文档库 最新最全的文档下载
当前位置:文档库 › 铝合金的熔炼与铸造-熔铸工艺分析

铝合金的熔炼与铸造-熔铸工艺分析

铝合金的熔炼与铸造-熔铸工艺分析
铝合金的熔炼与铸造-熔铸工艺分析

铝合金的熔炼与浇铸

铝合金的熔炼与浇铸 6.5.1铝合金的性能及应用 铝合金是比较年轻的材料,历史不过百年,铝合金以比重小,强度高著称,可以说没有铝合金就不可能有现代化的航空事业和宇航事业,在飞机、导弹、人造卫星中铝合金所占比重高达90%,是铸造生产中仅次于铸铁的第二大合金,其地壳含量达7.5%,在工业上有着重要地位。 铝合金有良好的表面光泽,在大气及淡水中具有良好的耐腐蚀性,故在民用器皿制造中,具有广泛的用途。纯铝在硝酸及醋酸等氧化性酸类介质中具有良好的耐蚀性,因而铝铸件在化学工业中也有一定的用途。纯铝及铝合金有良好的导热性能,放在化工生产中使用的热交换装置,以及动力机械上要求具有良好导热性能的零件,如燃机的汽缸盖和活塞等,也适于用铝合金来制造。 铝合金具有良好的铸造性能。由于熔点较低(纯铝熔点为660℃,铝合金的浇注温度一般约在730~750℃左右),故能广泛采用金属型及压力铸造等铸造方法,以提高铸件的在质量、尺寸精度和表面光洁程度以及生产效率。铝合金由于凝固潜热大,在重量相同条件下,铝液的凝固过程时间延续比铸钢和铸铁长得多,其流动性良好,有利于铸造薄壁和结构复杂的铸件。 铸造铝合金的分类、牌号: 铝合金按照加工方法的不同分为两大类,即压力加工铝合金和铸造铝合金(分别以YL和ZL表示)。在铸造铝合金中又依主要加入的合金元素的不同而分为四个系列,即铸造铝硅合金、铸造铝铜合金、铸造铝镁合金和铸造铅锌合金(分别以 ZL1X X,ZL2 X X,ZL3 X X和ZL4 X X表示),在每个系列中又按照化学成分及性能的不同而分为若干牌号。表1中列出了铸造铝合金国家标准所包括的几种铝合金的牌号。 6.5.2 铝合金的熔炼设备

废铝熔炼铝锭的工艺操作规范

再生铝熔炼工艺特点? 再生铝是以回收来的废铝零件或生产铝制品过程中的边角料以及废铝线等为主要原材料,经熔炼配制生产出来的符合各类标准要求的铝锭。这种铝锭采用回收废铝,而有较低的生产成本,而且它是自然资源的再利用,具有很强的生命力,特别是在当前科技迅猛发展,人民生活质量不断改善的今天,产品更新换代频率加快,废旧产品的回收及综合利用已成为人类持续发展的重要课题,再生铝生产也就是在这样的形式下应运而生并具有极好的前景。? 由于再生铝的原材料主要是废杂铝料,废杂铝中有废铝铸件(以Al-Si合金为主)、废铝锻件(Al-Mg-Mn、Al-Cu-Mn等合金)、型材(Al-Mn、Al-Mg等合金)废电缆线(以纯铝为主)等各种各样料,有时甚至混杂入一些非铝合金的废零件(如Zn、Pb合金等),这就给再生铝的配制带来了极大的不便。如何把这种多种成分复杂的原材料配制成成分合格的再生铝锭是再生铝生产的核心问题,因此,再生铝生产流程的第一环节就是废杂铝的分选归类工序。分选得越细,归类得越准确,再生铝的化学成分控制就越容易实现。? 废铝零件往往有不少镶嵌件,这些镶嵌件都是些以钢或铜合金为主的非铝件,在熔炼过程中不及时地扒出,就会导致再生铝成分中增加一些不需要的成分(如Fe、Cu等)因此,在再生铝熔炼初期,即废杂铝刚刚熔化时就必须有一道扒镶嵌件的工序(俗称扒铁工序)。把废杂铝零件中的镶嵌件扒出,扒得越及时、 越干净,再生铝的化学成分就越容易控制。扒铁时熔液温度不宜过高,温度的升高会使镶嵌件中的Fe、Cu元素溶入铝液。?

各地收集来的废杂铝料由于各种原因其表面不免有污垢,有些还严重锈蚀,这些污垢和锈蚀表面在熔化时会进入熔池中形成渣相及氧化夹杂,严重损坏再生铝的冶金质量。清除这些渣相及氧化夹杂也是再生铝熔炼工艺中重要的工序之一。采用多级净化,即先进行一次粗净化,调整成分后进行二级稀土精变,再吹惰性气体进一步强化精炼效果,可有效的去除铝熔液中的夹杂。? 废铝料表面的油污及吸附的水分,使铝熔液中含有大量气体,不有效的去除这些气体就使冶金质量大大下降,强化再生铝生产中的除气环节以降低再生铝的含气量是获得高质量再生铝的重要措施。? 再生铝原材料组成? 1、废杂铝来源? 目前我国再生铝厂利用的废杂铝主要来源于两方面,一是从国外进口的废杂铝,二是国内产生的废杂铝。? 进口废杂铝? 最近几年国内大量从国外进口废杂铝。就进口废杂铝的成分而言,除少数分 类清晰外大多数是混杂的。一般可以分为以下几大类:? ①单一品种的废铝? 此类废铝一般都是某一类废零部件,如内燃机的活塞,汽车减速机壳、汽车轮毂、汽车前后保险栓。铝门窗等。这些废铝在进口时已经分类清晰,品种单一,且都是批量进口,因此是优质的再生铝原料。?

铝合金铸造工艺简介

铝合金铸造工艺简介 一、铸造概论 在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下: 由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。 1、铝合金铸造工艺性能 铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1) 流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。 (2) 收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在

6063铝合金熔炼生产工艺手册

6063铝合金熔炼生产工艺手册 本文由全球铝业网 (https://www.wendangku.net/doc/261294395.html,) 编辑,转载请注明出处,十分感谢! 一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、0.45-0.9%的镁、铁的最高限量为0.35%,其余杂质元素(Cu、Mn、Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。 6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和 Mg2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示:在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶于基体中的Mg2Si 越多,时效后的合金强度就越高,反之,则越低,如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg2Si的最大溶解度是1.85%,在 500℃时为1.05%,由此可见,温度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温度不够或外热内冷,造成型材淬火温度太低所致。 在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如果合金中有过剩的镁(即Mg:Si>1.73),镁会降低Mg2Si在铝中的固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响,由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择 6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易得到光亮的表面。 另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂漆)造成麻烦。 2.杂质元素的影响

铝合金的熔炼规范

铝合金的熔炼规范 适用于重力铸造和压铸用铝硅合金(包括Al-Si-Mg、Al-Si-Cu等)指导性文件:《铝合金的熔炼规范》。 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T9438-1999《铝合金铸件》、JISH5202-1999《铝合金铸件》、ASTMB108-03a《铝合金金属型铸件》、GB/T15115-1994《压铸铝合金》、JISH5302-2006《铝合金压铸件》、ASTMB85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T1196-2002《重熔用铝锭》 铝硅合金锭:GB/T8734-2000《铸造铝硅合金锭》 镁锭:GB3499-1983《镁锭》 铝铜中间合金:YS/T282-2000《铝中间合金锭》 铝锰中间合金:YS/T282-2000《铝中间合金锭》 各牌号的预制合金锭:GB/T8733-2000《铸造铝合金锭》、JISH2117-1984《铸件用再生铝合金锭》、ASTMB197-03《铸造铝合金锭》、JISH2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50%。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。

铝合金的熔炼、铸锭与固溶处理

铝合金的熔炼、铸锭与固溶处理

————————————————————————————————作者:————————————————————————————————日期: ?

铝合金的熔炼、铸锭与固溶处理 一、实验目的: 掌握铝合金熔炼的基本原理,并应用在熔炼的实践中。熔炼是使金属合金化的一种方法,它是采用加热的方式改变金属物态,使基体金属和合金组元按要求的配比熔制成成分均匀的熔体,并使其满足内部纯洁度、铸造温度和其他特定条件的一种工艺过程。熔体的质量对铝材的加工性能和最终使用性能产生决定性的影响,如果熔体质量先天不足,将给制品的使用带来潜在的危险。因此,熔炼又是对加工制品的质量起支配作用的一道关键工序。而铸造是一种使液态金属冷凝成型的方法,它是将符合铸造的液态金属通过一系列浇注工具浇入到具有一定形状的铸模(结晶器)中,使液态金属在重力场或外力场(如电磁力、离心力、振动惯性力、压力等)的作用下充满铸模型腔,冷却并凝固成具有铸模型腔形状的铸锭或铸件的工艺过程。铝合金的铸锭法有很多,根据铸锭相对铸模(结晶器)的位置和运动特征,可将铝合金的铸锭方法分类如下: 二、实验内容: 铝铜合金熔炼基本工艺流程

三、实验要求 严格控制熔化工艺参数和规程 1. 熔炼温度 ?熔炼温度愈高,合金化程度愈完全,但熔体氧化、吸氢倾向愈大,铸锭形成粗晶组织和裂纹的倾向性愈大。通常,铝合金的熔炼温度都控制在合金液相线温度以上50~100℃的范围内。从图1的Al-Cu相图可知,Al-5%Cu的液相线温度大致为660~670℃,因此,它的熔炼温度应定在710(720)℃~760(770)℃之间。浇注温度为730℃左右。

铝合金熔炼与铸造工艺规范与流程

铝合金熔炼与铸造工艺 规范与流程 Revised by Chen Zhen in 2021

铝合金熔炼与铸造工艺规范与流程 资料来源:全球铝业网铝业知识频道一、铝合金熔炼规范 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T 9438-1999《铝合金铸件》、JISH 5202-1999《铝合金铸件》、ASTM B 108-03a《铝合金金属型铸件》、GB/T 15115-1994《压铸铝合金》、JISH 5302-2006《铝合金压铸件》、ASTM B 85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T 1196-2002《重熔用铝锭》

铝硅合金锭:GB/T 8734-2000《铸造铝硅合金锭》 镁锭: GB 3499-1983《镁锭》 铝铜中间合金:YS/T 282-2000《铝中间合金锭》 铝锰中间合金:YS/T 282-2000《铝中间合金锭》 各牌号的预制合金锭:GB/T 8733-2000《铸造铝合金锭》、JISH 2117-1984《铸件用再生铝合金锭》、ASTM B 197-03《铸造铝合金锭》、JISH 2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50% 。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。 4)炉料预热 预热一般为350~450℃下保温2~4h。Zn、Mg、RE在200~250℃下保温2~4h。在保证坩埚涂料完整和充分预热的情况下,除Zn、Mg、Sr、Cd及RE等易燃材料外的炉料允许随炉预热。

铝合金熔炼工艺流程和操作工艺

铝合金熔炼工艺流程和操作工艺(一) 装料 熔炼时,装入炉料的顺序和方法不仅关系到熔炼的时间、金属的烧损、热能消耗,还会影响到金属熔体的质量和炉子的使用寿命。装料的原则有: 1、装炉料顺序应合理。正确的装料要根据所加入炉料性质与状态而定,而且还应考虑到最快的熔化速度,最少的烧损以及准确的化学成分控制。 装料时,先装小块或薄片废料,铝锭和大块料装在中间,最后装中间合金。熔点易氧化的中间合金装在中下层。所装入的炉料应当在熔池中均匀分布,防止偏重。 小块或薄板料装在熔池下层,这样可减少烧损,同时还可以保护炉体免受大块料的直接冲击而损坏。中间合金有的熔点高,如AL-NI和AL-MN合金的熔点为750-800℃,装在上层,由于炉内上部温度高容易熔化,也有充分的时间扩散;使中间合金分布均匀,则有利于熔体的成分控制。 炉料装平,各处熔化速度相差不多这样可以防止偏重时造成的局部金属过热。 炉料应进量一次入炉,二次或多次加料会增加非金属夹杂物及含气量。 2、对于质量要求高的产品(包括锻件、模锻件、空心大梁和大梁型材等)的炉料除上述的装料要求外,在装料前必须向熔池内撒20-30kg粉状熔剂,在装炉过程中对炉料要分层撒粉状熔剂,这样可提高炉体的纯洁度,也可以减少损耗。 3、电炉装料时,应注意炉料最高点距电阻丝的距离不得少于100mm,否则容易引起短路。 熔化 炉料装完后即可升温。熔化是从固态转变为液态的过程。这一过程的好坏,对产品质量有决定性的影响。 A、覆盖 熔化过程中随着炉料温度的升高,特别是当炉料开始熔化后,金属外层表面所覆盖的氧化膜很容易破裂,将逐渐失去保护作用。气体在这时候很容易侵入,造成内部金属的进一步氧化。并且已熔化的液体或液流要向炉底流动,当液滴或液流进入底部汇集起来时,其表面的氧化膜就会混入熔体中。所以为了防止金属进一步氧化和减少进入熔体的氧化膜,在炉料软化下塌时,应适当向金属表面撒上一层粉状熔剂覆盖,其用量见表。这样也可以减少熔化过程中的金属吸气。 覆盖剂种类及用量 炉型及制品电气熔炼煤气炉熔炼 覆盖剂用量普通制品特殊制品普通制品特殊制品 (占投量) /% 0.4-0.5 0.5-0.6 1-2 2-4 覆盖剂种类粉状熔剂 Kcl:Nacl按1:1混合 B、加铜、加锌 当炉料熔化一部分后,即可向液体中均匀加入锌锭或铜板,以熔池中的熔体刚好能淹没住锌锭和铜板为宜。 这时应强调的是,铜板的熔点为1083℃,在铝合金熔炼温度范围内,铜是溶解在铝合金熔体中。因此,铜板如果加得过早,熔体未能将其盖住,这样将增加铜板的烧损;反之如果加得过晚,铜板来不及溶解和扩散,将延长熔化时间,影响合金的化学成分控制。 电炉熔炼时,应尽量避免更换电阻丝带,以防脏物落入熔体中,污染金属。 C、搅动熔体 熔化过程中应注意防止熔体过热,特别是天然气炉(或煤气炉)熔炼时炉膛温度高达1200℃,在这样高的温度下容易产生局部过热。为此当炉料熔化之后,应适当搅动熔体,以使熔池里各处温度均匀一致,同时也利于加速熔化.

A356铸造铝合金生产工艺流程

A356铸造铝合金生产工艺流程 目录 第一章概述 第一节铝合金的定义、性质和用途 第二节铝合金的分类及表示方法 第三节 A356合金的成分、组织和性能 第四节 A356合金的生产设备 第二章 A356合金的生产工艺 第一节 A356合金的生产工艺流程第二节熔炼 (1)铝熔体的特点 (2)铝熔体的精炼与净化 (3)熔炼工艺参数对铸锭质量的影响 第三节铸造 (1)铸造方法的分类 (2)铸造原理 (3)铸造工艺参数对铸锭质量的影响 第四节熔铸工艺 (1)配料工艺 (2)熔炼工艺 (3)铸造工艺 (4)取样工艺

第三章 A356合金常见缺陷及预防措施 第一节化学成分 第二节外观质量 第三节低倍针孔度 (1)针孔的定义与分类 (2)针孔形成的原因 (3)形成气孔的H2来源 (4)预防针孔形成的工艺措施 第一章概述 第一节铝合金的定义、性质和用途 所谓铝合金就是在工业纯铝中加入适量的其他元素,使铝的本质得到该善,以满足工业上和人们生活中的各种需要。由于其比重小,比强度高,具有良好的综合性能,因此,被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器皿制造等方面。 第二节铝合金的分类及表示方法 铝合金可分为两大类:变形铝合金和铸造铝合金,变形铝合金要先铸成锭,用于压延或拉伸,如:管、棒和板等;铸造铝合金,用于铸造固定铸件,如:活塞、汽缸和支架等。 变形铝合金牌号的表示方法大致有两种: 1、国家标准

用第一个字母L表示工业纯铝或铝合金,(取铝的汉语拼音第一个字母)。 第二个字母表示铝合金类别,下面几个字母分别表示: G——工业高纯铝 F——防锈铝合金 Y——硬铝合金 C——超硬铝合金 D——锻造铝合金 T——特殊铝合金 字母后面的数字表示该类合金的序号。如LF3表示3号防锈铝合金;LD2表示2号锻造铝合金;LY12表示12号硬铝合金;LC4表示4号超硬铝合金;LT21表示21号特殊铝合金。 2、引用美国四位数铝合金牌号表示方法,作为国家标准第一位数字表示铝合金系列,如: 1XXX 表示纯铝 2XXX 表示AL-Cu系合金 3XXX 表示AL-Mn系合金 4XXX 表示AL-Si系合金 5XXX 表示AL-Mg系合金 6XXX 表示AL-Mg-Si系合金 7XXX 表示AL-Zn系合金 8XXX 表示AL和其它元素的合金 9XXX 表示尚未使用的系列 最后两位数字表示某种具体的铝合金或铝的纯度,第二位数字表示对原来的合金或杂质范围的修改。 铸造铝合金牌号的表示方法:

铝合金熔炼工艺及注意事项

1、炉料处理 所有炉料入炉前均需要预热,以去除表面附的水分,缩短熔炼时间。 2、坩埚及熔炼工具的准备 (1)新坩埚使用前应清理干净及仔细检查有无穿透性缺陷,确认没有任何缺陷才能投入使用,预热至暗红色(500—600度)保温2小时以上,以烧除附着在坩埚内壁的水分及可燃物质,待冷却到300度以下时,仔细清理坩埚内壁,在温度不低于200度时,喷刷涂料,烘干烘透后才能使用。 (2)压勺、搅拌勺、浇包等熔炼工具使用前必须除尽残余金属及氧化皮等污物,经过200-300度预热后涂刷防护涂料,涂刷后烘干待用。 3、熔炼温度的控制 合金液快速升至较高的温度(705度左右),进行合理的搅拌,以促进所有合金元素的溶解,确认所有元素全部溶解后,进行精炼除气,扒除浮渣后将至浇注温度。(因铝溶液的温度难以用肉眼来判断的,所以必须用测温仪表控制温度,测温仪表应定期校准和维修;热电偶套管应周期的用金属刷刷干净,涂以防护性涂料,以保证测温结果的准确性及延长使用寿命。 4、熔炼时间的控制 为了减少铝溶液的氧化、吸气,应尽量缩短铝溶液在炉内的停留时间,快速熔炼。为加速熔炼过程,应首先加入中等块度、熔点较低的回炉料,以便在坩埚底部尽快形成熔池,然后再加出铝锭,使之能徐徐浸入逐渐扩大熔池,加速熔化;在炉料主要部分熔化后,再加入熔点较高、数量不多的合金元素,升温、搅拌以加速熔化,最后降温,压入易氧化的合金元素。 5、精炼处理

精炼处理温度:690—730度 精炼剂(充分预热)加入量铝液重的0.15—0.2%,用钟罩压入 处理时间为3—5分钟后静止5—10分钟,扒除浮渣进行浇注,浇注温度为700—740度。

铝合金熔炼工艺流程和操作工艺

铝合金熔炼工艺流程和操作工艺(一) 装料 熔炼时,装入炉料的顺序和方法不仅关系到熔炼的时间、金属的烧损、热能消耗,还会影响到金 属熔体的质量和炉子的使用寿命。装料的原则有: 1、装炉料顺序应合理。正确的装料要根据所加入炉料性质与状态而定,而且还应考虑到最快的熔化速度,最少的烧损以及准确的化学成分控制。 装料时,先装小块或薄片废料,铝锭和大块料装在中间,最后装中间合金。熔点易氧化的中间合 金装在中下层。所装入的炉料应当在熔池中均匀分布,防止偏重。 小块或薄板料装在熔池下层,这样可减少烧损,同时还可以保护炉体免受大块料的直接冲击而损 坏。中间合金有的熔点高,如AL-NI和AL-MN合金的熔点为750- 800C,装在上层,由于炉内上 部温度高容易熔化,也有充分的时间扩散;使中间合金分布均匀,则有利于熔体的成分控制。 炉料装平,各处熔化速度相差不多这样可以防止偏重时造成的局部金属过热。 炉料应进量一次入炉,二次或多次加料会增加非金属夹杂物及含气量。 2、对于质量要求高的产品(包括锻件、模锻件、空心大梁和大梁型材等)的炉料除上述的装料 要求外,在装料前必须向熔池内撒20-30kg粉状熔剂,在装炉过程中对炉料要分层撒粉状熔剂, 这样可提高炉体的纯洁度,也可以减少损耗。 炉料装完后即可升温。熔化是从固态转变为液态的过程。这一过程的好坏,对产品质量有决 定性的影响。 A、覆盖 熔化过程中随着炉料温度的升高,特别是当炉料开始熔化后,金属外层表面所覆盖的氧化膜 很容易破裂,将逐渐失去保护作用。气体在这时候很容易侵入,造成内部金属的进一步氧化。并且已熔化的液体或液流要向炉底流动,当液滴或液流进入底部汇集起来时,其表面的氧化膜就会 混入熔体中。所以为了防止金属进一步氧化和减少进入熔体的氧化膜,在炉料软化下塌时,应适 当向金属表面撒上一层粉状熔剂覆盖,其用量见表。这样也可以减少熔化过程中的金属吸气。 覆盖剂种类及用量 炉型及制品电气熔 炼煤气炉熔炼 覆盖剂用量普通制品特殊制品普通制 品特殊制品 (占投 量) /%0.4-0.50.5-0.6 1-22-4 覆盖剂种类粉状熔剂Kcl Nacl 按1 : 1混合 B、加铜、加锌 当炉料熔化一部分后,即可向液体中均匀加入锌锭或铜板,以熔池中的熔体刚好能淹没住锌 锭和铜板为宜。 这时应强调的是,铜板的熔点为1083C,在铝合金熔炼温度范围内,铜是溶解在铝合金熔 体中。因此,铜板如果加得过早,熔体未能将其盖住,这样将增加铜板的烧损;反之如果加得过晚,铜板来不及溶解和扩散,将延长熔化时间,影响合金的化学成分控制。 电炉熔炼时,应尽量避免更换电阻丝带,以防脏物落入熔体中,污染金属。 C、搅动熔体

铝合金熔炼规范

铝合金熔炼规范 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

铝合金的熔炼规范 适用于重力和压铸用铝硅(包括Al-Si-Mg、Al-Si-Cu等)指导性文件:《铝的熔炼规范》。 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T 9438-1999《铝铸件》、JISH 5202-1999《铝铸件》、ASTM B 108-03a《铝金属型铸件》、GB/T 15115-1994《压铸铝》、JISH 5302-2006《铝》、ASTM B 85-03《铝》、EN1706-1998《铝》等标准的规定。 ②本文件所指的铝熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨或铸铁。铸铁须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属及回炉料 ①新金属 铝锭:GB/T 1196-2002《重熔用铝锭》 铝硅锭:GB/T 8734-2000《铝硅锭》 镁锭: GB 3499-1983《镁锭》 铝铜中间:YS/T 282-2000《铝中间锭》 铝锰中间:YS/T 282-2000《铝中间锭》 各牌号的预制锭:GB/T 8733-2000《铝锭》、JISH 2117-1984《铸件用再生铝锭》、ASTM B 197-03《铝锭》、JISH 2118-2000《压铸铝锭》、EN1676-1996《铝锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50% 。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。 4)炉料预热 预热一般为350~450℃下保温2~4h。Zn、Mg、RE在200~250℃下保温2~4h。在保证涂料完整和充分预热的情况下,除Zn、Mg、Sr、Cd及RE等易燃外的炉料允许随炉预热。 (3)精炼剂准备

铝合金及其熔炼

铝合金及其熔炼 一、铝合金的系列:铝合金共有三个系列根据与其形成合金的元素而有些区别。 1、铝硅系:合金中硅含量在共晶点附近,合金的流动性好,铸造性能好,不易产生裂纹,致密性好,热膨胀量小,导热性好,耐腐蚀,适合压铸大型薄壁复杂铸件。但是其机械性能不够高,切削性稍差,阳极氧化不理想。 2、铝硅铜系:合金具有最佳综合性能,应用广泛,尤其在汽摩行业。 3、铝镁系:合金的强度、塑性、耐蚀性和表面质量最佳,但收缩和膨胀量大,铸造性能差。 二、合金元素的作用: 1、硅:铝与硅的共晶点在11.7%,共晶合金的凝固温度范围最小,补缩及抗热裂性最好,共晶点附近的合金都有良好的流动性,适合铸造薄壁,复杂大型的铸件。随着含硅量的提高,强度与硬度也有所提升,但伸长力下降,切削性能变差,而合金对坩埚的熔蚀也增加。 2、铜:铜对于铝合金可提高机械性能改善切削性,但耐蚀性降低,热裂倾向增大。 3、镁:铝镁合金耐蚀性好,但由于凝固温度范围大,有热脆性故铸件易于产生裂纹,其流动性随着镁含量的提高而改善,但相应收缩也增加。对于铝硅系合金而言,镁有强化效能,提高耐蚀性,改善电镀,阳极氧化的性能及铸件表面质量。但对铝硅铜而言,必须控制其含量,因为镁会造成热裂,冷脆降低伸长率和冲击韧性。 4、铁:铁能缓解铝与模具的亲和力,通常控制在0.6% ~ 1%之间,过高的含铁量在铸件中产生FeAl3针状相,降低性能。在铝硅系及铝硅铜系里过量的Fe形成金属间化合物造成脆性在切削时会影响表面粗糙度。 5、锰:适量锰能中和过量铁的不利影响,但不大于0.5%。 6、锌可提高流动性,改善机械性能,但高温脆性大,产生热裂。 7、锡:改善切削性能,降低强度和耐蚀性,有高温脆性。 8、镍:少量的镍能改善机械性能,对耐蚀性不利。 9、铅:改善切削性能,但有损耐蚀性。 10、铬:改善耐蚀性。 11、钛:细化结晶,改善性能。 三、铝合金的熔炼: 铝合金的熔炼对压铸企业而言是个重要环节,一般均有熔炼及保温二种过程,一边压铸一边熔炼是不被容许的。 1、压铸对铝合金液有如下几个要求: ①化学成分符合要求,成分均匀。 ②气体熔解量小,氧化夹杂,熔剂残留少,以免在铸件中形成气孔和夹渣。 ③组织细化使铸件能获得致密的结晶。 由于熔炼过程不妥而造成的铸造缺陷,有渗漏,气孔夹渣,偏析,裂纹,晶粒粗大等。 2、铝合金熔炼的工艺流程如下: 熔炉预热————→装料——→熔化→炉前检查→调整成分→精炼和除渣 ↑↑↑↑ 熔炉及工具准备炉料准备快速分析精炼剂准备 →调温→浇入保温炉 对于工艺流程的每个环节都要做到尽可能完善: 熔炼炉:常用燃油气炉,电阻炉,感应炉,其中燃油燃气的效力较高,但目前油价居高不下,也是个压力,电阻炉效力最低。

废铝熔炼铝锭的工艺流程

山东省新泰市铸友热处理设备有限公司 再生铝熔炼工艺特点 再生铝是以回收来的废铝零件或生产铝制品过程中的边角料以及废铝线等 这种铝锭采用经熔炼配制生产出来的符合各类标准要求的铝锭。为主要原材料,具有很强的生命而且它是自然资源的再利用,回收废铝,而有较低的生产成本,产品更新换代人民生活质量不断改善的今天,力,特别是在当前科技迅猛发展,再生铝废旧产品的回收及综合利用已成为人类持续发展的重要课题,频率加快,生产也就是在这样的形式下应运而生并具有极好的前景。 合金由于再生铝的原材料主要是废杂铝料,废杂铝中有废铝铸件(以Al-Si Al-Mg、Al-Cu-Mn为主)、废铝锻件(Al-Mg-Mn、等合金)、型材(Al-Mn 等合金)废电缆线(以纯铝为主)等各种各样料,有时甚至混杂入一些非铝合金,这就给再生铝的配制带来了极大的不便。如何Pb的废零件(如Zn、合金等)把这种多种成分复杂的原材料配制成成分合格的再生铝锭是再生铝生产的核心分选得越再生铝生产流程的第一环节就是废杂铝的分选归类工序。问题,因此,细,归类得越准确,再生铝的化学成分控制就越容易实现。 废铝零件往往有不少镶嵌件,这些镶嵌件都是些以钢或铜合金为主的非铝 就会导致再生铝成分中增加一些不需要的成分件,在熔炼过程中不及时地扒出,等)因此,在再生铝熔炼初期,即废杂铝刚刚熔化时就必须有一道Cu、Fe(如.。(俗称扒铁工序)把废杂铝零件中的镶嵌件扒出,扒得越及时、扒镶嵌件的工序温度的升越干净,再生铝的化学成分就越容易控制。扒铁时熔液温度不宜过高,元素溶入铝液。、高会使镶嵌件中的FeCu

各地收集来的废杂铝料由于各种原因其表面不免有污垢,有些还严重锈蚀, 严重损坏再生这些污垢和锈蚀表面在熔化时会进入熔池中形成渣相及氧化夹杂,铝的冶金质量。清除这些渣相及氧化夹杂也是再生铝熔炼工艺中重要的工序之一。采用多级净化,即先进行一次粗净化,调整成分后进行二级稀土精变,再吹惰性气体进一步强化精炼效果,可有效的去除铝熔液中的夹杂。 不有效的去除废铝料表面的油污及吸附的水分,使铝熔液中含有大量气体, 强化再生铝生产中的除气环节以降低再生铝的这些气体就使冶金质量大大下降,含气量是获得高质量再生铝的重要措施。 再生铝原材料组成 、废杂铝来源1一是从国外进口的废杂目前我国再生铝厂利用的废杂铝主要来源于两方面, 铝,二是国内产生的废杂铝。 进口废杂铝除少数分就进口废杂铝的成分而言,最近几年国内大量从国外进口废杂铝。 类清晰外大多数是混杂的。一般可以分为以下几大类: ①单一品种的废铝 汽车汽车减速机壳、此类废铝一般都是某一类废零部件,如内燃机的活塞,品

铸造铝合金熔炼工艺

铸造铝合金熔炼工艺 1工艺适用范围本熔炼工艺适用于砂型和金属型铸造ZL101A 合金的熔炼,可针对于重力铸造、低压铸造、倾转浇注、调压铸造等成型工艺使用。 本工艺可作为ZL101A 合金熔炼的母工艺,针对某一特定的成型工艺,如需特殊指出,可在此工艺基础上形成相应熔炼工艺,但不允许与母工艺相互冲突。 2工艺文件的抄报与保存工艺文件抄报、抄送范围:总师、副总师、技术部、质量部。工艺文件保存范围:电子文件备份和纸质文件送档案室保存,技术部、质量部各存一份使用文件。 3工艺详细内容 3.1熔炼设备、工具的选择及对后续熔炼质量的影响 3.1.1铝合金料熔化设备规定使用熔炼设备范围为:坩埚电阻炉,燃气连续熔化炉。对于金属型铸造可采用两种熔炼设备,使用燃气连续熔化炉熔化铝液,然后转包到坩埚电阻炉进行后续处理(精炼及变质);也可使用坩埚电阻炉熔化铝液及进行后续处理(精炼及变质)。 如采用金属型低压铸造、调压铸造成型工艺,可使用侧面开口注入铝液的机下炉进行连续生产。 采用坩埚电阻炉熔化铝液,铝液温度控制750℃以下,熔化过程的铝液吸气较少;采用燃气连续熔化炉熔化铝液,铝液温度控制容易超750℃,熔化过程的铝液吸气倾向较大。

3.1.2熔炼工具的选择及准备 熔炼前熔炼工具的准备对铝液熔炼质量影响较大,坩埚采用石墨及SiC 材质,使用前需进行预热烘干,烘干工艺如图1;如采用金属材质坩埚,最好选用不锈钢材质,如选用铸铁材质坩埚,以合金球墨铸铁为好。常用的浇包、浇勺等多采用不锈钢制作。 及工具进行喷砂处理,去除表面的铁锈及污物,然后预热到120~180 ℃,逐层喷涂,浇包、浇勺的涂料厚度0.3~0.8mm 为宜,坩埚涂料可稍厚一些。涂料最好选用专用的金属型非水基涂料,也可自行配制,基本配方如表1 所示,使用前涂料需预热到50~90 ℃。 表1 涂料配方 3.1.3炉料的存放与处理, 熔炼所使用的炉料需存放在干燥、不易混淆和污染的地方,铝

铝合金熔铸工艺及常见的缺陷

铝合金熔铸工艺及常见的缺陷 一、铸造概论 在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下: 由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。 1、铝合金铸造工艺性能 铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1) 流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。 (2) 收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在

铝合金熔炼浇铸工艺分析

铝合金熔炼浇铸工艺分析 铝合金的熔炼与浇注是铸造生产中主要环节。严格控制熔炼与浇铸的全过程,对防止针孔、夹杂、欠铸、裂纹、气孔以及缩松等铸造缺陷起着重要的作用。由于铝熔体吸收氢倾向大,氧化能力强,易溶解铁,在熔炼与浇铸过程中必须采取简易而又谨慎的预防措施,以获得优质铸件。 熔炼: 熔炼铝合金在能源使用上分为传统燃料(煤、燃油、燃气)与电力加热,在热传递上分为辐射导热和感应加热。 坩埚式热电阻炉和熔池式的反射炉都属于辐射导热,坩埚式热电阻炉是通过辐射传递热量,导热效率低,内部溶液不流动,成分不容易均匀;有的会在原基础上加电磁搅拌装置,造价比较昂贵。熔池式反射炉使用燃煤,燃气,燃油,导热效率通过不断的工艺改进已经较高,但其更适合大量持续产出铝水,因其属于持续生产,会导致成分不稳定。 中频感应电炉是通过磁场转换感应加热,对空气的污染小,热量的损耗也小,是比较理想的加热方式,加热效率高,速度快,同时炉内有电磁扰动,铝水在内部产生对流,成分比较均匀。经过和同事交流得知,我们目前设计的产线将生产多种产品,规格相差较大,且产量相对较低,考虑到铝水量要求有限,但品质要求较高,非常适合使用中频感应电炉来参与铝水的熔炼。 中频感应电炉型号多样技术成熟,可根据我方具体需求采购相应容量和功率的炉体。 浇铸: 铝合金熔体易吸氧,因此我们应尽可能的让熔体避免与空气的接触。在工艺体现上应尽量减少熔炼和浇铸的时间,避免熔体的转包,避免在空气流通良好的环境下实施浇注作业等。 因本人在铝合金铸造上见识有限,只能根据个人的经验谈一些见解,减少空气接触的问题上,中频感应电炉熔炼期间可以加装炉盖,取料和调制精炼时都可以由观察口进行,必要时可以通氮气保护。浇铸方案上可采取1.流水线过熔炉口,直接炉体倾转就可实施浇铸作业。2.用保温铝水包转运;这样就灵活多了,既可以采用沙型固定,移动铝水包进行浇铸,也可以采用铝水包固定,移动沙型线进行浇铸。根据我方沙型种类较多,个人认为移动铝水包进行浇铸的方案较易实现自动化浇铸。3.铝熔体进入熔池型保温炉,通过浇道对流水线上沙型进行浇铸,这个比较适合持续性浇铸。考虑到我方对快速持续性浇铸没有需求,故比较推荐第1和第2方案,方案1排除任何空气干扰,铝水品质应该最好,但因其沙型规格较多实现起来比较困难。第2方案通过转运铝水包可较好的解决浇铸困难,同时也可实现快速连续浇铸。

铝合金熔炼与铸造工艺规范与流程

铝合金熔炼与铸造工艺规范与流程 资料来源:全球铝业网铝业知识频道一、铝合金熔炼规范 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T 9438-1999《铝合金铸件》、JISH 5202-1999《铝合金铸件》、ASTM B 108-03a《铝合金金属型铸件》、GB/T 15115-1994《压铸铝合金》、JISH 5302-2006《铝合金压铸件》、ASTM B 85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T 1196-2002《重熔用铝锭》 铝硅合金锭:GB/T 8734-2000《铸造铝硅合金锭》 镁锭: GB 3499-1983《镁锭》 铝铜中间合金:YS/T 282-2000《铝中间合金锭》 铝锰中间合金:YS/T 282-2000《铝中间合金锭》 各牌号的预制合金锭:GB/T 8733-2000《铸造铝合金锭》、JISH 2117-1984《铸件用再生铝合金锭》、ASTM B 197-03《铸造铝合金锭》、JISH 2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50% 。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。 4)炉料预热 预热一般为350~450℃下保温2~4h。Zn、Mg、RE在200~250℃下保温2~4h。在保证坩埚涂料完整和充分预热的情况下,除Zn、Mg、Sr、Cd及RE等易燃材料外的炉料允许随炉预热。 (3)精炼剂准备 ①铝合金的精炼一般采用六氯乙烷、DSG铝合金除渣除气剂、铝精炼剂ZS-AJ 01C等精炼剂。 ②六氯乙烷使用前,置于熔炉旁预热。

6063铝合金铸锭的生产工艺及详细流程

6063铝合金铸锭的生产工艺及详细流程 一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、 0.45-0.9%的镁、铁的最高限量为0. 35%,其余杂质元素(Cu、Mn、 Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。 6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si 组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和M g2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)- Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示: 在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶 于基体中的Mg2Si越多,时效后的合金强度就越高,反之,则越低, 如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg 2Si的最大溶解度是1.85%,在500℃时为1. 05%,由此可见,温 度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强 度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂 生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温 度不够或外热内冷,造成型材淬火温度太低所致。 在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如 果合金中有过剩的镁(即Mg:Si>1. 73),镁会降低Mg2Si在铝中的 固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩 的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响, 由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择 6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加 工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得 到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般 选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于 型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在 1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易 得到光亮的表面。 另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅 总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有 1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入 基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有 多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂

相关文档