文档库 最新最全的文档下载
当前位置:文档库 › 压电材料

压电材料

压电材料
压电材料

压电材料

百科名片

压电材料是受到压力作用时会在两端面间出现电压的晶体材料。

目录[隐藏]

基本介绍

材料原理

材料分类

材料应用

发展现状

基本介绍

材料原理

材料分类

材料应用

发展现状

[编辑本段]

基本介绍

受到压力作用时会在两端面间出现电压的晶体材料。1880年,法国物理学家P. 居里和J.居里兄弟发现,把重物放在石英晶体上,晶体

压电材料

某些表面会产生电荷,电荷量与压力成比例。这一现象被称为压电效应。随即,居里兄弟又发现了逆压电效应,即在外电场作用下压电体会产生形变。压电效应的机理是:具有压电性的晶体对称性较低,当受到外力作用发生形变时,晶胞中正负离子的相对位移使正负电荷中心不再重合,导致晶体发生宏观极化,而晶体表面电荷面密度等于极化强度在表面法向上的投影,所以压电材料受压力作用形变时两端面会出现异号电荷。反之,压电材料在电场中发生极化时,会因电荷中心的位移导致材料变形。利用压电材料的这些特性可实现机械振动(声波)和交流电的互相转换。因而压电材料广

泛用于传感器元件中,例如地震传感器,力、速度和加速度的测量元件以及电声传感器等。

现在,这类材料被广泛运用,举一个很生活化的例子,打火机的火花即运用此技术。

[编辑本段]

材料原理

压电现象是100多年前居里兄弟研究石英时发现的。那么,什么是压电效应呢?当你在点燃煤气灶或热水器时,就有一种压电陶瓷已悄悄地为你服务了一次。生产厂家在这类压电点火装置内,藏着一块压电陶瓷,当用户按下点火装置的弹簧时,传动装置就把压力施加在压电陶瓷上,使它产生很高的电压,进而将电能引向燃气的出口放电。于是,燃气就被电火花点燃了。压电陶瓷的这种功能就叫做压电效应。

压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这

压电石英晶体材料

种相互对应的关系确实非常有意思。

压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。

[编辑本段]

材料分类

无机压电材料

分为压电晶体和压电陶瓷,压电晶体一般是指压电单晶体;压电陶瓷则泛指压电多晶体。压电陶瓷是指用必要成份的原料进行混合、成型、高温烧结,由粉粒之间的

固相反应和烧结过程而获得的微细晶粒无规则集合而成的多晶体。具有压电性的陶瓷称压电陶瓷,实际上也是铁电陶瓷。在这种陶瓷的晶粒之中存在铁电畴,铁电畴由自发极化方向反向平行的180 畴和自发极化方向互相垂直的90畴组成,这些电畴在人工极化(施加强直流电场)条件下,自发极化依外电场方向充分排列并在撤消外电场后保持剩余极化强度,因此具有宏观压电性。如:钛酸钡BT、锆钛酸铅PZT、改性锆钛酸铅、偏铌酸铅、铌酸铅钡锂PBLN、改性钛酸铅PT等。这类材料的研制成功,促进了声换能器,压电传

压电材料

感器的各种压电器件性能的改善和提高。

压电晶体一般指压电单晶体,是指按晶体空间点阵长程有序生长而成的晶体。这种晶体结构无对称中心,因此具有压电性。如水晶(石英晶体)、镓酸锂、锗酸锂、锗酸钛以及铁晶体管铌酸锂、钽酸锂等。

相比较而言,压电陶瓷压电性强、介电常数高、可以加工成任意形状,但机械品质因子较低、电损耗较大、稳定性差,因而适合于大功率换能器和宽带滤波器等应用,但对高频、高稳定应用不理想。石英等压电单晶压电性弱,介电常数很低,受切型限制存在尺寸局限,但稳定性很高,机械品质因子高,多用来作标准频率控制的振子、高选择性(多属高频狭带通)的滤波器以及高频、高温超声换能器等。近来由于铌镁酸铅Pb(Mg1/3Nb2/3)O3单晶体(Kp ≥90%, d33≥900×10-3C/N, ε≥20,000)性能特异,国内外上都开始这种材料的研究,但由于其居里点太低,离使用化尚有一段距离。

有机压电材料

又称压电聚合物,如偏聚氟乙烯(PVDF)(薄膜)及其它为代表的其他有机压电(薄膜)材料。这类材料及其材质柔韧,低密度,低阻抗和高压电电压常数(g)等优点为世人瞩目,且发展十分迅速,现在水声超声测量,压力传感,引燃引爆等方面获得应用。不足之处是压电应变常数(d)偏低,使之作为有源发射换能器受到很大的限制。

换能器

第三类是复合压电材料,这类材料是在有机聚合物基底材料中嵌入片状、棒状、杆状、或粉末状压电材料构成的。至今已在水声、电声、超声、医学等领域得到广泛的应用。如果它制成水声换能器,不仅具有高的静水压响应速率,而且耐冲击,不易受损且可用与不同的深度。

[编辑本段]

材料应用

压电材料的应用领域可以粗略分为两大类:即振动能和超声振动能-电能换能器应用,包括电声换能器,水声换能器和超声换能器等,以及其它传感器和驱动器应用。

换能器

换能器是将机械振动转变为电信号或在电场驱动下产生机械振动的器件

压电聚合物电声器件利用了聚合物的横向压电效应,而换能器设计则利用了聚合物压电双晶片或压电单晶片在外电场驱动下的弯曲振动,利用上述原理可生产电声器件如麦克风、立体声耳机和高频扬声器。目前对压电聚合物电声器件的研究主要集中在利用压电聚合物的特点,研制运用其它现行技术难以实现的、而且具有特殊电声功能的器件,如抗噪声电话、宽带超声信号发射系统等。

压电聚合物水声换能器研究初期

超声波传感器

均瞄准军事应用,如用于水下探测的大面积传感器阵列和监视系统等,随后应用领域逐渐拓展到地球物理探测、声波测试设备等方面。为满足特定要求而开发的各种原型水声器件,采用了不同类型和形状的压电聚合物材料,如薄片、薄板、叠片、圆筒和

同轴线等,以充分发挥压电聚合物高弹性、低密度、易于制备为大和小不同截面的元件、而且声阻抗与水数量级相同等特点,最后一个特点使得由压电聚合物制备的水听器可以放置在被测声场中,感知声场内的声压,且不致由于其自身存在使被测声场受到扰动。而聚合物的高弹性则可减小水听器件内的瞬态振荡,从而进一步增强压电聚合物水听器的性能。

压电聚合物换能器在生物医学传感器领域,尤其是超声成像中,获得了最为成功的应用、PVDF薄膜优异的柔韧性和成型性,使其易于应用到许多传感器产品中。

压电驱动器

压电驱动器利用逆压电效应,将电能转变为机械能或机械运动,聚合物驱动器主要以聚合物双晶片作为基础,包括利用横向效应和纵向效应两种方式,基于聚合物双晶片开展的驱动器应用研究包括显示器件控制、微位移产生系统等。要使这些创造性设想获得实际应用,还需要进行大量研究。电子束辐照P(VDF-TrFE)共聚合物使该材料具备了产生大伸缩应变的能力,从而为研制新型聚合物驱动器创造了有利条件。在潜在国防应用前景的推动下,利用辐照改性共聚物制备全高分子材料水声发射装置的研究,在美国军方的大力支持下正在系统地进行之中。除此之外,利用辐照改性共聚物的优异特性,研究开发其在医学超声、减振降噪等领域应用,还需要进行大量的探索。

传感器上的应用

压电式压力传感器

压电式压力传感器是利用压电材料所具有的压电效应所制成的。压电式压力传感器的基本结构如右图所示。由于压电材料的电荷量是一定的,所以在连接时要特别注意,避免漏电。

压电式压力传感器的优点是具有自生信号,输出信号大,较高的频率响应,体积小,结构坚固。其缺点是只能用于动能测量。需要特殊电缆,在受到突然振动或过大压力时,自我恢复较慢。

压电式加速度传感器

压电元件一般由两块压电晶片组成。在压电晶片的两个表面上镀有电极,并引出引线。在压电晶片上放置一个质量块,质量块一般采用比较大的金属钨或高比重的合金制成。然后用一硬弹簧或螺栓,螺帽对质量块预加载荷,整个组件装在一个原基座的金属壳体中。为了隔离试件的任何应变传送到压电元件上去,避免产生假信号输出,所以一般要加厚基座或选用由刚度较大的材料来制造,壳体和基座的重量差不多占传感器重量的一半。

测量时,将传感器基座与试件刚性地固定在一起。当传感器受振动力作用时,由于基座和质量块的刚度相当大,而质量块的质量相对较小,可以认为质量块的惯性很小。因此质量块经受到与基座相同的运动,并受到与加速度方向相反的惯性力的作用。这样,质量块就有一正比于加速度的应变力作用在压电晶片上。由于压电晶片具有压

电效应,因此在它的两个表面上就产生交变电荷(电压),当加速度频率远低于传感器的固有频率时,传感器给输出电压与作用力成正比,亦即与试件的加速度成正比,输出电量由传感器输出端引出,输入到前置放大器后就可以用普通的测量仪器测试出试件的加速度;如果在放大器中加进适当的积分电路,就可以测试试件的振动速度或位移。

在机器人接近觉中的应用

机器人安装接近觉传感器主要目的有以下三个:其一,在接触对象物体之前,获得必要的信息,为下一步运动做好准备工作;其二,探测机器人手和足的运动空间中有无障碍物。如发现有障碍,则及时采取一定措施,避免发生碰撞;其三,为获取对象物体表面形状的大致信息。

超声波是人耳听见的一种机械波,频率在20KHZ以上。人耳能听到的声音,振动频率范围只是20HZ-20000HZ。超声波因其波长较短、绕射小,而能成为声波射线并定向传播,机器人采用超声传感器的目的是用来探测周围物体的存在与测量物体的距离。一般用来探测周围环境中较大的物体,不能测量距离小于30mm的物体。

超声传感器包括超声发射器、超声接受器、定时电路和控制电路四个主要部分。它的工作原理大致是这样的:首先由超声发射器向被测物体方向发射脉冲式的超声波。发射器发出一连串超声波后即自行关闭,停止发射。同时超声接受器开始检测回声信号,定时电路也开始计时。当超声波遇到物体后,就被反射回来。等到超声接受器收到回声信号后,定时电路停止计时。此时定时电路所记录的时间,是从发射超声波开始到收到回声波信号的传播时间。利用传播时间值,可以换算出被测物体到超声传感器之间的距离。这个换算的公式很简单,即声波传播时间的一半与声波在介质中传播速度的乘积。超声传感器整个工作过程都是在控制电路控制下顺序进行的。

压电材料除了以上用途外还有其它相当广泛的应用。如鉴频器、压电震荡器、变压器、滤波器等。

[编辑本段]

发展现状

下面介绍几种处于发展中的压电陶瓷材料和几种新的应用。

细晶粒压电陶瓷

以往的压电陶瓷是由几微米至几十微米的多畴晶粒组成的多晶材料,尺寸已不能满足需要了。减小粒径至亚微米级,可以改进材料的加工性,可将基片做地更薄,可提高阵列频率,降低换能器阵列的损耗,提高器件的机械强度,减小多层器件每层的厚度,从而降低驱动电压,这对提高叠层变压器、制动器都是有益的。减小粒径有上述如此多的好处,但同时也带来了降低压电效应的影响。为了克服这种影响,人们更改了传统的掺杂工艺,使细晶粒压电陶瓷压电效应增加到与粗晶粒压电陶瓷相当的水

平。现在制作细晶粒材料的成本已可与普通陶瓷竞争了。近年来,人们用细晶粒压电陶瓷进行了切割研磨研究,并制作出了一些高频换能器、微制动器及薄型蜂鸣器(瓷片20-30um厚),证明了细晶粒压电陶瓷的优越性。随着纳米技术的发展,细晶粒压电陶瓷材料研究和应用开发仍是近期的热点。

PbTiO3系压电材料

PbTiO3系压电陶瓷具最适合制作高频高温压电陶瓷元件。虽然存在PbTiO3陶瓷烧成难、极化难、制作大尺寸产品难的问题,人们还是在改性方面作了大量工作,改善其烧结性。抑制晶粒长大,从而得到各个晶粒细小、各向异性的改性PbTiO3材料。近几年,改良PbTiO3材料报道较多,在金属探伤、高频器件方面得到了广泛应用。目前该材料的发展和应用开发仍是许多压电陶瓷工作者关心的课题。

压电陶瓷-高聚物复合材料

无机压电陶瓷和有机高分子树脂构成的压电复合材料,兼备无机和有机压电材料的性能,并能产生两相都没有的特性。因此,可以根据需要,综合二相材料的优点,制作良好性能的换能器和传感器。它的接收灵敏度很高,比普通压电陶瓷更适合于水声换能器。在其它超声波换能器和传感器方面,压电复合材料也有较大优势。国内学者对这个领域也颇感兴趣,做了大量的工艺研究,并在复合材料的结构和性能方面做了一些有益的基础研究工作,目前正致力于压电复合材料产品的开发。

压电性特异的多元单晶压电体

传统的压电陶瓷较其它类型的压电材料压电效应要强,从而得到了广泛应用。但作为大应边,高能换能材料,传统压电陶瓷的压电效应仍不能满足要求。于是近几年来,人们为了研究出具有更优异压电性的新压电材料,做了大量工作,现已发现并研制出了Pb(A1/3B2/3)PbTiO3单晶(A=Zn2+,Mg2+)。这类单晶的d33最高可达26 00pc/N(压电陶瓷d33最大为850pc/N),k33可高达0.95(压电陶瓷K33最高达0.8),其应变>1.7%,几乎比压电陶瓷应变高一个数量级。储能密度高达130J/kg,而压电陶瓷储能密度在10J/kg以内。铁电压电学者们称这类材料的出现是压电材料发展的又一次飞跃。现在美国、日本、俄罗斯和中国已开始进行这类材料的生产工艺研究,它的批量生产的成功必将带来压电材料应用的飞速发展。

压电陶瓷及其应用

压电陶瓷及其应用 一. 概述 压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似(原料粉碎、成型、高温烧结)因而得名。 某些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体表面出现正负束缚电荷,这种现象称为压电效应。晶体的这种性质称为压电性。压电性是J·居里和P·居里兄弟于1880年发现的。几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。 1940年以前,只知道有两类铁电体(在某温度范围内不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体):一类是罗息盐和某些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温(低于—14 C)下才有压电性,工程使用价值不大。 1942-1945年间发现钛酸钡(BaTiO)具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。1947年美国用BaTiO陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。 1954年美国B·贾菲等人发现了压电PbZrO-PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。

迄今,压电陶瓷的应用,上至宇宙开发,下至家庭生活极其广泛。 我国对压电陶瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电陶瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已达到或接近国际水平。 二. 压电陶瓷压电性的物理机制 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。 1. 极化的微观机理 极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。极化机理主要有三种。 (1)电子位移极化——电介质的原子或离子在电场力作用下,带正电原子核与壳层电子的负电荷中心出现不重合。 (2)离子位移极化——电介质正、负离子在电场力作用下发生相对位移,从而产生电偶极矩。 (3)取向极化——组成电介质的有极分子,有一定的本征(固有)电矩,由于热运动,取向无序,总电矩为零,当外加电场时,电偶极矩沿电场方向排列,出现宏观电偶极矩。 对于各向异性晶体,极化强度与电场存在有如下关系 m,n=1,2,3 式中为极化率,或用电位移写成:

硅胶模具材料概述

硅橡胶 目录 1、硅橡胶发展史 (2) 2、硅橡胶定义 (2) 3、硅橡胶分类………………………………………………………………… 2-3 4、硅橡胶的主要性能 (3) 5、硅橡胶的模具结构 (4) 6、硅橡胶加工流程…………………………………………………………… 4-5 7、硅橡胶的产品尺寸特性 (5) 8、硅橡胶在我司产品中的运用 (6)

一、硅橡胶发展史 硅橡胶最先是由美国以三氯化铁为催化剂合成的。1945年硅橡胶产品问世,中国硅橡胶的工业化研究始于1957年,到2003年底中国硅橡胶生产能力为135千吨,其中高温胶100千吨。 二、硅橡胶定义 硅橡胶是指主链由硅和氧原子交替构成,硅原子上通常连有两个有机基团的橡胶。普通的硅橡胶主要由含甲基和少量乙烯基的硅氧链节组成。 三、硅橡胶分类(这里只体现与我司产品有关联的) 硅橡胶分热硫化型(高温硫化硅胶HTV)、室温硫化型(RTV)。高温硅橡胶主要用于制造各种硅橡胶制品,而室温硅橡胶则主要是作为粘接剂、灌封材料或模具使用。我司使用到的硅胶产品主要是热硫化型,也有用到室温硫化型硅胶做粘结剂。 备注解说: 室温硫化硅橡胶与高温硫化硅橡胶的差别主要在于它是以分子量较小的聚硅氧烷为基础胶,在交联剂和催化剂的作用下与室温或稍许加热即可硫化成弹性体。室温硫化硅橡胶由基础胶、交联剂、催化剂、填料等组成。从包装形式上可分为单组份和双组分两种。室温硫化硅橡胶主要应用在以下行业: 1、建筑行业。用于玻璃和金属幕墙的粘结,屋顶嵌封,门窗密封,各种水池、瓷砖的粘接密封。 2、电子行业。用于电子电气部件的包封和灌注材料,可防潮、抗震和耐冲击、耐温度骤变和化学品的腐蚀。 3、模具。硅橡胶优异的仿真性和良好的脱模性能使其在软模具行业得到广泛应用。

压电陶瓷材料及应用

压电陶瓷材料及应用 一、概述 1.1电介质 电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。美国MIT建立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。 我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。 近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有: (1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。 (2)、化学功能陶瓷如各种传感器、化学泵等。 (3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。(电介质物理——邓宏)

压电效应及应用

压电效应应用及现状 [编辑本段] 一、原理: 压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。 压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。 二、应用: 压电材料的应用领域可以粗略分为两大类:即振动能和超声振动能-电能换能器应用,包括电声换能器,水声换能器和超声换能器等,以及其它传感器和驱动器应用。 1、换能器 换能器是将机械振动转变为电信号或在电场驱动下产生机械振动的器件 压电聚合物电声器件利用了聚合物的横向压电效应,而换能器设计则利用了聚合物压电双晶片或压电单晶片在外电场驱动下的弯曲振动,利用上述原理可生产电声器件如麦克风、立体声耳机和高频扬声器。目前对压电聚合物电声器件的研究主要集中在利用压电聚合物的特点,研制运用其它现行技术难以实现的、而且具有特殊电声功能的器件,如抗噪声电话、宽带超声信号发射系统等。 压电聚合物水声换能器研究初期均瞄准军事应用,如用于水下探测的大面积传感器阵列和监视系统等,随后应用领域逐渐拓展到地球物理探测、声波测试设备等方面。为满足特定要求而开发的各种原型水声器件,采用了不同类型和形状的压电聚合物材料,如薄片、薄板、叠片、圆筒和同轴线等,以充分发挥压电聚合物高弹性、低密度、易于制备为大和小不同截面的元件、而且声阻抗与水数量级相同等特点,最后一个特点使得由压电聚合物制备的水听器可以放置在被测声场中,感知声场内的声压,且不致由于其自身存在使被测声场受到扰动。而聚合物的高弹性则可减小水听器件内的瞬态振荡,从而进一步增强压电聚合物水听器的性能。 压电聚合物换能器在生物医学传感器领域,尤其是超声成像中,获得了最为成功的应用、PVDF薄膜优异的柔韧性和成型性,使其易于应用到许多传感器产品中。 2、压电驱动器 压电驱动器利用逆压电效应,将电能转变为机械能或机械运动,聚合物驱动器主要以聚合物双晶片作为基础,包括利用横向效应和纵向效应两种方式,基于聚合物双晶片开展的驱动器应用研究包括显示器件控制、微位移产生系统等。要使这些创造性设想获得实际应用,还需要进行大量研究。电子束辐照P (VDF-TrFE)共聚合物使该材料具备了产生大伸缩应变的能力,从而为研制新型聚合物驱动器创造了有利条件。在潜在国防应用前景的推动下,利用辐照改性共聚物制备全高分子材料水声发射装置的研究,在美国军方的大力支持下正在系统地进行之中。除此之外,利用辐照改性共聚物的优异特性,研究开发其在医学超声、减振降噪等领域应用,还需要进行大量的探索。

常用的模具材料的介绍

常用的模具材料的介绍: 铸件类: HT250 灰铁250 适用于模座压料芯等大型结构件本体不能热处理 (我们公司基本不用,因为它比HT300差,在小模具和低产量模具上使用较多) HT300 灰铁300 适用于模座压了芯等大型结构件本体据说火焰淬火能提高硬度到40但具体根据(但通常没人这样用) 我们公司最常用的材料之一 MoCr 钼铬铸铁使用于需要一定硬度的机构件,如拉延模面也可用于薄料翻边镶块经过淬火后硬度能达到HRC55-60,比较耐磨. GGG70 (GGG70L) 进口材料,目前国内可能天津有铸造厂能造了(如有人知道的请指正),与M oCr 类似, 硬度HRC60左右,耐磨性更高, GGG70L类似于GGG70升级版本. CH-1(7CrSiMnMoV) 空(风)冷钢用于薄料(通常是1.2以下,根据客户要求)的修边镶块,翻边整型镶块, 锻造类 T10(T10A) 修边刀块/翻边刀块等需要较高硬度的零件,硬度HRC58-62 ,但由于此种材料的耐磨性能很差,在零件超过3mm时不管是翻边还是修边,基本都不用它而选择Cr12MoV,我们公司基本不用这种材料,与之差不多的还有种叫T8A的材料曾经使用过,主要用于制作冲头的垫板. Cr12MoV 修边刀块/翻边刀块等需要较高硬度的零件,HRC58-62,耐磨,常用材料 SKD11 比Cr12MoV 优秀更耐磨,日标,通用的零件,中山伟福,APAC的模具,一般都有厂家直接指定了使用此种材料,(另在产量非常高的情况下,在其表面做TD处理,一种表面硬化涂层,可在MISUMI标准件书上的技术资料上查阅到相关信息. 锻造空冷钢与铸造空冷钢相比,差不多,但锻造的更好,由于一个是铸造出来,一个是锻造出来,用法是还是有很多不同的. 扎钢类/其他类: 20# 用于导柱导套(由于现在都是买标准件,一般都是铸铁的), 45# 最常用的了 Q235(A3) 用于铸入式起重棒等零件,这个比较重要了,很多人可能不是太了解的,由于起重棒这样的零件需要具有以下属性:不需要太高硬度,但需要一定韧性,因为当模具被吊起来以后,即使起重棒要出问题,宁可让它变弯也不能直接断掉,让人更容易观察到可能出的问题,增加安全性. Cr12MoV T10 等材料也有扎钢,由于扎钢和锻造的加工工艺性决定,扎钢必定不能和锻造钢比...

压电效应及其原理

压电效应及其原理 压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。依据电介质压电效应研制的一类传感器称为为压电传感器。 压电效应可分为正压电效应和逆压电效应。 正压电效应 是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。大多是利用正压电效应制成的。 逆压电效应 是指对晶体施加交变电场引起晶体机械变形的现象。用逆压电效应制造的变送器可用于电声和超声工程。压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、平面切变型5种基本形式。是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 两种压电效应的关系 可以证明,正压电效应和逆压电效应中的系数是相等的,且具有正压电效 的材料必然具有逆压电效应。 依据电介质压电效应研制的一类传感器称为为压电传感器。 这里再介绍一下电致伸缩效应。电致伸缩效应,即电介质在电场的作用下,由于感应而产生应变,应变大小与电场平方成正比,与电场方向无关。压电效应仅存在于无对称中心的晶体中。而电致伸缩效应对所有的电介质均存在,不论是非晶体物质,还是晶体物质,不论是中心对称性的晶体,还是极性晶体。

压电式传感器的发展与应用

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师***** 完成时间 2011-11-28

前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变 时,电荷的极性也随之改变;晶体受力所产生的电荷量 与外力的大小成正比。压电式传感器大多是利用正压电 效应制成的。逆压电效应是指对晶体施加交变电场引起 晶体机械变形的现象,又称电致伸缩效应。用逆压电效 应制造的变送器可用于电声和超声工程。压电敏感元件 的受力变形有厚度变形型、长度变形型、体积变形型、 厚度切变型、平面切变型5种基本形式(见图)。压电 晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷得研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济与尖端技术得各个方面中,成为不可或缺得现代化工业材料之一。由于压电材料得各向异性,每一项性能参数在不同得方向所表现出得数值不同,这就使得压电陶瓷材料得性能参数比一般各向同性得介质材料多得多。同时,压电陶瓷得众多得性能参数也就是它广泛应用得重要基础。 (一)压电陶瓷得主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心得晶体上施加压力、张力或切向力时,则发生与应力成比例得介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例得变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体就是否出现压电效应由构成晶体得原子与离子得排列方式,即晶体得对称性所决定。在声波测井仪器中,发射探头利用得就是正压电效应,接收探头利用得就是逆压电效应。 (2)压电陶瓷得主要参数 1、介质损耗 介质损耗就是包括压电陶瓷在内得任何电介质得重要品质指标之一。在交变电场下,电介质所积蓄得电荷有两种分量:一种就是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗就是异相分量与同相分量得比值,如图1 所示,为同相分量,为异相分量,与总电流I 得夹角为,其正切值为其中ω为交变电场得角频率,R 为损耗电阻,C 为介质电容。

图1 交流电路中电压电流矢量图(有损耗时) 2、机械品质因数 机械品质因数就是描述压电陶瓷在机械振动时,材料内部能量消耗程度得一个参数,它也就是衡量压电陶瓷材料性能得一个重要参数。机械品质因数越大,能量得损耗越小。产生能量损耗得原因在于材料得内部摩擦。机械品质因数得定义为: 机械品质因数可根据等效电路计算而得 式中为等效电阻(Ω), 为串联谐振角频率(Hz), 为振子谐振时得等效电容(F),为振子谐振时得等效电感。与其它参数之间得关系将在后续详细推导。 不同得压电器件对压电陶瓷材料得值得要求不同,在大多数得场合下(包括声波测井得压电陶瓷探头),压电陶瓷器件要求压电陶瓷得值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外得电荷。其产生得电荷与施加得应力成比例,对于压力与张力来说,其符号就是相反得,电位移D(单位面积得电荷)与应力得关系表达式为: 式中Q 为产生得电荷(C),A 为电极得面积(m2),d 为压电应变常数(C/N)。在逆压电效应中,施加电场 E 时将成比例地产生应变S,所产生得应变S 就是膨胀还就是收缩,取决于样品得极化方向。 S=dE 两式中得压电应变常数d 在数值上就是相同得,即 另一个常用得压电常数就是压电电压常数g,它表示应力与所产生得电场得关系,或应变与所引起得电位移得关系。常数g 与 d 之间有如下关系: 式中为介电系数。在声波测井仪器中,压电换能器希望具有较高得压电应变常数与压电电压常数,以便能发射较大能量得声波并且具有较高得接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电得方法把能量加到压电材料上时,由于压电效应与逆压电效应,机械能(或电能)中得一部分要转换成电能(或机械能)。这种转换得强弱用机电耦合系数k 来表示,它就是一个量纲为一得量。机电耦合系数就是综合反映压电材料性能得参数,它表示压

压电陶瓷测量原理..

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

压电陶瓷材料的发展及应用

压电陶瓷材料的发展及应用 美国Sandia研究所的Haertling在1964年发现,如果在Pb(Ti,Zr)O 3 中 添加少量的Bi 2O 3 进行热压成型时,烧结得很好,这种多晶材料的铁电电滞回线呈 现明显的矩形特性。此后,兰德(Land)等人发现,这种陶瓷被研磨成薄片时透光度高,随着晶体粒度的不同显示出二种电光学效应,即粒度为2微米以上的极化了的粗晶粒陶瓷片,散射光的强度随着极化轴的角度发生变化;2微米以下的微细晶粒陶瓷片,则呈现出以极化为光轴的单轴性负光学各向异性,双折射率随偏置电压的改变而变化.这种陶瓷是一种很有价值的新型电光学材料.这一发现是铁电性透明陶瓷展的开端。 1971年美国Haertling和Land用La置换一部分Pb的 Pb 1-x La x (Zr y Ti i-y ) 1-(x/4) O 3 组成(简称PLZT)进行热压烧结成型,所得陶瓷研磨的薄片 具有电控双折射、电控可变光散射等特性,可用作关阀、电光调制器和光记忆元件,PLZT是一种很有价值的新型电子材料,是20世纪70年代铁电陶瓷的重大进展。 透明铁电压电陶瓷的问世,一方面是由于客观上性技术的发展对铁电压电陶瓷材料在电光方程面的应用提出了要求,另一方面,是由于长期以来人们对铁电压电陶瓷进行了大量的研究实践(特别是热压工艺)的结果。具体的工作在1967年左右开始,1970年5月宣布了透明铁电陶瓷试制成功,随后报道了各种应用研究,1972年改进了工艺方法,提高了厚片的透明度,1973年又发展了不用热压而用通氧烧结的方法成功地制造了较大面积的透明铁电压电陶瓷。在此期间,陆续报道的各种有关的应用或实验结构有铁电显示器、光阀、光信息存贮器、偏置应变存贮显示器件、反射式偏置应变存贮显示器件、散射式存贮显示器件、染料激光波长选择器件、全息存贮输入器件等等。各方面应用的研究正在不断发展中. 透明铁电压电陶瓷的发展,给铁电压电陶瓷开辟了新的应用领域-电光应用,过去电光器件用的是单晶铁电材料,但由于单晶材料存在一些缺点,例如尺

压电材料及其应用

压电材料及其应用 学院:材料学院 专业:材料科学与工程系班级:1019001 姓名:李耘飞 学号:1101900118

压电材料及其应用 李耘飞 材料科学与工程 1101900118 一、压电材料的定义 压电材料是指可以将压强、振动等应力应变迅速转变为电信号,或将电信号转变为形变、振动等信号的机电耦合的功能材料。 当你在点燃煤气灶或热水器时,就有一种压电陶瓷已悄悄地为你服务了一次。生产厂家在这类压电点火装置内,藏着一块压电陶瓷,当用户按下点火装置的弹簧时,传动装置就把压力施加在压电陶瓷上,使它产生很高的电压,进而将电能引向燃气的出口放电。于是,燃气就被电火花点燃了。压电陶瓷的这种功能就叫做压电效应。压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。 压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。 二、压电材料的主要特性包括: (1)机电转换性能:应具有较大的压电系数; (2)机械性能:压电元件作为受力元件,希望它的机械强度高、机械刚度大,以期获得宽的线性范围和高的固有频率; (3)电性能:应具有高的电阻率和大的介电常数,以减小电荷泄漏并获得良好的低频特性(4)温度和湿度的稳定性要好。具有较高的居里点,以得到宽的工作温度范围 (5)时间稳定性:其电压特性应不随时间而蜕变。 压电材料的主要特性参数有:(1) 压电常数、(2) 弹性常数、 (3) 介电常数、(4) 机电耦合系数、(5) 电阻、 (6) 居里点。 三、压电材料的分类 压电材料可分为三类:压电晶体(单晶)、压电陶瓷(多晶)和新型压电材料。其中压电单晶中的石英晶体和压电多晶中的钛酸钡与锆钛酸铅系列压电陶瓷应用较普遍。 (1)压电晶体 1)石英晶体 石英晶体是典型的压电晶体,分为天然石英晶体和人工石英晶体,其化学成份是二氧化硅(SiO2),其压电常数d11=2.1×10-12C/N,压电常数虽小,但时间和温度稳定性极好,在20℃~200℃范围内,其压电系数几乎不变;达到573℃时,石英晶体就失去压电特性,该温度称为居里点,并无热释电性(了解更多)。另外,石英晶体的机械性能稳定,机械强度和机械品质因素高,且刚度大,固有频率高,动态特性好;且绝缘性、重复性均好。 下面以石英晶体为例来说明压电晶体内部发生极化产生压电效应的物理过程。在一个晶体单元体中,有3个硅离子和6个氧离子,后者是成对的,构成六边的形状。在没有外力的作

压电材料概述

压电材料概述 齐鹏飞 0900501331 中国计量学院材料学院09材料3班,杭州 310018 摘要本文介绍了压电效应的作用机理以及材料产生压电效应的原因,并综合概括了压电材料的发展历程及现今的研究方向。 关键词压电效应;压电材料;发展历程;发展方向 压电材料是受到压力作用时会在两端面间出现电压的晶体材料。由于压电材料的这一性能,以及制作简单、成本低、换能效率高等优点,压电陶瓷被广泛应用于热、光、声、电子学等领域。主要应用有压电换能器、压电发电装置、压电变压器, 医学成像等。 1、压电材料与压电效应 1880年,法国物理学家P. 居里和J.居里兄弟发现,把重物放在石英晶体上,晶体某些表面会产生电荷,电荷量与压力成比例。这一现象被称为压电效应。随即, 居里兄弟又发现了逆压电效应,即在外电场作用下压 电体会产生形变。 压电效应的机理是:具有压电性的晶体对称性较 低,当受到外力作用发生形变时,晶胞中正负离子的 相对位移使正负电荷中心不再重合,导致晶体发生宏 观极化,而晶体表面电荷面密度等于极化强度在表面 法向上的投影,所以压电材料受压力作用形变时两端 面会出现异号电荷。反之,压电材料在电场中发生极化时,会因电荷中心的位移导致材料变形。 材料要产生压电效应,其原子、离子或分子晶体必须具有不对称中心,但是由于材料类型不同,产生压电效应的原因也有所差别。下面以压电陶瓷为例,解释压电效应产生的原因。

压电陶瓷是人工制造的多晶压电材料,与石英单晶产生压电效应有所不同。在无外电场作用时,压电陶瓷内的某些区域中正负电荷重心的不重合,形成电偶极矩,它们具有一致的方向,这些区域称之为电畴。但是各个电畴在压电陶瓷内杂乱分布(图a),由于极化效应被相互抵消,使总极化强度为零,呈电中性,不具有压电特性。如果在压电陶瓷上施加外电场,电畴的方向将发生转动,使之得到极化,当外电场强度达到饱和极化强度时,所有电畴方向将趋于一致(图b)。去掉外电场后,电畴的极化方向基本不变(图c),即剩余极化强度很大,这时才具有压电特性,此时,如果受到外界力的作用,电畴的界限将发生移动,方向将发生偏转,引起剩余极化强度的变化,从而在垂直极化方向的平面上引起极化电荷变化。 2、压电材料的发展与应用 自从1880年,居里兄弟发现了石英晶体存在压电效应后使得压电学成为现代科学与技术的一个新兴领域。材料学及物理学的快速发展使得压电学无论在理论和应用上都取得了长足的进展。第二次世界大战期间,磷酸二氢铵(ADP)、铌酸锂等压电晶体相继被研制出来。1921年,J.Valasek发现了水溶性酒石酸钾钠具有压电性,并在该材料的介电性反常测试中人类历史性地第一次发现材料的铁电性。1941-1949年间,科研人员发现钛酸钡陶瓷具有铁电性能。其铁电性引起了科学界的广泛关注,并为了解释其铁电性提出各种铁电模型,从而促进了诸如LiNb03、LiTa03的各种类型的压、铁电晶体的出现。 1947年s.Robert发现BaTiO3。的强压电效应,这一发现是压电材料发展史上的一次飞跃。1954年美国的Jaffe等发现锆钛酸铅(PZT)陶瓷的具有良好的压电性能,PZT系固溶体在多形相界附近具有良好的压电介电性能,机电耦合系数近于BaTiO3 陶瓷的一倍。在以后的30年间,PZT材料以其较强且稳定的压电性能成为应用最广的压电材料,是压电换能器的主要功能材料.PZT材料的出现使得压电器件从传统的换能器及滤波器扩展到引燃引爆装置、电压变压器及压电发电装置等。近十年来,以PT /PZT为基础,各种新型的功能陶瓷得到快速发展,对其进行性能改进的主要手段主要是在其化学组成上添加含Bi3+、W6+、Nb3+、La3+等高价离子氧化物或者K+、Mg2+、Fe3+等低价离子氧化物,将PZT材料变成相应的“软性材料”或“硬性材料”,其应用领域各不相同。在PZT中入PWN可制成三元系压电陶瓷(P04),国内的压电与声学研究所张福学在PZT中加入PMS制成了PMS三元系压电陶瓷材料等等,这些被改进的PZT材料其综合性能都有显著的提高,可应用于各种不同环境领域。由于以上几种基于PZT/PT研制的压电材料含有大量的铅,制造过程中容易对环境造成污染,国外科研人员开始研制无铅压电陶瓷,如SiBi4TiO等,但由于无铅材料的机电耦合系数远不如含铅压电陶瓷,并且难以制造,故而无铅压电陶瓷的研制工作还很漫长。 1956年B.T.Mattias发现了三硫甘胺晶体的铁电性,为激光和红外技术的广泛应用开打下了坚实地基础。1968年先后发现了硫化锌(ZnS)、氧化锌(ZnO)等压电材料,这些半导体材料的压电性能较弱,有高电压低电流的特性。早期主要应用于压敏电阻领域,近年随着微加工制造技术的发展,该类材料也开始在压电领域崭露头角。1969

(工艺技术)压电陶瓷的压电原理与制作工艺

压电陶瓷的压电原理与制作工艺 1. 压电陶瓷的用途 随着高新技术的不断发展,对材料提出了一系列新的要求。而压电陶瓷作为一种新型的功能材料占有重要的地位,其应用也日益广泛。压电陶瓷的主要应用领域举例如表1所示。 表1压电陶瓷的主要应用领域举例

2. 压电陶瓷的压电原理 2.1压电现象与压电效应 在压电陶瓷打火瓷柱垂直于电极面上施加压力,它会产生形变,同时还会产生高压放电。在压电蜂鸣器电极上施加声频交变电压信号,它会产生形变,同时还会发出声响。归纳这些类似现象,可得到正、逆压电效应的概念,即:压电陶瓷因受力形变而产生电的效应,称为正压电效应。压电陶瓷因加电压而产生形变的效应,称为逆压电效应。 2.2压电陶瓷的内部结构 材料学知识告诉我们,任何材料的性质是由其内部结构决定的,因而要了解压电陶 瓷的压电原理,明白压电效应产生的原因,首先必须知道压电陶瓷的内部结构。 2.2.1压电陶瓷是多晶体 用现代仪器分析表征压电陶瓷结构,可以得到以下几点认识: (1) 压电陶瓷由一颗颗小晶粒无规则镶嵌”而成,如图1所示。 图1 BSPT压电陶瓷样品断面SEM照片 (2) 每个小晶粒微观上是由原子或离子有规则排列成晶格,可看为一粒小单晶, 如图2所 示。 图2原子在空间规则排列而成晶格示意图 (3) 每个小晶粒内还具有铁电畴组织,如图3所示。

图3 PZT陶瓷中电畴结构的电子显微镜照片 (4)整体看来,晶粒与晶粒的晶格方向不一定相同,排列是混乱而无规则的,如图4所示。这样的结构,我们称其为多晶体。 图4压电陶瓷晶粒的晶格取向示意图 2.2.2压电陶瓷的晶胞结构与自发极化 (1)晶胞结构 目前应用最广泛的压电陶瓷是钙钛矿(CaTiO3)型结构,如PbTiO3、BaTiO3、 K x Na i-x NbO3、Pb(Zr x Ti i-x)03等。 该类材料的化学通式为ABO3。式中A的电价数为1或2,B的电价为4或5价。其晶胞(晶格中的结构单元)结构如图5所示。 晶咆W氧八面体 图5钙钛矿型的晶胞结构

常用模具材料介绍

ABS 丙烯腈-丁二烯-苯乙烯共聚物 ==典型应用范围: 汽车(仪表板,工具舱门,车轮盖,反光镜盒等),电冰箱,大强度工具(头发烘干机,搅拌器,食品加工机,割草机等),电话机壳体,打字机键盘,娱乐用车辆如高尔夫球手推车以及喷气式雪撬车等. ==注塑模工艺条件: 干燥处理:ABS材料具有吸湿性,要求在加工之前进行干燥处理。建议干燥条件为80~90℃下最少干燥2小时。材料温度应保证小于0.1%。 熔化温度:210~280℃;建议温度:245℃。 模具温度:25~70℃。(模具温度将影响塑件光洁度,温度较低则导致光洁度较低)。 g u注射压力:500~1000bar。 注射速度:中高速度。 ==化学和物理特性: ABS是由丙烯腈、丁二烯和苯乙烯三种化学单体合成。每种单体都具有不同特性:丙烯腈有高强度、热稳定性及化学稳定性;丁二烯具有坚韧性、抗冲击特性;苯乙烯具有易加工、高光洁度及高强度。从形态上看,ABS是非结晶性材料。三中单体的聚合产生了具有两相的三元共聚物,一个是苯乙烯-丙烯腈的连续相,另一个是聚丁二烯橡胶分散相。ABS的特性主要取决于三种单体的比率以及两相中的分子结构。这就可以在产品设计上具有很大的灵活性,并且由此产生了市场上百种不同品质的ABS材料。这些不同品质的材料提供了不同的特性,例如从中等到高等的抗冲击性,从低到高的光洁度和高温扭曲特性等。ABS材料具有超强的易加工性,外观特性,低蠕变性和优异的尺寸稳定性以及很高的抗冲击强度。 ##################################################### PP 聚丙烯 ==典型应用范围: 汽车工业(主要使用含金属添加剂的PP:挡泥板、通风管、风扇等),器械(洗碗机门衬垫、干燥机通风管、洗衣机框架及机盖、冰箱门衬垫等),日用消费品(草坪和园艺设备如 剪草机和喷水器等)。

压电式压力传感器原理

压电式压力传感器原理、特点及应用 压电式压力传感器的原理 压电式压力传感器的原理主要是压电效应,它是利用电气元件和其他机械把待测的压力转换成为电量,再进行相关测量工作的测量精密仪器,比如很多压力变送器和压力传感器。压电传感器不可以应用在静态的测量当中,原因是受到外力作用后的电荷,当回路有无限大 的输入抗阻的时候,才可以得以保存下来。但是实际上并不是这样的。因此压电传感器只可以应用在动态的测量当中。它主要的压电材料是:磷酸二氢胺、酒石酸钾钠和石英。而石英呢,其实是一种天然的晶体,而压电效应就是在此晶体的基础上发现的。在规定的范围里, 压电性质是不会消失,而是一直存在的。但是如果温度在这个规定的范围之外,压电性质就会彻底地消失不见。当应力发生变化的时候,电场的变化很小很小,其他的一些压电晶体就会替代石英。酒石酸钾钠,它是具有很大的压电系数和压电灵敏度的,但是,它只可以使用在室内的湿度 和温度都比较低的地方。磷酸二氢胺是一种人造晶体,它可以在很高的湿度和很高的温度的环境中使用,所以,它的应用是非常广泛的。随着技术的发展,压电效应也已经在多晶体上得到应用了。例如:压电陶瓷,铌镁酸压电陶瓷、铌酸盐系压电陶瓷和钛酸钡压电陶瓷等等都包括在内。

压电式压力传感器的特点 以压电效应为工作原理的传感器,是机电转换式和自发电式传感器。它的敏感元件是压电的材料制作而成的,而当压电材料受到外力作用的时候,它的表面会形成电荷,电荷会通过电荷放大器、测量电路的放大以及变换阻抗以后,就会被转换成为与所受到的外力成正比关系的电量输出。 它是用来测量力以及可以转换成为力的非电物理量,例如:加速度和压力。它有很多优点:重量较轻、工作可靠、结构很简单、信噪比很高、灵敏度很高以及信频宽等等。但是它也存在着某些缺点:有部分电压材料忌潮湿,因此需要采取一系列的防潮措施,而输出电流的响应又比较差, 那就要使用电荷放大器或者高输入阻抗电路来弥补这个缺点,让仪器更好地工作。 压电式压力传感器的应用 压电式压力传感器的应用领域很广泛:电声学、生物医学和工程力学等等。它能够测量发动机里面的燃烧压力,也能够应用在军事方面。它可以测量在膛中的枪炮子弹在击发的那一刻,膛压的改变量以及炮口所受到的冲击波压力。它能够测量很小的压力,也能够测量大 的压力。由于它的使用寿命很长、重量较轻、体积较小、结构较简单,因此它所涉及的领域远远不止这些。在对建筑物、桥、汽车和飞机等的冲击和震动的测量,也是非常广泛的。特别是在宇航和航空的领域

论压电效应原理及在陶瓷材料方面的应用

论压电效应原理及在陶瓷材料方面的应用内容摘要:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。压电陶瓷实际上是一种经过极化处理的、具有压电效应的铁电陶瓷,是信息时代的新型材料压电陶瓷是功能陶瓷中应用极广的一种。 关键词:压电效应、正压电效应、逆压电效应、原理、应用、陶瓷材料、压电陶瓷、铁电陶瓷、功能陶瓷、新型材料、电极化。 在信息与科技迅速发展的时代,压电效应的原理无论是在科研方面还是在人们的日常生活中都有广泛的应用。 所谓压电效应的原理就是如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。 具体的而言正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。压电式传感器大多是利用正压电效应制成的。 而逆压电效应是指对晶体施加交变电场引起晶体机械变形的现象。用逆压电效应制造的变送器可用于电声和超声工程。压电敏感元件的受力变 形有厚度变形型、长度变形型、体积变形型、厚度切变型、平面切变型5种基本形式。压电晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效

压电陶瓷技术发展的历史与应用

压电陶瓷是能够将机械能和电能互相转换的功能陶瓷材料。压电效应是指某些介质在受到机械压力时,哪怕这种压力微小得像声波振动那样小,都会产生压缩或伸长等形状变化,引起介质表面带电,这是正压电效应。反之,施加激励电场,介质将产生机械变形,称逆压电效应。 1880年法国人居里兄弟发现了"压电效应"。 1942年,第一个压电陶瓷材料--钛酸钡先后在美国、前苏联和日本制成。 1947年,钛酸钡拾音器--第一个压电陶瓷器件诞生了。 50年代初,又一种性能大大优于钛酸钡的压电陶瓷材料--锆钛酸铅研制成功。 从此,压电陶瓷的发展进入了新的阶段。60年代到70年代,压电陶瓷不断改进,逐趋完美。如用多种元素改进的锆钛酸铅二元系压电陶瓷,以锆钛酸铅为基础的三元系、四元系压电陶瓷也都应运而生。这些材料性能优异,制造简单,成本低廉,应用广泛。 80年代后期至今,人们研制出驰豫铁电体陶瓷材料,在此基础上有成功研制出驰豫铁电体单晶材料,为三维超声波成像奠定了基础。目前,人们将纳米技术应用到压电材料的制作工艺上已取得新的突破。 g ε d g k 居里点℃ 水晶(石英) 4.5 2.3 53 10 1200 罗息盐200 165 93 54 40 钛酸钡1700 190 12 45 120 锆钛酸铅2100 410 22 65 300 从表中可看到,锆钛酸铅材料是当前性能较好应用最广的材料,通过改性,性能还可进一步改善,能够用于制作各种压电器件。上世纪70年代初期,人们在锆钛酸铅材料二元系配方Pb(ZrTi)O3大基础上又研究了加入第三元改性的压电陶瓷三元系配方,如铌镁酸铅系为Pb (Mg1/3Nb2/3)(ZrTi)O3,可广泛用于拾音器、微音器、滤波器、变压器、超声延迟线及引燃引爆方面。如铌锌酸铅系Pb(Zn1/3Nb2/3)(ZrTi)O3,主要用来制造性能优良的陶瓷滤波器及机械滤波器的换能器。 近年来,人们又在三元系压电陶瓷配方基础上又研究了四元系压电陶瓷材料,如Pb(Ni1/3Nb2/3)(Zn1/3Nb2/3)(ZrTi)O3,Pb(Mn1/2Ni1/2)(Mn1/2Zr1/2)(ZrTi)O3等,可用来制造滤波器和受话器等。目前,世界各国正在大力研制开发无铅压电陶瓷,以保护环境和追求健康,预计2008后形成产业化生产。 利用压电陶瓷将外力转换成电能的特性,可以制造出压电点火器、移动X光电源、炮

相关文档
相关文档 最新文档