。然而,幸福不全然是唾手可得的,想不付出任何代价而得到幸福,那是神话。张x新说;“苦换来的是知识真理,坚持真理,就应自觉的欣然接受痛苦,那时,也只有那时,痛苦才将化为幸福。”

感悟幸福作文(精选10篇)

感悟幸福作文(精选10篇) 在日常生活或是工作学习中,大家都经常接触到作文吧,作文是由文字组成,经过人的思想考虑,通过语言组织来表达一个主题意义的文体。那么,怎么去写作文呢?以下是小编收集整理的感悟幸福作文(精选10篇),仅供参考,希望能够帮助到大家。 感悟幸福作文1 幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“夜来风雨声,花落知多少”的恬谈;幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。 记得那是一个宁静的夜晚,家家户户家家户户都关了灯,可我家的灯却依旧工作着,因为我的作业还没有写完,懊恼的我使劲的捶打着桌子。妈妈听到了响声走了进来,亲切的说到:“怎么了乖女儿?”“都六点半了,我的作业还没有写完,我怎么不着急”,我气急败坏的回答。妈妈看到我无助的状态安慰到“孩子不要着急,妈妈会在这一直陪着你,直到你写完作业……”此刻我忽然感觉到,其实有母亲的陪伴就是我最大的幸福! 还有一次,我和同学们一起在小区的花园里玩,正当我们玩游戏玩的不亦乐乎的时候,我被重重的摔了一跤,腿被摔破了。当时情不自禁的哭了起来,同学们听到我的哭声纷纷赶来,大家纷纷帮忙把我搀扶回家里。那时我又深深的感觉到,来自朋友的关心其实也是一种幸福。 记得那是一个风雨交加的下午,由于我的粗心来学的时候忘记了带雨伞。放学后我只能站在教室的窗口默默的看着外面的漂泊大雨……忽然,一个高大而熟悉的身影出现在我的眼前,忽然感觉双眼酸涩:“爸爸……”我一下子扑倒了爸爸的怀里,父亲的爱是无言的,这也正是我幸福的源泉! 幸福就是有母亲的陪伴,朋友的关怀,父亲的关爱!每个人都向往幸福追求幸福,其实幸福就是一种感觉,是一种心态,它源于你对事与物的的追求与理解! 感悟幸福作文2 著名作家海伦凯勒曾说过:“我一直在哭,一直在哭,哭我没有鞋穿,直到有一天,我知道有人没有脚…我由此知道了幸福的真正内涵。”幸福是什么? 许多年前,当人们提出这个问题时,个个都两目相对,哑口无言。是啊,幸福是什么?幸福是那禾苗晃动稚嫩的身躯,昂首向天际发出的无声的诉说吗?幸福是蚕宝宝咀嚼着香脆的桑叶奏出的“沙沙沙沙”的乐曲吗?幸福是雏燕展翼穿过鹅黄的柳梢剪出的一片春色朝向母亲的回眸吗?幸福是梅花“已是

高考作文素材关于文明的作文素材

2015年高考作文素材:关于文明的作文素材 高考作文素材点拨及运用思路:文明 一、素材链接: 言语类 (一)名人名言 1.礼仪的目的与作用本在使得本来的顽梗变柔顺,使人们的气质变温和,使他尊重别人,和别人合得来。约翰?洛克 2.善气迎人,亲如弟兄;恶气迎人,害于戈兵。管仲 3.天下有大勇者,猝然临之而不惊,不故加之而不怒。苏轼 4.我们应该注意自己不用言语去伤害别的同志,但是,当别人用语言来伤害自己的时候,也应该受得起。刘少奇 5.礼貌使人类共处的金钥匙。松苏内吉 6.讲话气势汹汹,未必就是言之有理。萨迪 7.火气甚大,容易引起愤怒底烦扰,是一种恶习而使心灵向着那不正当的事情,那是一时冲动而没有理性的行动。彼得.阿柏拉德 8.青年人应当不伤人,应当把个人所得的给予各人,应当避免虚伪与欺骗,应当显得恳挚悦人,这样学着去行正直。夸美纽斯 9.礼貌是儿童与青年所应该特别小心地养成习惯的第一件大事。约翰.洛克 10.不论你是一个男子还是一个女人,待人温和宽大才配得上人的名称。一个人的真 11.正的英勇果断,决不等于用拳头制止别人发言。萨迪 12.礼貌使有礼貌的人喜悦,也使那些授人以礼貌相待的人们喜悦。孟德斯鸠 13.坏事情一学就会,早年沾染的恶习,从此以后就会在所有的行为和举动中显现出来,不论是说话或行动上的毛病,三岁至老,六十不改。克雷洛夫 14.礼貌经常可以替代最高贵的感情。梅里美 15.礼貌是最容易做到的事,也是最珍贵的东西。冈察尔 16.脾气暴躁是人类较为卑劣的天性之一,人要是发脾气就等于在人类进步的阶梯上倒退了一步。达尔文 17.蜜蜂从花中啜蜜,离开时营营的道谢。浮夸的蝴蝶却相信花是应该向他道谢的。泰戈尔

感受幸福作文650字

感受幸福作文650字 第1篇感受幸福作文650字 什么是幸福?幸福是各种各样的,不同的人对幸福的感受也各不相同。假如我们不会说话,那就不能表达自己内心的想法,不能向朋友倾诉自己的喜悦与烦恼,那是一种不幸,反之就是一种幸福。假如我们听不见,就不能感受到一切美妙的声音,如叮叮咚咚的琴声,哗哗的流水声,以及父母、老师、同学的说话声,那也是一种不幸,反之也是一种幸福。假如我们看不见,就不能欣赏到这个大千世界形形色色的样子,看不见斑斓的色彩,更看不见那美丽的太阳和月亮……这也是一种不幸,反之,,也是一种幸福。父母爱着我,就是一种幸福,别人帮助我,是一种幸福,能吃到美味的食物,也是一种幸福,快乐地生活着,更是一种幸福。被人信任是一种莫大的幸福。我平时有个坏习惯,不喜欢洗脸,一般都要妈妈督促着才勉强去洗。可有一次,妈妈回家比较晚。她到家时,我们都已经在吃晚饭了,正吃得津津有味时,妈妈回来了,她的第一句话就是“你今天有没有洗过脸?”,我赶紧回答:“我洗过了”。妈妈半信半疑:“你到底洗过没有?”,并盯着我,脸上的表情十分严肃。她这样做,其实是测试我有没有说谎。于是我更加坚定并大声地说:“我真的洗过了!”这次,她不再问了,并且笑了,我知道她相信了我的话,这时,我真的感受到了一种从未有过的幸福!其实,幸福还有很多很多,如爷爷奶奶的宠爱,父母亲的关怀,亲戚朋友们的赞美,老师们的期盼,同学们的友爱…。.都值得我们去好好珍惜,让我们常怀一颗感恩的心,时刻感受生活中的幸福吧! 第2篇感受幸福作文650字 欧文曾说过,“人类的一切努力的目的在于获得幸福。幸福是什么?幸福是一种感觉,感动就是一种幸福。幸福就像作家毕淑敏说的:世上有预报台风的,有预报蝗虫的,有预报瘟疫的,有预报地震的,但没有人预报幸福,其实幸福和世界万物一样,有它的征兆。清晨,旭日东升,温柔的阳光洒向人间,抚摸着我的脸,心,感觉暖暖的。这,就是幸福的征兆。当我们在写作业时,一边写,一边贪婪地记下知识的结晶。这时,笔尖沙沙的响声,就是幸福的征兆。走在小河边,两岸的杨柳随风摆动,鱼儿和鹅卵石正在编制着充满活力的动态画面。这时,小河潺潺的流水声就是幸福的征兆。幸福的感觉是美好的,幸福的味道是甜美的。只不过它比玫瑰更芬芳,比棒棒糖更甜蜜,比巧克力更浓郁,比咖啡更香醇......幸福是什么?“幸福是贫困中相濡以沫的一块糕饼,患难中心心相印的一个眼神,父亲一次粗糙的抚摸,女友一个温馨的字条......这像一粒粒缀在旧绸子上的红宝石,在凄凉中愈发熠熠生辉。”幸福在哪里?当我们与家人一起散步时,幸福就在那温馨的眼神里;当我们和朋友们一起玩耍时,幸福就在那灿烂的笑容里;当我们与同学在一起探讨难题时,幸福就在那激烈的争辩里;当我们想象着自己的未来时,幸福就在那美好的憧憬里。幸福有时不一定是甜的,快乐有时也不一定就是幸福。快乐只是表面的开心,而幸福是发自内心的快乐和欣慰。因此,只要你是幸福的,那你一定是快乐的。让我们一起追求幸福吧!在生活中快乐成长,在成长中感受幸福。 第3篇感受幸福作文650字 幸福是什么?幸福对于每个人,都是不一样的!其实幸福可以很小,很简单,它时刻陪伴在我们的身边,也许是因为人们平时没有去在意,身边的那些本可以让人暖心的普通点滴,只要我们好好的去感受幸福! 幸福就好比如这样:天悄悄拉下夜幕,同学们渐渐散了,不知什么时候,课室里只剩下我和她,她的画,也终于画好了。而我还是差一些才能搞定,她便开始收拾起来,时间更加紧迫,因此,我的心更加紧张,一滴晶莹的汗滴在了画纸上,我觉得实在画不下去了:小姨妈(外号),你觉得我的画还有有救吗!她凑过脑袋:来,我看看,当然有啦,快画吧!我看她望了望校门口,她一定是在找寻来接她回家的爸爸,我看看空空的课室:小姨妈,很晚

相关文档
相关文档 最新文档