文档库 最新最全的文档下载
当前位置:文档库 › 第16章 气相色谱法

第16章 气相色谱法

第16章  气相色谱法
第16章  气相色谱法

第16章Gas chromatography

16. 1 内容提要

16.1.1 基本概念

气相色谱法(GC)──是以气体为流动相的色谱分析法。

气液色谱法(GLC)──以气体为流动相,液体为固定相的色谱法。

气固色谱法(GSC)──以气体为流动相,固体为固定相(一般指吸附剂)的色谱法。

填充柱气相色谱法──使用填充色谱柱的气相色谱法。

毛细管柱气相色谱法──使用毛细管柱的气相色谱法。

程序升温气相色谱法──将色谱柱按照预定的程序连续地或分阶段地进行升温的气相色谱法。

多维气相色谱法──将两个或更多个色谱柱组合,通过切换,可对组分进行正吹、反吹或切割等操作的气相色谱法。

全二维气相色谱法(GC×GC)──把两个分离机理不同又互相独立的色谱柱串联结合,两柱间装有调制毛细管接口,由第一根色谱柱分离后的每一个馏分,经调制毛细管聚焦后在以脉冲方式送入第二根色谱柱进行进一步分离,最后得到以柱1的保留时间为x轴,柱2的保留时间为y轴,信号强度为z轴的三维立体色谱图,这种色谱法称为全二维气相色谱法。

气相色谱仪──以气体为流动相而设计的色谱分析仪。主要有气路系统、进样系统、分离系统、检测系统、数据处理记录系统、温度控制系统等组成。

载气──用作流动相的气体。常用的载气有N2,H2,He,Ar等。

载体──承载固定液的惰性固体,又称担体。

固定液──指涂渍在载体或色谱柱内壁表面上起分离作用的物质。

填充柱──填充了固定相的色谱柱。

毛细管柱──内径为0.1~0.5mm 的色谱柱,一般指管内壁附有固定相的空心柱,又称开管柱(open tubular column)。

壁涂毛细管柱(WCOT)──内壁上直接涂渍固定液的毛细管柱。

壁处理毛细管柱(WTOT)──指柱内壁进行物理或化学方法处理的毛细管柱,先多用后者。

多孔层毛细管柱(PLOT)──内壁上有吸附剂或惰性固体的毛细管

色谱柱。

载体涂渍毛细管柱(SCOT)──内壁上沉积载体后再涂渍固定液的

毛细管柱。是多孔层毛细管柱的一种。

化学键合毛细管柱──用固定液与柱管内壁的基团共价键合的方法制备的毛细管柱。

化学交联毛细管柱──用固定液在柱管内壁聚合(交联)的方法制备的毛细管柱。

柱容量──对于分析用色谱柱是指不引起色谱峰前伸和柱效下降情况下的最大进样量,又称柱负荷。

灵敏度b──单位浓度(或质量)的物质通过检测器时所产生的响应信号的大小,称为该检测器对该物质的灵敏度,也叫响应值或应答值。

检出限D──指某组分产生的响应信号为三倍噪音时,单位体积(或时间)通过检测器的量,亦称敏感度。

线性范围──检测器响应信号与待测物质呈线性关系的范围。

最小检测量──是针对色谱体系提出的一个检测指标。指产生的色谱峰高等于三倍噪声时待测组分的进样量。

分流比──样品在汽化室中完全汽化并与载气充分混合后,一部分进入色谱柱,其余部分放空,放空量与入柱量的比称为分流比。

16.1.2 基本内容

1.气相色谱法的基本原理

利用物质在流动相(气相)与固定相中分配或吸附性能等性质的差异,当两相做相对运动时,待测组分在两相之间进行多次反复的质量交换,使混合物中各组分达到分离,进而通过检测器达到检测分析的目的。

2.气相色谱法的特点

气相色谱法是以气体为流动相的色谱分析法。由于气体黏度小,扩散速率高,传质速率快,因而气相色谱法具有许多优点:

(1)高选择性指能够分离性质极为相近的物质,如同分异构体、空间异构体、手性对映体、同位素等。

(2)高灵敏度由于使用了高灵敏度的检测器可以分析10-11~10-13g 的物质,非常适合于微量和痕量分析。

(3)分离效能高能够分离和测定极为复杂的混合物。

(4)分析速度快一般只需几分钟到几十分钟便可完成一个分析周期。

(5)应用范围广能分析气体以及在400℃以下能汽化且热稳定性

良好的物质;对于受热易分解和难挥发的物质,可以通过化学衍生的方法使其转化为热稳定和高挥发性的衍生物进行分析。气相色谱法能够分析15%~20%的有机物和部分无机物,是石油、化工、环境、医药、食品等领域不可缺少的工具。

3.气相色谱仪

气相色谱仪主要由气路系统、进样系统、分离系统、检测系统、温度控制系统以及数据处理和记录系统组成。气路系统分为单柱单气路和双柱双气路两种结构,后者更适合于程序升温。通过进样系统引入样品,样品瞬间汽化并由载气带入色谱柱中进行分离,分离后的组分依次进入检测器进行检测,产生的信号经放大后在纪录仪上记录下来,得到色谱图。温度系统控制和显示汽化室、色谱柱恒温箱、检测器及辅助部分的温度。组分能否分离,色谱柱是关键,它是色谱仪的“心脏”;分离后的组分能否产生信号则取决于检测器的性能和种类,它是色谱仪的“眼睛”。所以分离系统和检测系统是仪器的核心。

4.气相色谱检测器

检测器是将经过色谱柱分离的各组分,按其特性和含量转变成易于记录的电信号装置。根据检测原理不同,气相色谱检测器分为浓度型和质量型两种。

浓度型检测器的响应信号与载气中组分的瞬间浓度成正比。质量型检测器的响应信号与单位时间内进入检测器组分的质量成正比。

气相色谱常用的浓度型检测器有热导检测器和电子捕获检测器。常用的质量型检测器有氢火焰离子化检测器和火焰光度检测器。

一个理想的检测器应当具备灵敏度高,检出限低,线性范围宽,死体积小,响应快,通用等特点。

5.气相色谱的固定相

气相色谱固定相分为固体固定相、液体固定相和聚合物固定相。固体固定相一般为固体吸附剂,主要用于分析永久性气体及一些低沸点物质。液体固定相有固定液和载体组成。载体一般为表面惰性的多孔支持体;固定液为一些高沸点有机物,种类繁多,一般按照“相似相容”的规律来选择固定液。聚合物固定相又称高分子多孔微球,它既可作为固体固定相直接用于分离,也可作为载体,在其表面涂上固定液后再用于分离。其中液体固定相的应用范围最广。

6.气相色谱操作条件的选择

气相色谱的操作条件主要包括载气及其流速的选择,柱温的选择,载体和固定液含量的选择以及进样条件的选择等。

载气及其流速的选择应考虑检测器的适应性,对柱效能、分析时间等的影响。柱温应设在固定液的使用温度范围之内,一般选择混合物各组分的平均温度,对于宽沸程样品,易采用程序升温色谱法进行分析。载体的选择应考虑载体的种类、粒度等,液载比根据不同沸点样品具体选择。进样速度要快,一般进样量不可太大,汽化室温度一般高于柱温30~70℃。

7.毛细管气相色谱法

毛细管气相色谱法的主要特点:(1)柱渗透性好,阻抗小;(2)总柱效高,大大提高了对复杂混合物的分离能力;(3)柱容量低,允许进样量小。

由于毛细管柱结构的特殊性使其仪器系统的设计有别于填充柱色谱系统,主要不同在于毛细管柱色谱仪柱前采用分流进样装置,柱后增加了辅助尾吹气。

8.气相色谱法的应用范围

气相色谱法可以分析气体、易挥发的液体和固体及包含在固体中的气体。一般地说,只要沸点在400℃以下,且在操作条件下热稳定性良好的物质,原则上均可以采用气相色谱法进行分析。对于受热易分解和挥发性低的物质,可以通过化学衍生的方法使其转化为热稳定和高挥发性的衍生物,同样可以实现气相色谱的分离和分析。气相色谱法灵敏度高,选择性好,分离效率高,分析速度快等特点,决定了它在石油、化工、环境、生物科学、医药卫生、食品等领域得以广泛的应用。但是气

相色谱法不适用于大部分沸点高的和热不稳定的化合物,对于腐蚀性能和反应性能较强的物质,如HF,O3,过氧化物等更是难于分析。

16.2 习题解答

1.简述气相色谱仪的分离原理。

答:由进样器将样品注入色谱柱中,样品气化后被载气带入色谱柱进行分离。由于各组分在两相中分配系数不同,它们将按分配系数大小的顺序,依次被载气带出色谱柱。分配系数小的组分先出柱,分配系数大的组分后出柱。被分离出的各组分再被载气带入检测器中,检测器将各组分的浓度(或质量)的变化,转变成电压(或电流)的变化,这种随时间变化的信号由记录仪记录下来。由于电信号强度正比于组分浓度(或质量),所记录的电压(电流)-时间曲线即浓度-时间曲线称为色谱流出曲线。

2.气相色谱仪一般由哪几部分组成?各有什么作用?

答:气相色谱仪主要包括六个单元:气路系统、进样系统、分离系统、检测系统、温度控制系统、数据处理和记录系统。

(1)气路系统是一个连续运行的密闭管路系统,携带样品通过色谱柱,提供样品在柱中运行的能力。

(2)进样系统引入样品,并使样品瞬间汽化。

(3)分离系统即柱系统,样品在此得到所需要的分离。

(4)检测系统将经过色谱柱分离的样品组分,按其特性和含量转变成易于纪录的电信号进行检测。

(5)温度控制系统控制并显示汽化室、色谱柱温箱、检测器及辅助部分的温度。

(6)数据处理和记录系统记录并处理由检测系统输入的信号,显示色谱分析结果。

3.试述热导、氢火焰离子化和电子捕获检测器的基本原理,它们各有什么特点?

答:热导检测器是基于不同物质与载气具有不同的热导系数而设计的,利用惠斯登电桥原理进行检测。它由池体和热敏元件组成,池体内装有两根阻值相等的热敏元件构成参比池和测量池,与两个固定电阻组

成惠斯登电桥。当无样品通过时,桥路四臂处于平衡状态,此时无信号输出;当样品随载气通过测量池时,因载气和组分组成的二元体系与纯载气的导热系数不同,破坏了电桥的平衡,于是有信号输出。信号大小与载气中待测组分的浓度成比例,以此可以对组分进行检测。

其特点是:结构简单、性能稳定、线性范围宽,不论是对有机物还是无机物都有响应,且灵敏度适宜的检测器。

氢火焰离子化检测器的主要部件是离子室,离子室由收集极、发射极、气体入口和火焰喷嘴等部分组成。它以氢气在空气中燃烧产生的火焰为能源,待测有机物由载气携带进入火焰后,在高温火焰中发生离子化反应,生成的正离子和电子,在收集极和发射极间的恒定电场作用下,向两极定向移动形成了微电流,微电流经放大后由记录系统记录。微电流的大小与单位时间内进入火焰的碳原子数(即待测有机物含量)成正比,由此可以对组分进行测定。

它的特点是检测器的死体积小、响应决、稳定性好、线性范围广,对碳氢化合物灵敏度高,(检测限可达10-12g·s-1),比热导池检测器的灵敏度高103~l04倍,特别适于和毛细管柱匹配。因此它是一种较理想检测器。

电子捕获检测器由一个圆筒状β放射源H3或Ni63为负极,圆筒中央的一个不锈钢棒为正极,在两极间施加直流或脉冲电压。当载气(高纯氮气)进入检测器时,在放射源发射的β射线下发生电离,电离为正离子和低能电子,生成的正离子和慢速低能电子在恒定电场作用下向极性相反的电极运动,形成恒定的基流,一股在10-9~10-8A左右。当具有电负性的被测组分进入检测器时,它捕获了检测器内的慢速低能量电子放出能量而使基流降低,产生负信号并记录成倒峰。带负电荷的分子离子和载气中的正离子复合成中性化合物,被载气携带出检测器外。

电子捕获检测器是一种专属性强的高灵敏度的浓度型检测器,它只对含有电负性元素(如卤素、硫、磷、氮、氧)的官能团有很高的响应值,因为这些官能团对游离电子具有亲和力,它能测出10-14g·mL-1电负性元素物质。元素的电负性愈强,检测器灵敏度愈高。它是在应用上仅次于热导池和氢焰检测器的检测器。

4.对担体和固定液的要求分别是什么?如何选择固定液?

答:(1)对担体的要求是:

①表面有微孔结构,孔径均匀,有足够大的表面积。

②具有化学和物理惰性,良好的热稳定性,即与样品组分不起化学反应,无吸附作用或吸附很弱。

③粒度均匀,形状规则,有一定的机械强度。

④对固定液有良好的浸润性。

(2)气相色谱对固定液的要求是:

①在使用温度下是液体,黏度小,应具有较低的挥发性。

②具有良好的热稳定性,在高温下不分解。

③对待分离的各组分具有合适的分配系数,选择性好。

④化学稳定性好,不与样品组分、载气、担体发生任何化学反应。

⑤最好具有固定的相对分子质量。

(3)固定液的选择一般根据“相似相容”的原则。具体方法如下:

①按极性相似原则选择如果固定液与待测组分的极性相似,则两者之间的作用力就强,待测组分在固定液中的溶解度就大,分配系数就大,保留时间长;若分离菲极性和极性混合物时,一般选用极性固定液,此时非极性组分先出峰。

②按官能团相似选择若待测物质为酯类,则选用酯或聚脂类固定液;若待测物质为醇类,可选用聚乙二醇固定液。

③按主要差别选择若待测各组分之间的沸点是主要差别,可选用非极性固定液;若极性是主要差别,则选用极性固定液。

④选择混合固定液对于难分离的复杂样品,可选用两种或两种以上的(混合)固定液。

5.试比较红色担体和白色担体的性能。

答:硅藻土型担体因处理方法不同而分为红色担体和白色担体。

红色担体:天然硅藻土直接煅烧而成,其中的铁煅烧后生成氧化铁,呈浅红色。孔穴多。孔径小,比表面积大,可负载较多固定液,缺点是表面存在活性吸附中心,分析极性物质时易产生拖尾峰。非极性固定液使用红色担体,用于分析非极性组分。

白色担体:天然硅藻土在煅烧前加入少量碳酸钠等助熔剂,使氧化铁在煅烧后生成铁硅酸钠,呈白色。由于碱性助熔剂的影响,生成的硅酸钠玻璃体破坏了硅藻土中大部分细孔结构,粘结为较大的颗粒,表面孔径粗,比表面积小,担体中碱金属氧化物含量较高,pH大。白色担体

由较为惰性的表面,表面吸附作用和催化作用小。极性固定液使用白色担体,用于分析极性物质。

6.判断下列情况对色谱峰峰形的影响。

①进样速率慢;②由于汽化室温度低,样品不能瞬间汽化;③增加柱温;④增大载气流速;⑤增加柱长;⑥固定相颗粒变粗。

答:(1)色谱峰形变宽。

(2)色谱峰形变宽。

(3)保留时间缩短,色谱峰形变窄。

(4)根据速率理论,当低于最佳流速时,色谱峰形变窄;当高于最佳流速时,峰形变宽。但在实际分析中,一般保留时间缩短,色谱峰形变窄。

(5)保留时间增长,色谱峰形变宽。

(6)柱效下降,色谱峰形变宽。

7.二氯甲烷、三氯甲烷和四氯甲烷的沸点分别为40℃,62℃,77℃,试推测它们的混合物在阿皮松L柱上和在邻苯二甲酸二壬酯柱上的出峰顺序。

答:阿皮松L属于非极性固定液,它与三种卤代烃之间的作用力以色散力为主,而色散力与沸点成正比,因此混合物按沸点顺序出峰,即在阿皮松L柱上按照二氯甲烷、三氯甲烷、四氯甲烷的顺序依次出峰。

邻苯二甲酸二壬酯属于中等极性固定液,它与三种卤代烃之间既存在色散力又存在诱导力,两种作用力的竞争结果决定了组分的流出顺序。由于二氯甲烷的沸点只有40℃,比三氯甲烷(62℃)和四氯甲烷(77℃)的沸点低很多,因此尽管二氯甲烷的极性大于四氯甲烷,但前者的蒸气压大得多,所以二氯甲烷最先出峰;对于三氯甲烷和四氯甲烷,它们的沸点比较接近,与固定液之间的色散力相近。由于四氯甲烷是非极性分子,邻苯二甲酸二壬酯与其之间的诱导力小,而与极性分子三氯甲烷之间的诱导力大,因此三氯甲烷后于四氯甲烷流出。综上所述,在邻苯二甲酸二壬酯柱上按照二氯甲烷、四氯甲烷、三氯甲烷的顺序出峰。

8.已知记录仪的灵敏度为0.658mV·cm-1,记录仪纸速为2cm·min-1,载气流速F0为68mL·min-1,12℃时饱和苯蒸气的进样量为0.5mL,其质量经计算为0.11mg,得到色谱峰的实测面积为3.84cm2。求热导检测器的灵敏度。

解:根据热导池检测器灵敏度的计算公式:

11020.658 3.8468781mV mL mg 20.11

c c AF S c m -??===??? 9. 已知记录仪的灵敏度为0.658mV·cm -1,记录仪纸速为2cm·min -1,12℃时进样量为50μL 饱和苯蒸气,其质量为11×10-6g ,测得色谱峰峰面积为173cm 2,仪器噪声为0.1 mV ,求氢火焰离子化检测器的灵敏度和检出限。

解:根据氢火焰离子化检测器灵敏度和检出限的计算公式:

8115260600.658173 3.1010mV s g 2 1.010

m c A S c m --??===????? 1018330.19.710g s 3.1010

N R D S --?===??? 10. 用皂膜流量计测得载气流速为10 mL·min -1,已知柱前表压力为2×1.013×105Pa ,P w =2.3×103 Pa (20℃),柱温为120℃,室温为20℃,求柱后载气实际流速F 0和柱内载气平均流速F a。

解:根据柱出口处载气实际流速F 0的计算式:

53'

1000

50()(1.01310 2.310)109.77mL min 1.01310w p p F F p --?-?=?=?=?? 因为,压力校正因子220330(/)133210.64292(/)1221

i i p p j p p ??--==?=??--?? 有根据柱内载气平均流速F a 的计算式:00/a c F F j T T =??

所以,19.770.6429(120273)/(20273)8.42mL min

a F -=??++=?

第16章高效液相色谱法#(精选.)

第16章高效液相色谱法 【16-1】从分类原理、仪器构造及应用范围,简述气相色谱及液相色谱的异同点。 答:二者都是根据样品组分与流动相和固定相相互作用力的差别进行分离的。 从仪器构造上看,液相色谱需要增加高压泵以提高流动相的流动速度,克服阻力。同时液相色谱所采用的固定相种类要比气相色谱丰富的多,分离方式也比较多样。气相色谱的检测器主要采用热导检测器、氢焰检测器和火焰光度检测器等。而液相色谱则多使用紫外检测器、荧光检测器及电化学检测器等。但是二者均可与MS等联用。 二者均具分离能力高、灵敏度高、分析速度快,操作方便等优点,但沸点太高的物质或热稳定性差的物质难以用气相色谱进行分析。而只要试样能够制成溶液,既可用于HPLC分析,而不受沸点高、热稳定性差、相对分子量大的限制。 【16-2】高效液相色谱仪由几大部分构成?各部分的主要功能是什么? 答:高效液相色谱仪由高压输液系统,进样系统,分离系统,检测系统和记录系统五大部分组成。高压输液系统:主要是通过高压输液泵将溶剂储存器中的流动相以高压形式连续不断地送入液路系统,使试样在色谱柱中完成分离过程。 进样系统:把分析试样有效地送入色谱柱中进行分离。 分离系统:将试样各组分分离开来。 检测系统:对被分离组分的物理或物化特性有响应;对试样和洗脱液总的物理或化学性质有响应。记录系统:记录被分离组分随时间变化的信号。 【16-3】液相色谱中影响色谱峰展宽的因素有哪些? 与气相色谱相比其主要区别何在? 答:液相色谱中引起色谱峰扩展的主要因素为涡流扩散、流动的流动相传质、滞留的流动相传质以及柱外效应。在气相色谱中径向扩散往往比较显著,而液相色谱中径向扩散的影响较弱,往往可以忽略。另外,在液相色谱中还存在比较显著的滞留流动相传质及柱外效应。 【16-4】何谓化学键合相色谱、正相色谱和反相色谱? 答:化学键合相色谱是指在化学键合固定相上进行物质分离的一种液相色谱法。 正相色谱是采用极性键和固定相流的相用比键合相极性小的非极性或弱极性有机溶剂。 反相色谱采用非极性键和固定相流的相为强极性的溶剂。 【16-5】何谓化学键合固定相?它的突出优点是什么? 答:利用化学反应将固定液的官能团键合在载体表面形成的固定相称为化学键合固定相。 优点: 固定相表面没有液坑,比一般液体固定相传质快的多;无固定相流失,增加了色谱柱的稳定性及寿命;可以键合不同的官能团,能灵活地改变选择性,可应用与多种色谱类型及样品的分析;有利

华中师范大学等六校合编《分析化学》(下册)笔记和课后习题(含考研真题)详解-第十七章至第二十章【圣才

第十七章高效液相色谱法 17.1复习笔记 一、概述 1.分离原理 (1)物质在固定相和流动相两相中吸附或分配系数有微小差异; (2)被测物质在两相之间进行反复多次的分配,差异放大,从而分离。 2.高效液相色谱法与经典液相色谱法相比 (1)分析速度快 (2)分离效率高 (3)灵敏度高 (4)操作自动化 3.高效液相色谱法与气相色谱法相比 (1)广泛应用于有机化合物的分离分析,尤其是低挥发性、热稳定性差或相对质量大的物质; (2)分离效果与流动相的性质密切相关,流动相种类较多; (3)高效液相色谱法不破坏试样,可方便地制备纯样。 4.影响柱效的因素 液相色谱速率方程 H=H e+H d+H s+H m+H sm (1)涡流扩散项H e

采用小粒径填料、提高固定相的装填均匀性。 (2)纵向扩散项H d 当流动相的线速率大于1cm·s-1时,H d的影响可以忽略。(3)传质阻力项 ①固定相传质阻力项H s a.液-液分配色谱:使用薄的固定液层; b.吸附、排阻和离子交换色谱法:使用小粒径的填料;c.化学键合相色谱:此项可忽略。 ②流动相传质阻力项H m 采用小粒径填料,减小柱空间。 ③滞留流动相传质阻力项H sm 采用颗粒小、微孔浅、孔径大的载体可减小H sm的影响。(4)提高色谱分析效能的办法 ①缩短进样时间; ②使用细粒径填料; ③改善传质过程; ④减小检测器的死体积。 二、高效液相色谱仪

图17-1高效液相色谱仪器结构示意图 1.高压输液系统 (1)高压输液系统的作用 提供足够恒定的高压,迫使流动相以稳定的流量快速渗透通过固定相。 (2)高压输液系统发的组成 流动相储液器、高压泵、脱气器和梯度洗脱。 (3)梯度洗脱装置的作用 按一定的程序连续改变流动相中多种不同性质溶剂的配比,以改变流动相的极性、离子强度或酸度等。 2.进样系统 一般采用旋转式高压六通阀进样。 图17-2六通进样阀工作示意图 3.分离系统

第16章 气相色谱法

第16章Gas chromatography 16. 1 内容提要 16.1.1 基本概念 气相色谱法(GC)──是以气体为流动相的色谱分析法。 气液色谱法(GLC)──以气体为流动相,液体为固定相的色谱法。 气固色谱法(GSC)──以气体为流动相,固体为固定相(一般指吸附剂)的色谱法。 填充柱气相色谱法──使用填充色谱柱的气相色谱法。 毛细管柱气相色谱法──使用毛细管柱的气相色谱法。 程序升温气相色谱法──将色谱柱按照预定的程序连续地或分阶段地进行升温的气相色谱法。 多维气相色谱法──将两个或更多个色谱柱组合,通过切换,可对组分进行正吹、反吹或切割等操作的气相色谱法。 全二维气相色谱法(GC×GC)──把两个分离机理不同又互相独立的色谱柱串联结合,两柱间装有调制毛细管接口,由第一根色谱柱分离后的每一个馏分,经调制毛细管聚焦后在以脉冲方式送入第二根色谱柱进行进一步分离,最后得到以柱1的保留时间为x轴,柱2的保留时间为y轴,信号强度为z轴的三维立体色谱图,这种色谱法称为全二维气相色谱法。 气相色谱仪──以气体为流动相而设计的色谱分析仪。主要有气路系统、进样系统、分离系统、检测系统、数据处理记录系统、温度控制系统等组成。 载气──用作流动相的气体。常用的载气有N2,H2,He,Ar等。 载体──承载固定液的惰性固体,又称担体。 固定液──指涂渍在载体或色谱柱内壁表面上起分离作用的物质。 填充柱──填充了固定相的色谱柱。 毛细管柱──内径为0.1~0.5mm 的色谱柱,一般指管内壁附有固定相的空心柱,又称开管柱(open tubular column)。 壁涂毛细管柱(WCOT)──内壁上直接涂渍固定液的毛细管柱。

化验员读本第十六章重点【VIP专享】

色谱分析法是利用物质的物理及物理化学性质的差异,将多组分混合物进行分离和测定的方法。 第一节色谱分析法的原理及分类 色谱分析法是一种物理的分离方法,其分离原理是将被分离的组分在两相间进行分布,其中一相是具有大表面积的固定相,另一相是推动被分离的组分流过固定相的惰性流体,叫流动相。当流动相载带被分离的组分经过固定相时,利用固定相与被分离的各组分产生的吸附或分配作用的差别,被分离的各组分在固定相中的滞留时间不同,使不同的组分按一定的先后顺序从固定相中被流动相洗脱出来,从而实现不同组分的分离。 实现色谱分离的先决条件是必须具备(固定相)和(流动相)。固定相可以是一种固体吸附剂或为涂渍于惰性载体表面上的液态薄膜,此液膜可称作固定液。流动相可以是具有惰性的气体、液体或超临界流体,其应与固定相和被分离的组分无特殊的相互作用。 第二节气相色谱法简介 气相色谱法主要用于低分子量、易挥发有机化合物的分析。 一、方法特点及应用范围 气相色谱法的主要特点:是选择性高、分离效率高、灵敏度高、分析速度快。 二、气相色谱流出曲线的特征 被分析的样品经气相色谱分离、鉴定后,由记录仪绘出样品中各个组分的流出曲线,即色谱图。色谱图是以组分的流出时间(t)为横坐标,以检测器对各组分的电讯号响应值(mV)为纵坐标。色谱图上可得到一组色谱峰,每个峰代表样品中的一个组分。 (一)色谱峰的位置 从进样开始至每个组分流出曲线达极大值所需的时间,可作为色谱峰位置的标志,此时间称为保留时间,用tR表示。气相色谱流出曲线图中与横坐标保持平行的直线,叫做基线,它表示在实验条件下,纯载气流经检测器时(无组分流出时)的流出曲线。基线反映了检测器的电噪声随时间的变化。 从进样开始到惰性组分(指不被固定相吸附或溶解的空气或甲烷)从柱中流出呈现浓度极大值的时间,称为死时间。它反映了色谱柱中未被固定相填充的柱内死体积和检测器死体积的大小,与被测组分的性质无关。 从保留时间中扣除死时间后的剩余时间,称为调整保留时间,反映了被分析的组分因与色谱柱中固定相发生相互作用,而在色谱柱中滞留的时间,其由被测组分和固定相的热力学性质所决定,因此调整保留时间从本质上更准确的表达了被分析组分的保留特性,它已成为气相色谱定性分析的基本参数,比保留时间更为重要。 (二)色谱峰的峰高或峰面积 色谱峰的峰高是指由基线至峰顶间的距离。色谱峰的峰面积,是指每个组分的流出曲线和基线间所包含的面积,对于峰形对称的色谱峰,可看成是一个近似等腰三角形的面积,可由峰高乘以半峰宽(即峰高一半处的峰宽)来计算:峰高或峰面积的大小和每个组分在样品中的含量相关,因此色谱峰的峰高或峰面积是气相色谱进行定量分析的重要依据。 (三)色谱蜂的宽窄 在气相色谱分析中,通常进样量很小,可以获得对称的色谱峰形 (四)色谱峰间的距离 在色谱图上,两个色谱峰之间的距离大,表明色谱柱对各组分的选择性好;两个色谱蜂之间的距离小,表明色谱柱对各组分的选择性差。

第十七章 气相色谱法

1、名词解释 相对极性:Px色谱中的相对极性与化学上的极性不同,它指固定液与被测组分之间相互作用力的强弱。因此,固定液相对极性不仅与固定液本身有关,而且与被测组分有关。 麦氏常数:某组分在被测固定液和角鲨烷柱上的保留指数之差,用于表示固定液与某类化合物相互作用力的大小。色谱手册上列出的麦氏常数有5个数据,分别表示与苯、正丁醇、戊彤-2、硝基苯烷、吡啶的作用力大小。各麦氏常数的总和可作为固定液的相对极性,小于300的为非极性固定液。 检测限:某组分的峰高恰为噪声2倍时,单位时间内由载气引入检测器中该组分的质量或单位体积载气中所含该组分的量。 浓度型检测器:响应值与载气中组分的浓度成正比。 质量型检测器:响应值与单位时间内进入检测器的组分质量成正比。 灵敏度(S):浓度型检测器时Sc为1ml载气携带一毫克的某组分通过检测器时产生的电压。质量型检测器时Sm为每秒钟有1g的某组分被载气携带通过检测器时产生的电压。 分流比:进入毛细管柱的物质量与被分流的物质量之比,通常为进入色谱柱的流量与分流流量之比。 漂移:基线在单位时间内单方向缓慢变化的幅值。 噪声:由于仪器本身和工作条件等的偶然因素引起的基线起伏。 相对校正因子:被测物质与标准物质的绝对校正因子之比。 程序升温:在一个分析周期中,按照既定程序改变色谱柱温度,以使沸点差距较大的各组分均得到良好分离。 涂壁毛细管柱:这种毛细管柱把固定液涂在毛细管内壁上。 2、TCD热导检测器 FID氢焰离子化检测器 ECD电子捕获检测器 NPD氮磷检测器 TID热离子化检测器 FPD火焰光度检测器 WCOT柱涂壁毛细管柱 PLOT柱多孔层毛细管柱 SCOT柱载体涂层毛细管柱 FSOT柱融融石英毛细管柱 3、见16章第2题 4、简述范式方程中各项的含义,他们的改变将如何影响柱效? 5、范式方程对选择色谱分离条件有何指导意义? H = A + B/u + Cu dp和填充物的填充不规则因子有关。 填充柱色谱中,A=2λdp 所以,采用均匀、较细粒径的载体,并且填充均匀可减小涡流扩散项,提高柱效。 空心毛细管柱只有一个流路,无涡流扩散,A=0。 B成正比,与载气的平均线速度u成反比。分子扩散系数B与组分在载气中的扩散系数Dg和弯曲因子γ成正比。B=2γDg 填充柱色谱中,由于填料的存在是扩散有障碍,γ<1,空心毛细管柱因扩散无障碍,

第十七章 气相色谱法 - 章节小结

1. 基本概念 固定液相对极性,麦氏常数,程序升温,噪声,漂移,分流比,检测器灵敏度,检测限等。 2.基本理论 (1)差速迁移:在色谱分析中,分配系数不同是组分分离的前提条件。气相色谱法中,载气种类少,可选余地小,要改变组分之间分配系数的或大小或比例,主要通过选择合适的固定液。 (2)GC中的速率理论:速率理论是从色谱动力学的角度阐述影响柱效的因素,以Van Deemter方程式表示,在填充柱中,速率方程为: H=A+B/u+Cu =2λdp+ 2gDg/u+ 在开管柱中,A=0,此时速率方程为: H=B/u+Cgu+Clu =u + 最小板高对应的载气线速度称为最佳线速度,为了减少分析时间,常用的最佳实用线速度大于最佳线速度。在学习速率理论时,应熟悉速率方程式中各项和各符号的含义,即这些因素是如何影响柱效的,从而理解分离条件的选择。 (3)色谱柱分填充柱及毛细管柱两类,填充柱又分气-固色谱柱及气-液色谱柱。固定液按极性分类可分成非极性、中等极性、极性以及氢键型固定液。固定液的选择按相似性原则。常用硅藻土载体分为红色载体和白色载体,红色载体常用于涂渍非极性固定液,白色载体常用于涂渍极性固定液。硅藻土载体常需进行钝化,其目的是为了减小载体表面的活性。载体钝化的方法有酸洗(AW)、碱洗(BW)和硅烷化,这些钝化方法分别除去碱性氧化物(主要是氧化铁)、酸性氧化物(氧化铝)和覆盖硅羟基。 毛细管柱可分为涂壁毛细管柱(WCOT)、载体涂层毛细管柱(SCOT)、多孔层毛细管柱(PLOT)和填充毛细管柱。 检测器分浓度型及质量型两类。氢焰检测器是质量型检测器,具有灵敏度高,检测限小,死体积小等优点。热导检测器是浓度型检测器,组分与载气的热导率有差别即能检测。电子捕获检测器也是一种浓度型检测器,检测含有强电负性基团的物质,具有高选择性和高灵敏度。 为保护检测器和色谱柱,开气相色谱仪时,必须先开载气,后开电源,加热。关机时,先关电源,最后关载气。 (4)柱温的选择原则为:在使最难分离的组分有尽可能好的分离度的前提下,要尽可能采用较低的柱温,但以保留时间适宜及不拖尾为度。对宽沸程样品,采用程序升温方式。 (5)定性与定量:定性方法有已知物对照法,相对保留值,保留指数,利用化学方法配合,两谱联用定性。定量方法常用归一化法和内标法,在没有校正因子情况下,使用内标对比法较好。 3.基本计算 固定液的相对极性 分离方程式 R= 相对重量校正因子=

第十七章 习题答案

第十七章习题答案 17.1 改变流动相或固定相的种类. 17.2 需采用液相色谱法(指定离子色谱或反相色谱) 17.3 减小填料粒度 17.4 反相色谱——流动相的极性大于固定相的极性 正相色谱——流动相的极性小于固定相的极性 17.5 梯度淋洗适用于分离一些组分复杂及分配比变化范围宽的复杂试样。 17.6 分子扩散项。 17.7 示差折光检测器——长链饱和烷烃 荧光检测器——水源中的多环芳烃化合物 17.8 空间排阻色谱 17.9 叙述从略。 17.10 梯度洗脱是指将两种或两种以上不同极性但可互溶的溶剂,随着时间的改变而按一定比例混合,以连续改变色谱柱中冲洗液的极性,离子酸度或PH等,从而改变被测组份的相对保留值,提高分离效率,加快分离速度的一种洗脱方式。 液相中梯度洗脱和气相色谱中程序升温作用相同。不同的是在气相色谱中通过改变温度条件,达到高效快速分离目的;而液相色谱是通过改变流动相组成来达到目的。 17.11 下列色谱法中最适宜分离物质: (a)气液色谱——适宜分离气体或易挥发性液体和固体。(或可转化为易挥发性液体和固体。) (b)正相色谱——适宜分离极性化合物。 (c)反相色谱——适宜分离多环芳烃等低极性化合物。 (d)离子交换色谱——适宜分离离子型和可离解化合物。 (e)凝胶色谱——适宜分离大分子化合物,(分子量>2000) 例蛋白质、氨基酸、核酸等生物大分子。 (f)气固色谱——适宜分离永久性气体及烃类化合物。 (g)液固色谱——适宜分离不同极性的化合物,或不同类型的化合物,特别适合分离异构体。 17.12 分离下列物质宜用(几种液相色谱方法) (a)宜用液固色谱或液液分配色谱 (b)宜用反相色谱 (c)宜用离子交换色谱 (d)宜用正相色谱或反相离子对色谱(需控制pH) (e)宜用凝胶色谱 17.13 解:在硅胶柱上,用甲苯为流动相,推断此为正相色谱,故分离物为极性物质,若 改用极性物三氯甲烷(极性大于甲苯流动相),势必减小该溶质的保留时间。 17.14 指出在正相色谱中以下物质顺序:(先→后) (a)正己烷、苯、正己醇。 (b)乙醚、硝基丁烷、乙酸乙酯 在反相色谱中以下物质说明顺序(先→后) (a)正己醇、苯、正己烷

气相色谱法第八章

气相色谱法8 ●8.1气相色谱法简介 ●8.2气相色谱仪 ●8.3气相色谱的实验技术 ●8.4毛细管气相色谱 ●8.5顶空气相色谱 ●8.6裂解气相色谱 ●8.7气相色谱法应用 8.1气相色谱法简介 1.定义:以气体作为流动相的色谱法。 2.原理及适用范围:利用物质的沸点、极性及吸附性的差异来实现混合物的分离,广泛应用于气体和易挥发物质的分析。 3.特点 ●高选择性 ●高分离效能 ●高灵敏度 4.发展 ●1941年Martin和Synge 发明液-液(分配)色谱法,阐述了气-固吸附色谱原理,提 出气-液色谱法设想; (1952 年诺贝尔化学奖) ●色谱学成为分析化学的重要分支学科,是以气相色谱的产生、发展为标志。 ●1952年Martin成功研究出气-液色谱法,解决了脂肪酸、脂肪胺的分析,并对其理论 和实践作出论述;(起点) ●1954年,Ray把热导池检测器用于气相色谱仪,并对仪器作了重大改进,扩大应用范 围; ●1956年,荷兰学者Van Deemter 提出气相色谱速率理论,奠定了理论基础; ●1957年美国工程师Golay发明效能极高的毛细管色谱柱; ●1958年澳大利亚学者Mcwilliam发明氢焰离子化检测器,使分离效能和检测器的灵敏 度大大提高。 5.气相色谱法分类 ●分类方式很多 气相色谱:(1)按固定相的状态分--气固色谱和气液色谱 (2)按使用的色谱柱分--填充柱气相色谱和毛细管柱气相色谱 如按进样方式不同分类:顶空气相色谱和裂解气相色谱等,其体系及仪器构成类似。

8.2 气相色谱仪 8.2.1结构框图 放空 8.2.2载气系统 1.作用:提供流量稳定的、持续的、纯净的载气。 2.组成: (1)载气:常用有氮气、氢气、氦气载气钢瓶: (2)净化器:除载气中水和有机杂质等(依次通过活性炭、分子筛、氧化铝、硅胶等) (3)载气流速、压力控制:控制载气流速恒定。(包括压力表、流量计、稳压阀等) 3.流量计: (1)转子流量计 (2)电子压力流量计 4.钢瓶与减压阀 钢瓶样色对应气体种类:H2绿色,He 暗灰色,O2蓝色,N2黑色、CO2银灰色 8.2.3进样系统 1.要求气密性好 2.气化室:将液体试样瞬间气化的装置 3.进样方式:(1)液体直接进样(2)顶空进样 利用被测样品(气-液和气-固)加热平衡后,取其挥发气体部分进入气相色谱仪分析。 固相微萃取进样 固相微萃取技术是20世纪90年代兴起的一项新颖的样品前处理与富集技术。 8.2.4分离系统 Detector W 载气系统 进样系统 分离系统 检测系统 数据处理及控制系统 温度控制系统

第十六章 色谱分析法概论 - 章节小结

一、主要内容 1.基本概念 保留时间t R:从进样到某组分在柱后出现浓度极大时的时间间隔。 死时间t0:分配系数为零的组分即不被固定相吸附或溶解的组分的保留时间。 调整保留时间t R':某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间。 相对保留值r2,1:两组分的调整保留值之比。 分配系数K:在一定温度和压力下,达到分配平衡时,组分在固定相与流动相中的浓度之比。 保留因子k:在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量之比。 分离度R:相邻两组分色谱峰保留时间之差与两色谱峰峰宽均值之比。 分配色谱法:利用被分离组分在固定相或流动相中的溶解度差别或分配系数的差别而实现分离的色谱法。 吸附色谱法:利用被分离组分对固定相表面吸附中心吸附能力的差别或吸附系数的差别而实现分离的色谱法。 离子交换色谱法:利用被分离组分离子交换能力的差别或选择性系数的差别而实现分离的色谱法。 分子排阻色谱法:根据被分离组分分子的线团尺寸或渗透系数的差别而进行分离的色谱法。 涡流扩散:在填充色谱柱中,由于填料粒径大小不等,填充不均匀,使同一个组分的分子经过多个不同长度的途径流出色谱柱,使色谱峰展宽的现象。 纵向扩散:由于浓度梯度的存在,组分将向区带前、后扩散,造成区带展宽的现象。 传质阻抗:组分在溶解、扩散、转移的传质过程中所受到的阻力称为传质阻抗。 保留指数I:在气相色谱法中,常把组分的保留行为换算成相当于正构烷烃的保留行为,也就是以正构烷烃系列为组分相对保留值的标准,即用两个保留时间紧邻待测组分的基准物质来标定组分的保留,这个相对值称为保留指数,又称Kovats指数。 保留体积V R:是从进样开始到某组分在柱后出现浓度极大时,所需通过色谱柱的流动相体积。 调整保留体积V R':是由保留体积扣除死体积后的体积。 保留比R':设流动相的线速度为u,组分的移行速度为v,将二者之比称为保留比。 2.基本理论 (1)色谱分离的原理:组分在固定相和流动相间进行反复多次 的“分配”,由于分配系数K(或容量因子k)的不同而实现分离。各种色谱

气相色谱法习题解答

第十七章 气相色谱法习题解答(P382~P384) 6.答:不一定,因为组分能否分离除与理论塔板数有关外,主要还与分配系数比α有关,即主要与固定液的选择有关。 15.答: 注:根据H-u 曲线及色谱分离方程式来判断。 16.解:2 2 /154.5??? ? ??=W t n R n L H = 642)13140(54.554.5222/1=?=??? ? ??=W t n R A ,cm H A 16.0642100== 594)17176(54.554.5222/1=?=??? ? ??=W t n R B ,cm H B 17.0594100== 516)20193(54.554.5222 /1=?=??? ? ??=W t n R C ,cm H C 19.0516100== 17.解:①'0 5.0 1.0 4.01.0 R t k t -=== ②0 1.0504.0 4.01002.0 2.0 s m m s V V V k K K k V V ?=?==?=?= ③00 1.0 5.050c V t F mL =?=?= ④ 5.0 5.0250R R c V t F mL =?=?=

18.解:由 5.12/)(1 22112≥-=+-=W t t W W t t R R R R R 则 s t t W R R 205.1320 3505.112=-=-= 由 n L H = ,2)(16W t n R = 则 mm H W t H n L R 53911.0)20 350(16)( 1622=?==?==0.54 m 另解: 由 22 114k k n R +? -?= αα , 则有 2 2 114/k k H L R +? -?=αα H k k R L ?+?-=2 2 222)1()1( 16αα 而 10.125 32025 350''1212=--=== R R t t k k α,132525350'022=-= =t t k R m mm H k k R L 56.055611.013 131110.110.15.116 )1()1( 16 2 222 2 222==?+?-??=?+?-=∴)()(αα 故 色谱柱至少0.54米。 19.解:① 由 2 16( )R t n W =,得: 22 2 1615.05160.9289min 4200RA A A t W W n ?==?= 22 2 1614.82160.9147min 4200RB B B t W W n ?==?= 211215.0514.82 0.25()/2(0.92890.9147)/2 R R t t R W W --= ==++ ②H 不变 2211222 0.254200( )()1.0R n R n n =?= 267200n ∴=

仪器分析 第十五-第十九章思考题

第十五章思考题 1.色谱法具有同时能进行分离和分析的特点而区别于其它方法,特别对复杂样品和多组份混合物的分离,色谱法的优势更为明显。 2.按固定相外形不同色谱法是如何分类的? 是按色谱柱分类: ①平面色谱法:薄层色谱法、纸色谱法 ②柱色谱法:填充柱法、毛细管柱色谱法 3.什么是气相色谱法和液相色谱法? 气体为流动相的色谱称为气相色谱。 液体为流动相的色谱称为液相色谱。 4.保留时间(tr)、死时间(t0)及调整保留时间(t’r)的关系是怎样的? t’r = tr - t0 5.从色谱流出曲线可以得到哪些信息? ①根据色谱峰的个数可以判断样品中所含组分的最少个数; ②根据色谱峰的保留值可以进行定性分析; ③根据色谱峰的面积或峰高可以进行定量分析; ④色谱峰的保留值及其区域宽度是评价色谱柱分离效能的依据; ⑤色谱峰两峰间的距离是评价固定相(或流动相)选择是否合适的依据。 6.分配系数在色谱分析中的意义是什么? ①K值大的组分,在柱内移动的速度慢,滞留在固定相中的时间长,后流出柱子; ②分配系数是色谱分离的依据; ③柱温是影响分配系数的一个重要参数。 7.什么是选择因子?它表征的意义是什么?

是A,B两组分的调整保留时间的比值α= t’r(B)/t’r(A)>1 意义:表示两组分在给定柱子上的选择性,值越大说明柱子的选择性越好。 8.什么是分配比(即容量因子)?它表征的意义是什么? 是指在一定温度和压力下,组分在两相分配达到平衡时,分配在固定相和流动相的质量比。K=ms/mm 意义:是衡量色谱柱对被分离组分保留能力的重要参数; 9. 理论塔板数是衡量柱效的指标,色谱柱的柱效随理论塔板数的增加而增加,随板高的增大而减小。 10.板高(理论塔板高度H/cm)、柱效(理论塔板数n)及柱长(L/cm)三者的关系(公式)? H=L / n 11.利用色谱图如何计算理论塔板数和有效理论塔板数(公式)? 12.同一色谱柱对不同物质的柱效能是否一样? 同一色谱柱对不同物质的柱效能是不一样的 13.塔板理论对色谱理论的主要贡献是怎样的? (1)塔板理论推导出的计算柱效率的公式用来评价色谱柱是成功的; (2)塔板理论指出理论塔板高度H 对色谱峰区域宽度的影响有重要意义。 14.速率理论的简式,影响板高的是哪些因素? μ:流动相的线速 A:涡流扩散系数 B:分子扩散系数 C:传质阻力项系数 15.分离度可作为色谱柱的总分离效能指标。 16.如何根据分离度分析色谱分离的情况?

《现代气相色谱实践》第十五章-气相色谱仪的安装调试和样品的预处理

第十五章气相色谱仪的安装调试和样品的预处理 一气相色谱仪的订购和气相色谱实验室的安全 ⒈气相色谱仪及其必要的玻璃仪器和试剂的订购 ⒉气相色谱实验室的安全 二气相色谱仪的开箱和安装 ⒈气相色谱仪的开箱 ⒉气相色谱仪的安装 三气相色谱仪的调试 ⒈柱箱循环风机的检查 ⒉柱箱温度控制准确性的测试 ⒊外部气路的连接和检漏 ⒋仪器内部气路和检漏 ⒌往柱箱内安装色谱柱 ⒍温度、气体流速、进样器和检测器的综合调试 ⒎气相色谱实验中可能出现的故障、原因和维护 ⒏气相色谱日常工作中需要进行的工作顺序 四样品的预处理 ⒈样品的酯化 ⒉样品的乙酰化 ⒊样品的硅烷化

第十五章气相色谱仪的安装调试和样品的预处理15-1第十五章气相色谱仪的安装调试和样品的预处理 如果您的实验室新购入了一台气相色谱仪或者想把一台长久搁置不用的气相色谱仪重新启用,您应该对这台仪器进行完整的安装和仔细的调试,以查对这台仪器是否能完全符合仪器出厂时的技术指标。如果调试的结果有某项指标不符合出厂技术指标的规格,对新仪器来说,应该立即与厂商联系以解决这一问题;如果是长久搁置不用的仪器,则应该立即与原来的厂商联系购置损坏的部件,以便进行替换。无论是新仪器还是旧仪器,只要是替换了新的部件,就应该针对这一部件重新进行调试,以确保它的技术指标符合规格。 气相色谱仪的安装调试是气相色谱实验室的一项重要工作,如果忽略了它的重要性,您就无法确保以后的工作中不出现种种不正常的现象,以致在对它的维护保养方面无所适从,甚至可能导致实验数据的严重错误。当一台气相色谱仪已经安装妥当,又进行了仔细的调试,在我们已经确认这台仪器完全符合生产厂商的出厂技术指标后,您就可以在合适的分离色谱柱上进行工作,通常的情况下就可以开始您的气相色谱实验;但是,某些样品可能由于其沸点很高,或者容易分解或解聚而无法直接进样,或者无论如何也无法解决峰严重拖尾的问题,在这种情况下就可能需要对样品预先进行预处理。 所谓“样品的预处理”就是利用化学的方法使样品改性,让它变成另一种沸点较低,挥发性较大或者在仪器控制的较高温度下不易分解或解聚的物质,以便能正常地进行气相色谱分离。 下面我们将叙述如何进行气相色谱仪的安装调试和如何对那些不能直接进行气相色谱分离的样品进行预处理。 一气相色谱仪的订购和气相色谱实验室的安全 ⒈气相色谱仪及其必要的玻璃仪器和试剂的订购 ⑴气相色谱仪的订购 您应该根据您的气相色谱实验室所要达到的目的去订购仪器。 您大致上可以在分析仪器市场上找到三类不同挡次的气相色谱仪,高挡、中挡和低挡的。 在高挡的气相色谱仪中,所有可以启动的仪器零部件的动作,可加热部件的温度,所有的检测器的电气参数和讯号的输入、输出,以及所需气体的流速、压力的变化都可以用仪器内的微型计算机(以下简称微机)来控制,并且在仪器的结构设计上有较好的配合和合理性,以及仪器制造的精度较高;这种仪器可根据不同方法的要求去安装填充柱和毛细管柱;在检测方面,除常用的热导检测器和火焰电离检测器外,通常还可以安装各种不同的检测器如火焰光度

第二章 气相色谱分析习题参考答案

第二章 气相色谱分析课后习题参考答案(P 60页) 1、简要说明气相色谱分析的分离原理。 借在两相间分配原理而使混合物中各组分分离。气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。 2、气相色谱仪的基本设备包括哪几部分?各有什么作用? 气路系统、进样系统、分离系统、温控系统以及检测和记录系统。气相色谱仪具有一个让载气连续运行,管路密闭的气路系统;进样系统包括进样装置和气化室。其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中;分离系统完成对混合样品的分离过程;温控系统是精确控制进样口、汽化室和检测器的温度;检测和记录系统是对分离得到的各个组分进行精确测量并记录。 3、当下列参数改变时:(1)柱长缩短,(2)固定相改变,(3)流动相流速增加,(4)相比减少,是否会引起分配系数的改变?为什么? 分配系数只与组分的性质及固定相与流动相的性质有关。所以(1)柱长缩短不会引起分配系数改变;(2)固定相改变会引起分配系数改变;(3)流动相流速增加不会引起分配系数改变;(4)相比减少不会引起分配系数改变。 4、当下列参数改变时:(1)柱长增加,(2)固定相量增加,(3)流动相流速减小,(4)相比增大,是否会引起分配比的变化?为什么? βK m m k M S == ;而S M V V =β,分配比除了与组分、两相的性质、柱温、柱压有关外,还与相比有关,而与流动相流速、柱长无关。故(1)不变化;(2)增加;(3)不改变;(4)减小。 5、试以塔板高度H 做指标,讨论气相色谱操作条件的选择。 提示:主要从速率理论(范弟姆特Van Deemter )来解释,同时考虑流速的影响,选择最佳载气流速(P 13-24)。(1)选择流动相最佳流速。(2)当流速较小时,可以选择相对分子质量较大的载气(如N 2,Ar),而当流速较大时,应该选择相对分子质量较小的载气(如H 2,He )同时还应该考虑载气对不同检测器的适应性。(3)柱温不能高于固定液的最高使用温度,以免引起固定液的挥发流失。在使最难分离组分能尽可能好的分离的前提下,尽可能采用较低的温度,但以保留时间适宜,峰形不拖尾为度。(4)固定液用量:担体表面积越大,固定液用量可以越高,允许的进样量也越多,但为了改善液相传质,应使固定液膜薄一些。(5)对担体的要求:担体表面积要大,表面和孔径均匀。粒度要求均匀、细小(但不宜过小以免使传质阻力过大)。(6)进样速度要快,进样量要少,一般液体试样0.1~5 μL ,气体试样0.1~10 mL 。(7)气化温度:气化温度要高于柱温30~70 ℃。 6、试述速率方程中A ,B ,C 三项的物理意义。H –u 曲线有何用途?曲线的形状受哪些主要因素的影响? 参见教材(P 14-16)。A 称为涡流扩散项,B 为分子扩散系数,C 为传质阻力系数。 下面分别讨论各项的意义: (1)涡流扩散项A 。气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成类似“涡流”的流动,因而引起色谱峰的扩张。由于A = 2 λ·d p ,表明A 与填充物的平均颗粒直径d p 的大小和填充的不均匀性λ有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗粒均

第十六章 色谱分析法概论

第十六章 色谱分析法概论 思 考 题 和 习 题 1.色谱法作为分析方法的最大特点是什么? 2.一个组分的色谱峰可用哪些参数描述? 这些参数各有何意义? 3.说明容量因子的物理含义及与分配系数的关系。为什么容量因子 (或分配系数) 不等是分离的前提? 4.各类基本类型色谱的分离原理有何异同? 5.说明式(17?18)中K 与V s 在各类色谱法中的含义有何不同? 6.衡量色谱柱效的指标是什么?衡量色谱系统选择性的指标是什么? 7.用塔板理论讨论流出曲线,为什么不论在 t >t R 或t <t R 时,总是C <C max ? 塔板理论有哪些优缺点? 8.简述谱带展宽的原因。 9.下列那些参数可使塔板高度减小? (1) 流动相速度,(2) 固定相颗粒, (3) 组分在固定相中的扩散系数D s ,(4) 柱长, (5) 柱温。 10.什么是分离度?要提高分离度应从哪两方面考虑? 11.组分在固定相和流动相中的质量为m A 、m B (g),浓度为C A 、 C B (g/ml),摩尔数为n A 、n B (mol),固定相和流动相的体积为V A 、V B (ml),此组分的容量因子是 ( ) 。 A. m A /m B ; B. (C A V A )/(C B V B ) ; C. n A /n B ; D. C A /C B 。 (A 、B 、C ) 12.在柱色谱法中,可以用分配系数为零的物质来测定色谱柱中 ( ) 。 A. 流动相的体积; B. 填料的体积; C. 填料孔隙的体积; D. 总体积。 (A 、C ) 13.在以硅胶为固定相的吸附色谱中下列叙述中正确的是 ( ) 。 A. 组分的极性越强,吸附作用越强; B. 组分的分子量越大,越有利于吸附; C. 流动相的极性越强,溶质越容易被固定相所吸附; D. 二元混合溶剂中正己烷的含量越大,其洗脱能力越强。 (A ) 14.在离子交换色谱法中,下列措施中能改变保留体积的是( )。 A. 选择交联度大的交换剂; B. 以二价金属盐溶液代替一价金属盐溶液作流动相; C. 降低流动相中盐的浓度; D. 改变流速。 (A 、B 、C ) 15.在空间排阻色谱法中,下列叙述中完全正确的是( )。 A. V R 与K p 成正比; B. 调整流动相的组成能改变V R ; C. 某一凝胶只适于分离一定分子量范围的高分子物质; D. 凝胶孔径越大,其分子量排斥极限越大。 (C 、D ) 16.在一液液色谱柱上,组分A 和B 的K 分别为10和15,柱的固定相体积为0.5ml ,流动相体积为1.5ml ,流速为0.5ml/min 。求A 、B 的保留时间和保留体积。 (A R t =13min A R V =6.5ml, B R t =18min B R V =9ml ) 17.在一根3m 长的色谱柱上分离一个试样的结果如下:死时间为1min ,组分1的保留时间为14min ,组分2的保留时间为17min ,峰宽为1min 。 (1) 用组分2计算色谱柱的理论塔板数n 及塔板高度H ;(2) 求调整保留时间

仪器分析课后答案:第十九章 气相色谱法

第十九章 气相色谱法 习题 P511~P512 1.实验条件 柱温:80℃;气化室与氢焰检测室温度:120℃;载气:N 2,30~40mL/min ;H 2:N 2=1:1;H 2:空气=1/5~1/10;样品:0.05%(体积分数)苯的二硫化碳溶液(浓度需准确配制);进样量:0.5μL ,进样3次。已知苯的密度为0.88mg/μL 。 数据:噪声N=±0.01mV ;峰高平均值10.10cm ;半峰宽平均值0.202cm ;记录器灵敏度C 1=0.40mV/cm ;记录纸倒数C 2=0.50min/cm ;衰减K=16(所测峰高为真实高的1/16)。求检测器的灵敏度S m 及检测限D m 。 解:)/(6021g s mV W C C A S m ????= 其中:记录器灵敏度C 1=0.40mV/cm ;记录纸倒数C 2=0.50min/cm 22/176.34202.01610.10065.1065.1cm W K h A =???=???= g g W 732102.21088.05.01005.0---?=????= g s mV S m /1090.1102.26050.040.076.3497??=????= - s g g s mV mV s g S N D m m /1005.1/1090.101.02)/(2119-?=???== 2. 在一根甲苯硅橡胶(OV-1)色谱柱上,柱温120℃。测得一些纯物质的保留时间(s ):甲烷4.9、正己烷84.9、正庚烷145.0、正辛烷250.3、正壬烷436.9、苯128.8、3-正己酮230.5、正丁酸乙酯248.9、正己醇413.2及某正构饱和烷烃50.6。 (1)求出这些化合物的保留指数。说明应如何正确选择正构烷烃物质对,以减小计算误差; (2)解释上述5个六碳化合物的保留指数为何不同;(3)未知正构饱和烷烃是什么物质? 解:(1)∵t R (甲烷)=t 0=4.9 s, ∴ t ’R (正己烷)= 84.9 – 4.9 = 80.0 s, t ’R (正庚烷)=145.0 – 4.9 = 140.1 s t ’R (正辛烷)=250.3 – 4.9 = 245.4 s, t ’R (正壬烷)=436.9 – 4.9 = 432.0 s t ’R (苯)=128.8 – 4.9 = 123.9 s, t ’R (3-正己酮)=230.5 – 4.9 = 225.6 s

第十七章-气相色谱法

第十七章气相色谱法 思考题和习题 1.名词解释:噪音检测限死体积分离度程序升温保留温度分流进样分流比线性分流相对重量校正因子麦氏常数 2.说出下列缩写的中文名称:TCD FID ECD TID FPD WCOT柱PLOT柱SCOT柱FSOT柱 3.简述范氏方程在气相色谱中的表达式以及在分离条件选择中的应用。 4.某色谱柱理论塔板数很大,是否任何两种难分离的组分一定能在该柱上分离?为什么? 5.气相色谱仪主要包括哪几部分?简述各部分的作用。 6.在气相色谱中,如何选择固定液? 7.说明氢焰、热导以及电子捕获检测器各属于哪种类型的检测器,它们的优缺点以及应用范围。 8.在气相色谱分析中,应如何选择载气流速与柱温? 9.气相色谱定量分析的依据是什么?为什么要引入定量校正因子?常用的定量方法有哪几种?各在何种情况下应用? 10.毛细管柱气相色谱有什么特点?毛细管柱为什么比填充柱有更高的柱效? 11.当出现下列三种情况时,Van Deemter曲线是什么形状?(1)B/u=Cu=0;(2)A=Cu=0;(3)A=B/u=0 12.用气相色谱法分离某二元混合物时,当分别改变下列操作条件之一时,推测一下对t R、H、R的影响(忽略检测器、气化室、连接管道等柱外死体积)。

(a)流速加倍,(b)柱长加倍,(c)固定液液膜厚度加倍,(d)色谱柱柱温增加。 13.当色谱峰的半峰宽为2mm,保留时间为4.5min,死时间为1min,色谱柱长为2m,记录仪纸速为2cm/min,计算色谱柱的理论塔板数,塔板高度以及有效理论塔板数,有效塔板高度。 (11200 ,0.18mm;6790,0.29mm)14.在某色谱分析中得到如下数据:保留时间t R=5.0min,死时间t0=1.0min,固定液体积V s=2.0ml,载气流速F=50ml/min。计算:(1)容量因子;(2)分配系数;(3)死体积;(4)保留体积。 (4.0,100,50ml,250ml)15.用一根2米长色谱柱将两种药物A和B分离,实验结果如下:空气保留时间30秒,A与B的保留时间分别为230秒和250秒,B峰峰宽为25秒。求该色谱柱的理论塔板数,两峰的分离度。若将两峰完全分离,柱长至少为多少? (1600,0.80,7m)16.用一色谱柱分离A、B两组分,此柱的理论塔板数为4200,测得A、B的保留时间分别为15.05min及14.82min。(1)求分离度;(2)若分离度为1.0时,理论塔板数为多少? (0.25,67200)17.一气相色谱柱在Van Deemter方程中A、B、C值各为0.15cm,0.36cm2?s1,4.3×102s。试计算最小塔板高度及最佳流速。 (0.399cm,2.85cm?s1)

第15章气相色谱法

第15章气相色谱法 【15-1】 热导检测器灵敏度测定的有关数据如下:载气实际体积流速F CO =60mL·min -1,室温27℃,检测室温度47℃;记录仪灵敏度10mV/25cm ;纸速4.0 cm/min ;衰减8,进液体苯样1.0 μL (苯密度0.88g·mL -1);色谱峰峰高12.00 cm ,半峰宽1.00 cm 。计算该热导检测器的灵敏度。 解:1472736084 /min 27273 D CO T F F mL T +==?=+检室 1084 1.06512 1.00825975.9 (mV mL/mg)410.88 c S ?????==?? 【15-2】 氢火焰离于化检测器灵敏度测定:进含苯0.050%的CS 2溶液1.0μL ;苯的色谱峰高为10cm ,半峰宽为0.50mm ;记录纸速为1cm·min -1;记录仪灵敏度0.20mV·cm -1;仪器噪声为0.02mV 。求其灵敏度和敏感度(已知苯密度为0.88g·mL -1)。 解 S m =60A i u 2/u 1*m =60*1.065*10*0.5*0.2/(1.0*0.05*0.01*0.88*0.001)=1.45*108mv s·g -1 D m =3N/S=4.14*10-10g·s -1 【15-3】 在气相色谱分析中,为了测定下列组分,宜选用哪种检测器? (1)农作物中含氯农药的残留量; (2)酒中水的含量; (3)啤酒中微量硫化物; (4)苯和二甲苯的异构体。 答:(1)农作物中含氯农药的残留量:电子捕获检测器(ECD ); (2)酒中水的含量:热导池检测器(TCD ); (3)啤酒中微量硫化物:火焰光度检测器(FPD ); (4)苯和二甲苯的异构体:氢火焰离子化检测器(FID )。 【15-4】 以正丁烷-丁二烯为基准,在氧二丙腈和角鲨烷上测得的相对保留值分别为6.24和0.95,试求正丁烷-丁二烯相对保留值为1时,固定液的极性P 。 解:00lg 6.24lg1100100100100 2.7lg 6.24lg 0.95 x x s q q P q q --=-=-=-- 【15-5】 沸点几乎一样的苯和环己烷用气液色谱不难分离,试拟定一个实验方案,应指出选用的固定液、检测器和流出顺序等。 答:分离苯和环己烷,固定液用中等极性的邻苯二甲酸二辛酯,用氢火焰离子化检测器,由于苯比环己烷易于极化,中等极性的邻苯二甲酸辛二酯能使苯产生诱导偶极矩,二者相互作用使苯在环己烷之后流出。 【15-6】 以邻苯二甲酸二辛酯为固定液,分离下列各混合试样,指出试样中各组分的流出顺序: (1)苯、苯酚、环己烷; (2)丁二烯、丁烷、丁烯; (3)乙醇、环己烷、丙酮;

相关文档