文档库 最新最全的文档下载
当前位置:文档库 › 有限元作业第二次作业

有限元作业第二次作业

有限元作业第二次作业
有限元作业第二次作业

土木工程专业

有限元第二次作业

姓名:

班级:

学号:

指导教师:

二〇一五年 6月12日

习 题:平面应力问题的八节点等参元,已给定8个节点

的坐标。试查资料并论述:

1、单元中位移函数u (ξ,η),v (ξ,η)和单元节点位

移{δe

}的关系式;

2、[ B ]矩阵的计算步骤和计算式;

3、单元刚度矩阵[ k e

]的一般计算方法和计算步骤; 4、论述相邻单元间公共边界上位移的连续性;

5、如果给定母单元中点A ,

(ξ,η),怎样求实际单元中与

A ,相对应的点A (x ,y );反之,如果给定实际单元中的

点A (x ,y ),怎样求其在母单元中对应点A ,

(ξ,η)? 6、如果已经求解得到单元8个节点的位移值{δe }怎样求单

元中某一点B (x ,y )的应力?

实际单元

1

2

6

7

Y

1

2

43

67

8η= 1η=﹣1

母单元

ξ= 1

ξ=﹣1

解:

1、此题分两步进行:

单元位移场的表达:

如图1所示,在任意四边形的每边中间设一附加节点,则单元边界就变成二次曲线的了。如果直接在整体坐标系(),x y 下,像八节点矩形元那样,构造双二次多项式的位移插值函数,则因曲边四边形单元边界是二次曲线,故边界上的位移是()x y 或的五次多项式,

它不能由曲边上三个节点的位移分量唯一地决定,从而不能保证相邻两个单元在公共边上位移的协调条件,所以在整体坐标系(),x y 下构造完全协调的位移插值

函数是很困难的,利用坐标变换,可将曲边四边形单元变换成基本单元,如图2所示的在自然坐标(),ξη下具有边长为2的八节点正方形单元,自然坐标系(),ξη是外节点坐标值为±1的局部坐标系。在自然坐标系的单元上构造

协调的位移插值函数,其形状函数是较普通的,取位移分量为,ξη的双二次多项式, 即:

2222

123456782222910111213141516u a a a a a a a a v a a a a a a a a ξηξξηηξηξηξηξξηηξηξη?=+++++++??=+++++++??

(1-1) 利用8 个节点的16 个位移分量可唯一确定16 个待定常数1216,,a a a …,,若代入8个节点的局部坐标值,得:

图1:在总坐标系中具有二

次曲边的四边形单元

图2:在自然坐标系中的

曲边四边形的基本单元

11523264536774881-1-1111-1-110-10010011-11-11-1-11101000011111111101001001-111-111-11-1010000u a u a a u u a a u a u a u u a ????

????????????

??????

??????

??????

??=??????????

??????

??????

??????

??

????????????

(1-2)

195102116123137141548161

-1-1111-1-110-10010011-11-11-1-11101000011111111101001001-111-111-11-1010000v a v a v a v a v a v a a v v a ????

????????????

??????

??????

??????

??=??????????

??????

??????

??????

??

????????????

(1-3)

将解出的16 个待定常数1216,,a a a …,代入式(1-1)即得:

8

11552266337744881

8

11552266337744881i i i i i

i u N u N u N u N u N u N u N u N u N u v N v N v N v N v N v N v N v N v N v

==?

=+++++++=????=+++++++=??

∑∑ (1-4a ) 也即:

[]{}{}

128e e

u N N N v δδ??

===????

u I

I

I N (1-4b )

其中I 为二阶单元矩阵,{}e

δ为等参元节点位移列阵,N 为形状函数矩阵。 形状函数的建立:

按等参元思想,在整体坐标系XY 下, 任何形状歪斜四边形单元都将变换到局部坐标系ξη下的正方形单元。

对8节点等参元, 其移模式为:

()8

1

,i

i

i u N u ξη==

?∑ (1-5)

式中, i u 为歪斜单元8节点的位移,(),i N ξη为形状函数。

查阅相关资料,得形函数公式公式为:

()()

()

8

18

1

,,,k

k i k

i

i

k F N F ξηξηξη===

∏∏ (1-6)

又由形状函数的性质可具体地求出i N 的表达式为:

()()()()()()()()()()()()()()()()()()()()12342526272

8=1114=1114=1114=1114=112

=112=112=112N N N N N N N N ξηξηξηξηξηξηξηξηξηηξξηηξ?-----?

+---??+++-?

-+-+-??

--??

-+???-+?

?--?

(1-7)

2、根据平面问题的几何方程,单元应变可用节点位移表示如下:

{}[]{}1

2

8=x e e

y xy εεδδγ??

??

=??????

ε=B B B B (2-1)

其中:

0=0i i i i i N x N y N N y x ??

??

??????

?????

???????????

B (2-2)

即要求出矩阵i B 中的元素

i

N x ??,i N y

??(1,2,,8)i =。

另根据符合函数求导法则,可知:

=

i i i i i i N x y N N x x N N N x

y y y ξξξηηη?????????????

?????????????????????=???????????????????

???????

??????????????J (2-3) 其中,J 为二维坐标变化下的Jacobi 矩阵,即:

x

y x y ξ

ξηη??????

???

?=??????????

J (2-4) 其元素计算式为:

81i i i N x x ξξ=??=??∑,8

1i i i N x x ηη

=??=??∑, 81i i i N y y ξξ=??=??∑, 8

1i i i N y

y ηη

=??=??∑ (2-5)

又根据式(2-3),有

1i i i i N N x N N y ξη-??????

??????????=??????????

??????????J (2-6) 根据公式(2-2)即可得出i B 矩阵,其中i N 可由问题1方法求出。

3、单元刚度矩阵按普遍公式计算,公式如下:

[]

e

e

e

T T k dV hdxdy Ω

Ω=

=

?

?

B DB B DB (3-1)

其中e Ω为单元体积域,[]e

k 为16×16的方阵(具体形式见下文),D 为材料的弹性系数矩阵,各向同性材料的弹性系数矩阵为:

()()()10

1-1101121-1-200

2-E μμ

μμμμμ

μμ?????

?

-??=

??

+-????

???

?(1)D (3-2) 上述积分应在局部坐标系内进行,因此面积元素dxdy 需表示成d d ξη.如图3所示为子单元内任一点(),a x y 处的微小正方形,它是由局部坐标系中点(),ξη处的微元体d d ξη变换而成的。以,i j 表示,x y 轴的单位基矢量,,ab ac 分别由

,d d ξη变换而成,则:

x y

d ξξξ????+

?????ab =i j x y d ηηη??

??+

?????

ac =i j (3-3) 上述2个矢量的叉积表示它们所构成的平行四边形面积,故:

dV Jd d ξη=?=ab ac (3-4)

其中,J 为矩阵J 的行列式,即x y J x y ξ

ξ

η

η

????=

???? 将上式带入式(3-1),并写成分块形式:

[]

111218212228818288e

k ??????=???

???

k k k k k k k k k (3-5) 其中子矩阵的计算公式为:

1

1

11

e

T T ij i

j i j k hdV Jhd d ξη--Ω=

=??

?

B DB B DB (3-6)

其中h 是板的厚度。由于被积函数极为复杂,很难得到明显的解析式,必须利用数值积分。程序中采用高斯求积法,对于二维问题的等参元,高斯求积公式为:

图3:子单元内任一点处的微小正方形

()()88

11

11

11

,,i

j

i

i

i i f d d H H f ξηξηξη--===∑∑?? (3-7)

式中,i H ,j H 为一维求积点的积分系数,i ξ,i η为沿一维编号的求积积分点的横坐标。对于8节点等参元取三个积分点,即n=3已足够精确。

4、证明:局部坐标系下的单元是规则的正方形,单元边界上的三个节点按线

性变化的位移形式,单元变形后这三个节点确定了位移的单元直线边界。所以,局部坐标系下单元是协调的。又由位移插值函数在局部坐标系下的协调性,即可推知坐标变换的协调性(即两个相邻曲边四边形在公共边界上经坐标变换后仍保持连续,不会出现重叠和破缺现象),这也就保证了位移插值函数在整体坐标系下的协调性。即在相邻单元公共边界上位移是连续的。

5、这里,,u v 是,ξη的函数,在下面的计算中还需知道,u v 和,x y 的关系,

因此必须写出,x y 和,ξη之间的坐标变换式,这个坐标变换并不难,因为,x y 在

单元的8个节点上应取值,(1,28)i i x y i =…,

,而单元四条边应为二次曲线,这与,u v 的要求完全类同,因此可沿用和位移插值函数完全相同的式子作为坐标变换

式,即:

11

1526374815263748880000000000000000x y N N N N N N N N x N N N N N N N N y x y ??

??????????=????????????

??????

… (5-1) 式中112288,,,,,x y x y x y …,为节点坐标,形状函数128,,N N N …,与前面相同。 由上可见,在整体坐标系下的曲边四边形单元和自然坐标系下的正方形单元

存在着一一对应的映射关系,只要已知,(1,28)i i x y i =…,

后,由(5-1)式,利

用自然坐标系下的形状函数,即可完全确定(),x y 。即:如果给定母单元中点

()*,A ξη,通过求出形状函数(),(1,28)i N i ξη=…,,利用式(5-1),可求出

实际单元中与*A 相对应的点(),A x y ;同理,如果给定实际单元中的点(),A x y ,利用式(5-1),即可求出()*

,A

ξη的坐标值ξη和。

6、根据平面问题的本构方程,单元应变可用节点位移表示如下:

{}{}==x e e y

xy σσδδτ??

??

=??????

=D DB S σε (6-1) 由式(3-2)和式(2-2)可分别求出矩阵D 和B ,故由上式,若已知单元8个节点的位移值{}e

δ,可求出单元中某一点B (x ,y )的应力σ。

有限元上机实验指导书

弹性力学及有限元实验上机指导书 土木工程教学部 2015年6月 一、ANSYS软件安装及有限元建模方法演示1、实验目的 掌握Ansys商用有限元软件的安装及了解有限元建模方法2、实验任务 1)Ansys商用软件8.1安装过程详解。

2)采用有限元直接建模法创建杆系模型演示。 3)采用有限元间接建模法创实体模型演示。 模型一:平面桁架如下图所示,长度单位为m,求支座反力和各杆内力。弹性模量2.1e+11,泊松比0.3,杆件截面面积均为0.01m2。 1/6 1/3 1/2 图1 平面桁架模型 模型二:正方形带孔平板,边长1m,小孔直径0.1m,板厚0.05m。弹性模量2.1e+11,泊松比0.3。上下边受均匀压力1000N。 图2 带孔正方形平板 3、实验方法 实验方法同课堂操作演示。 命令流(模型一) /PREP7 ET,1,LINK1 R,1,0.01, , MP,EX,1,,2.1e+11

MP,PRXY,1,,0.3 n,1,0,0 n,2,1,0 n,3,1,0.5 n,4,2,0 n,5,2,0.833 n,6,3,0 n,7,3,1 n,8,4,0 n,9,4,0.833 n,10,5,0 n,11,5,0.5 n,12,6,0 e,1,2 e,1,3 e,2,3 e,2,4 e,3,5 e,4,5 e,3,4 e,4,6 e,5,7 e,6,7 e,4,7 e,6,8 e,7,9 e,8,9 e,7,8 e,8,10

e,9,11 e,10,11 e,8,11 e,10,12 e,11,12 save 命令流(模型二) 二、利用ANSYS创建杆系或实体结构有限元模型 1、实验目的 掌握有限元建模的基本方法并能创建简单的杆系结构和实体结构有限元模型。 2、实验任务 (1)采用直接建模法创建上节平面桁架结构模型。 (2)采用间接建模法创建上节带孔平板实体模型。 3、实验方法 实验方法同操作演示。 三、有限元求解及结果后处理演示 1、实验目的 掌握基本参数的设置、荷载施加方法及后处理操作。 2、实验任务 (1)读入数据文件(命令流)的形式生成杆系结构有限元模型 (2)实常数、材料参数、求解参数设置演示 (3)位移约束、集中荷载施加方法演示 (4)计算求解与后处理操作演示。 3、实验方法 实验方法同课堂操作演示 附:后处理GUI操作及命令流操作 A、通过后处理提取节点计算结果 三种后处理操作: 1、plot results

重庆大学有限元第二次作业(刘静老师)

【有限元分析技术】第二次作业 科 目: 有限元分析技术 教 师: 姓 名: 学 号: 班 级: 类 别: 学术型 上课时间: 2016 年 11 月至 2017 年 1 月 考 生 成 绩: 卷面成绩 平时成绩 课程综合成绩 阅卷评语: 阅卷教师 (签名) 大学研究生院

第一章 题目概况 1.1 原始数据 矩形板尺寸如下图,板厚为5mm ,弹性模量为522.010/E N mm =? ,泊松比为0.27μ= 图1.1 原始计算简图 1.2工况选择 (1)试按下表的载荷约束组合,任选2种进行计算,并分析其位移、应力分布的异同。 表1 两种不同工况的载荷及约束 序号 载荷 约束 备注 1 向下均布载荷P=5N/mm,作用于ab 边 c ,d 点固定 2 向下均布载荷P=5N/mm,作用于ab 边 a ,b 点固定 3 向下均布载荷P=5N/mm,作用于ab 边 a ,c 边固定 还可讨论a ,c 点固定 4 向下均布载荷P=5N/mm,作用于cd 边 c ,d 点简支 5 向下均布载荷P=5N/mm,作用于cd 边 a ,b 点简支 6 向下均布载荷P=5N/mm,作用于cd 边 a ,c 边固定 还可讨论a ,c 点固定 7 向下集中载荷F=1000N,作用于ab 边中点 c ,d 点简支 8 向下集中载荷F=1000N,作用于ab 边中点 a ,b 点简支 9 向下集中载荷F=1000N,作用于ab 边中点 a ,c 边固定 还可讨论a ,c 点固定 10 向下集中载荷F=1000N,作用于cd 边中点 c ,d 点简支 11 向下集中载荷F=1000N,作用于cd 边中点 a ,b 点简支 12 向下集中载荷F=1000N,作用于cd 边中点 a ,c 边固定 还可讨论a ,c 点固定 1.3 工况选择结果及分析任务 (1)工况选择结果 根据表1的工况,选取工况1,2,8进行对比分析,选取结果如表2所示,为了方便下文中分别将序号1、2、8的工况称为工况一、工况二、工况三。 表2 分析工况的载荷及约束 序号 载荷 约束 备注 1 向下均布载荷P=5N/mm,作用于ab 边 c ,d 点固定 工况一 2 向下均布载荷P=5N/mm,作用于ab 边 a ,b 点固定 工况二 8 向下集中载荷F=1000N,作用于ab 边中点 a , b 点简支 工况三

华科大有限元分析题及大作业题答案——船海专业(DOC)

姓名:学号:班级:

有限元分析及应用作业报告 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。 1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数 4)生成几何模 a. 生成特征点 b.生成坝体截面 5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。 6)模型施加约束: 约束采用的是对底面BC全约束。 大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L AB上,方向水平向右,载荷大小沿L AB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: ρ(1) = gh P- =ρ g = - 10 {* } 98000 98000 (Y ) y

大作业报告参考2有限元学习心得

有限元学习心得 吴清鸽车辆工程 50110802411 短短八周的有限元课已经结束。关于有限元,我一直停留在一个很模糊的概念。我知道这是一个各个领域都必须涉及的点,只要有关于CAE分析的,几乎都要涉及有限元。总体来说,这是一门非常重要又有点难度的课程。 有限元方法(finite element method) 或有限元分析(finite element analysis),是 求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要 基础性原理。将它用于在科学研究中,可成为探究物质客观规律的先进手段。将 它应用于工程技术中,可成为工程设计和分析的可靠工具。本课程教学基本内容 有固体力学和结构力学简介;有限元法基础;桁架、梁、刚架、二维固体、板和 壳、三维固体的有限元法;建模技术;热传导问题的有限元分析;PATRAN软件 的使用. 通过有限元分析课程学习使我了解和掌握了一些有限元知识: 1.简要了解二维和三维固体以及桁架、梁和板结构的三组基本力学方程,即表示位移-应变关系的几何方程,表示应力-应变关系的本构方程和表示内力-外力关系的平衡方程。 2.了解利用能量法形成有限元离散系统方程的基本原理,即哈密尔顿原理。掌握有限元分 析的基本方法及步骤,包括域的离散、位移插值、构造形函数、单元有限元方程 的建立、坐标变换、整体有限元方程的组装、整体有限元方程的求解技术。 3.具体深入的了解并掌握桁架结构、梁结构、刚架结构、二维固体、板和壳结构、三维固体的有限元法分析技术,包括他们具体的形函数构造,应变矩阵,局部坐标系和整体坐标系中的单元矩阵。各种结构的实例研究。 4.了解并掌握建立高质量建模所涉及的各种关键技术。包括单元类型的选择,单元畸形的限制,不同阶数单元混用时网格的协调性问题,对称性的应用(平面对称、轴对称、旋转对称、重复对称),由多点约束方程形成刚域及应用(模拟偏移、不同自由度单元的连接、网格协调性的施加)等,以及多点约束方程的求解。以PATRAN有限元通用软件为例了解一般商业有限元软件的组成及结构。掌握PATRAN软件的基本使用。利用PATRAN软件上机实践完成两个上机练习:刚架结构有限元分析和三维固体有限元分析。 课程的具体学习内容: 内容: 1.三节点三角形单元:单元分析、总刚度矩阵组装、引入约束条件修正总刚度 矩阵、载荷移置、方程求解; 2.四边形单元分析、四节点四面体单元分析、八节点六面体单元分析;

重庆大学有限元第一次作业

有限元分析技术课程大作业 科 目:有限元分析技术 教 师: 姓 名: 学 号: 专 业: 机械设计及理论 类 别: 学 术 上课时间: 2016 年 11 月至 2017 年 1 月 考 生 成 绩: 阅卷评语: 阅卷教师 (签名) 重庆大学研究生院

第一章 问题提出 1.1工程介绍 某露天大型玻璃平面舞台的钢结构如图1所示,每个分格(图2中每个最小的矩形即为一个分格)x 方向尺寸为1m ,y 方向尺寸为1m ;分格的列数(x 向分格)=学生序号的百位数值×10+十位数值+5,分格的行数(y 向分格)=学生序号的个位数值+4,如序号为041的同学分格的列数为9,行数为5,111号同学分格的列数为16,行数为5。 钢结构的主梁(图1中黄色标记单元)为高160宽100厚14的方钢管,其空间摆放形式如图3所示;次梁(图1中紫色标记单元)为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间(如不是正处于X 方向正中间,偏X 坐标小处布置)的次梁的两端,如图2中标记为UxyzRxyz 处。 玻璃采用四点支撑与钢结构连接(采用四点支撑表明垂直作用于玻璃平面的面载荷将传递作用于玻璃所在钢结构分格四周的节点处,表现为点载荷,如图4所示);试对在垂直于玻璃平面方向的22 /KN m 的面载荷(包括玻璃自重、钢结构自重、活载荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析.(每分格面载荷对于每一支撑点的载荷可等效于0.5KN 的点载荷)。 1.2 作业内容 (1)屏幕截图显示该结构的平面布置结构,图形中应反映所使用软件的部分界面,如图1-2; (2)该结构每个支座的支座反力; (3)该结构节点的最大位移及其所在位置; (4)对该结构中最危险单元(杆件)进行强度校核。 图1-1

有限元 第二次作业教学提纲

2-2 图示悬臂板,属于平面应力问题,其网格图及单元、节点编号见图2-1,E=2.1×1011,u=0.28,演算其单刚阵到总刚阵的组集过程,并用MATLAB 软件计算总刚阵。 图2-1 答:根据图2-1所示列出单元节点列表: i j k 1 3 5 4 2 2 5 3 3 2 6 5 4 1 6 2 (1)计算单元刚度阵 单元1的刚度矩阵:[] ????? ?????=15,514 ,513 ,515,414,41 3 ,415,314,313,3 1k k k k k k k k k k ,[] ?????????? ??????????=000000 000 00000000 000000 14 ,514 ,513 ,515,414,41 3,41 5,31 4,31 3 ,31 k k k k k k k k k k ; 单元2的刚度矩阵:[] ??? ? ????? ?=25 ,523 ,522 ,525,323,322,325,223,222,22 k k k k k k k k k k ,[] ????????? ?????? ?? ???=00 000000000000000000 0024,523,522,525,323 ,322,32 5 ,22 3 ,22 2,22k k k k k k k k k k ; 节点 单元

单元3的刚度矩阵:[] ??? ? ????? ?=36 ,635 ,632 ,636,535,532,536,235,232,23 k k k k k k k k k k ,[] ????????? ? ????? ?? ???=36,635 ,632,636,535,532 ,536,23 5 .23 2,2300000000 00 0000000000000000k k k k k k k k k k ; 单元4的刚度矩阵:[] ???? ? ???? ?=46,642 ,641,646,242,241 ,246,142,141 ,14 k k k k k k k k k k ,[] ?? ? ??? ? ?? ? ??????????=46,641 ,646,242,241.246,142 ,141,140000 000000000000000000000000k k k k k k k k k ; 总刚度矩阵:[][][][][][]4 3 2 1 4 1 k k k k k K e e +++=∑== []??????? ?? ? ????? ?????++++++++++++=4 6,636,635 ,642 ,632,641 ,636 ,535 ,525,515,514,523 ,513,53 2,522,515,414,413,425 ,315,314,323 ,313,322 ,346,236,235 ,225,223 ,242 ,232,222,241,246,142 ,141 ,10 00000 00 000k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k K Matlab 程序语言的编写: function Idex global gNode gElement gMaterial gNode=[0.0 0.01 0.5 0.01 1.0 0.01 1.0 0.0 0.5 0.0

有限元作业第二次作业

土木工程专业 有限元第二次作业 姓名: 班级: 学号: 指导教师: 二〇一五年6月12日

习 题:平面应力问题的八节点等参元,已给定8个节点 的坐标。试查资料并论述: 1、单元中位移函数u (ξ,η),v (ξ,η)和单元节点位 移{δe }的关系式; 2、[ B ]矩阵的计算步骤和计算式; 3、单元刚度矩阵[ k e ]的一般计算方法和计算步骤; 4、论述相邻单元间公共边界上位移的连续性; 5、如果给定母单元中点A , (ξ,η),怎样求实际单元中与 A , 相对应的点A (x ,y );反之,如果给定实际单元中的点A (x ,y ),怎样求其在母单元中对应点A , (ξ,η)? 6、如果已经求解得到单元8个节点的位移值{δe }怎样求单 元中某一点B (x ,y )的应力? 实际单元 1 2 6 7 Y 1 2 43 67 8η= 1η=﹣1 母单元 ξ= 1 ξ=﹣1

解: 1、此题分两步进行: 单元位移场的表达: 如图1所示,在任意四边形的每边中间设一附加节点,则单元边界就变成二次曲线的了。如果直接在整体坐标系(),x y 下,像八节点矩形元那样,构造双二次多项式的位移插值函数,则因曲边四边形单元边界是二次曲线,故边界上的位移是()x y 或的五次多项式, 它不能由曲边上三个节点的位移分量唯一地决定,从而不能保证相邻两个单元在公共边上位移的协调条件,所以在整体坐标系(),x y 下构造完全协调的位移插值 函数是很困难的,利用坐标变换,可将曲边四边形单元变换成基本单元,如图2所示的在自然坐标(),ξη下具有边长为2的八节点正方形单元,自然坐标系(),ξη是外节点坐标值为±1的局部坐标系。在自然坐标系的单元上构造 协调的位移插值函数,其形状函数是较普通的,取位移分量为,ξη的双二次多项式, 即: 2222 12345678222 2910111213141516u a a a a a a a a v a a a a a a a a ξηξξηηξηξηξηξξηηξηξη?=+++++++??=+++++++?? (1-1) 利用8 个节点的16 个位移分量可唯一确定16 个待定常数1216,,a a a …,,若代入8个节点的局部坐标值,得: 图1:在总坐标系中具有二 次曲边的四边形单元 图2:在自然坐标系中的 曲边四边形的基本单元

现代设计方法(关于有限元)作业

《现代设计方法》作业关于有限元法的研究 学院:机械工程学院 专业:机械制造及其自动化

0.有限元法 有限元法分析起源于50年代初杆系结构矩阵的分析。随后,Clough于1960年第一次提出了“有限元法”的概念。其基本思想是利用结构离散化的概念,将连续介质体或复杂结构体划分成许多有限大小的子区域的集合体,每一个子区域称为单元(或元素),单元的集合称为网格,实际的连续介质体(或结构体)可以看成是这些单元在它们的节点上相互连接而组成的等效集合体;通过对每个单元力学特性的分析,再将各个单元的特性矩阵组集成可以建立整体结构的力学方程式,即力学计算模型;按照所选用计算程序的要求,输入所需的数据和信息,运用计算机进行求解。 当前,有限元方法/理论已经发展的相当成熟和完善,而计算机技术的不断革新,又在很大程度上推进了有限元法分析在工程技术领域的应用。然而,如此快速地推广和应用使得人们很容易忽视一个前提,即有限元分析软件提供的计算结果是否可靠、满足使用精度的前提,是合理地使用软件和专业的工程分析。有限元法分析一般包括四个步骤:物理模型的简化、数学模型的程序化、计算模型的数值化和计算结果的分析。每一个步骤在操作过程中都或多或少地引入了误差,这些误差的累积最终可能会对计算结果造成灾难性的影响,进而蒙蔽我们的认识和判断。 1.受内压空心圆筒的轴对称有限元分析 例图1.1所示为一无限长的受内压的轴对称圆筒,该圆筒置于内径为120mm的刚性圆孔中,试求圆筒内径处的位移。结构的材料参数

为:200 =,0.3 E GPa μ=。 图1 结构图 对该问题进行有限元分析的过程如下。 (1)结构的离散化与编号 由于该圆筒为无限长,取出中间一段(20mm高),采用两个三角形轴对称单元,如图1.2所示。对该系统进行离散,单元编号及结点编号如图1.3所示,有关结点和单元的信息见表1.1。 图1.2 有限元模型

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

有限元 第二次作业

2-2 图示悬臂板,属于平面应力问题,其网格图及单元、节点编号见图2-1,E=2、1×1011,u=0、28,演算其单刚阵到总刚阵得组集过程,并用MATLAB 软件计算总刚阵。 图2-1 答:根据图2-1所示列出单元节点列表: i j k 1 3 5 4 2 2 5 3 3 2 6 5 4 1 6 2 (1)计算单元刚度阵 单元1得刚度矩阵: ,; 单元2得刚度矩阵:,; 单元3得刚度矩阵:,; 单元4得刚度矩阵:,; 总刚度矩阵: []??????? ?? ? ????? ?????++++++++++++=4 6,636,635 ,642 ,632,641 ,636 ,535 ,525,515,514,523 ,513,53 2,522,515,414,413,425 ,315,314,323 ,313,322 ,346,236,235 ,225,223 ,242 ,232,222,241,246,142 ,141 ,10 00000 00 000k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k K 节点 单元

Matlab 程序语言得编写: function Idex global gNode gElement gMaterial gNode=[0、0 0、01 0、5 0、01 1、0 0、01 1、0 0、0 0、5 0、0 0、0 0、0] %gNode 同样就是一个矩阵,每一行表示一个结点,第1 列就是结点得x 坐标,第2 列就是结点得y坐标 gElement=[3 4 5 2 3 5 2 5 6 1 2 6 ]; %gElement 就是一个矩阵,每一行表示一个单元,第1 行就是单元得第1 个结点号,第2 行就是单元得第2个结点号。 Return function k=StiffnessMatrix(ie) %计算单元刚度矩阵函数 global gNode gElement k=zeros(6,6); %6x6单元刚阵 E=2、1*10^11; %材料特性 u=0、28 ; %材料特性 t=0、01; %材料特性 xi=gNode(gElement(ie,1),1);

有限元08上机作业

调试书本26到30页程序 开列数组维数: DIMENSION LOC(4,3),CX(6),CY(6),IFIX(6),F(12), 1GK(12,12),STRES(4,3),BAK(4,3,6) 结点集中力输入: DO 10 I=1,ND 10 F(I)=0.0 F(2)=-1.0 数据文件输入: 6,4,12,6,1.0E0,0.0,1.0,0.0,1 3,1,2 5,2,4 2,5,3 6,3,5 0.0,2.0 0.0,1.0 1.0,1.0 0.0,0.0 1.0,0.0 2.0,0.0 1,3,7,8,10,12 数据文件输出: NN NE ND NFIX E ANU T GM NTYPE 6 4 12 6 0.1000E+01 0.000 1.000 0.0000E+00 1 NODE X-LOAD Y-LOAD 1 0.000000E+00 -0.100000E+01 2 0.000000E+00 0.000000E+00 3 0.000000E+00 0.000000E+00 4 0.000000E+00 0.000000E+00 5 0.000000E+00 0.000000E+00 6 0.000000E+00 0.000000E+00 NODE X-DISP Y-DISP 1 -0.879121E-15 -0.325275E+01 2 0.879121E-16 -0.125275E+01 3 -0.879121E-01 -0.373626E+00 4 0.117216E-1 5 -0.835165E-15 5 0.175824E+00 -0.293040E-15 6 0.175824E+00 0.263736E-15 ELEMENT X-STR Y-STR XY-STR 1 -0.879121E-01 -0.200000E+01 0.439560E+00

有限元大作业

风电主轴承有限元分析 XXX 摘要:基于有限元法在接触问题中的应用,对风电主轴承进行非线性分析。以轴承外圈的内表面和内圈的外表面为目标面,以滚子为接触面创建接触对分析滚子的接触应力情况。最大应力值出现在滚子边缘出,对最大承载滚子环向接触应力分析表明,有限元分析结果与理论计算结果相近,验证了利用有限元法分析风电主轴承应力状态的可行性。 关键词:风电主轴承;接触应力;有限元分析 0 引言 随着传统能源的日益枯竭以及环境污染问题愈发严重,风能作为一种清洁的的可再生能源近些年受到越来越多的关注。风力发电技术已广泛运用于世界各地。一些发达国家风力发电产业已得到了迅猛发展,技术日趋成熟,并开始走向产业化规模化发展阶段[1-3]。 风电主轴承是风力发电机重要的组成部分。其结构形式图下图1所示。据统计,如今安装的所有风力发电机中,采用主轴轴承支撑原理的占总数的75-80%[4],这种支撑是轴承内圈安装在旋转的主轴上,外圈固定在单独的轴承座上,相对于圆锥滚子轴承或圆柱滚子轴承来说,主轴轴承位置处轴产生变形,需要轴承具有一定的调心作用,所以都采用了调心滚子轴承。近年来由于计算机技术的飞速发展,轴承的受力分析计算已经普遍采用有限元分析的方法,能够准确合理地解决轴承复杂的非线性接触问题,为轴承的分析和计算提供了一种新的方法,成为未来的一个发展方向。在机械设备的设计过程中,对受力较大且复杂的零件进行受力分析,校核其整体和局部强度并进行合理的布局设计,是为了防止因应力过大而导致在实际工作中损坏或寿命降低[5]。本文主要运用ANSYS Workbench有限元软件对风电主轴承进行静力学计算,分析轴承内部结构参数对轴承载荷分布和最大接触应力的影响规律。 图1 风电主轴承结构及安装图 1 有限元分析过程 1.1 风电轴承有限元分析基本步骤 不同的物理性质和数学模型的问题,有限元法求解的基本步骤是相同的,只不过 具体公式推导和运算求解不尽相同。有限元分析求解问题的基本计算步骤[6]: 1.问题及求解域定义; 2.求解域离散化; 3.确定状态变量及控制方法; 4.单元推导;

第三章平面问题的有限元法作业及答案

第三章 平面问题的有限元法作业 1. 图示一个等腰三角形单元及其节点编码情况,设μ=0,单元厚度为t 。求 1)形函数矩阵[]N ;2)应变矩阵[]B ;3)应力矩阵[]S 。 4 第1题图 第2题图 2. 如题图所示,结构为边长等于a 的正方形,已知其节点位移分别为:11(,)u v 、 22(,)u v 、33(,)u v 、44(,)u v 。试求A 、B 、C 三点的位移。其中A 为正方形形心,B 为三角形形心。 3.直角边边长为l 的三角形单元,如题图所示。试计算单元等效节点载荷列阵(单元厚度为t ,不计自重)。 第3题图 第4题图 4. 如题图所示,各单元均为直角边边长等于l 的直角三角形。试计算(1)单元等效节点载荷列阵;(2)整体等效节点载荷列阵。已知单元厚度为t ,不计自重。

5.下列3个有限元模型网格,哪种节点编号更合理?为什么? 9 34 6 7912 11 34 6 12142 (a) (b) (c) 第5题图 6.将图示结构画出有限元模型;标出单元号和节点号;给出位移边界条件;并计算半带宽(结构厚度为t )。 2a (a) (b) 无限长圆筒 (c) 第6题图 7. 结构如图所示,已知结构材料常数E 和 ,单元厚度为t 。利用结构的对称性,采用一个单元,分别计算节点位移和单元应力。 第7题图

答案: 1. 1)形函数 i x N a = , j y N a = , 1m x y N a a =-- 2)应变矩阵 []1000101 000101011011B a -????=-??--???? 3)应力矩阵 []100010100 01 0111 110022 2 2S a ? ???-? ?=-????- -? ?? ? 2. A 点的位移为 ()2312A u u u = + , ()231 2A v v v =+ B 点的位移为 ()24313B u u u u = ++ , ()2431 3B v v v v =++ C 点的位移为 ()1223C a u u u = + , ()C 1223 a v v v =+ 3. 单元等效节点载荷列阵为 {}11 11 00003 663 T e i j i j R q q q q ?? =++?? ?? 4. (2)整体等效节点载荷向量为 {}111100006 322T R qlt P qlt P P qlt qlt ?? =-???? 7. (1) 减缩后的整体刚度方程 22 12 2 1222 22221110222021102(1)2 2102x x b b ab R b ab b P v Et ab a b ab ab R v b a μμμ μμμμμμ---??- - ??????????--?????? -??? ?=????---+ +? ???? ?????????-????+?? ? ? 节点位移

ansys上机作业

实验一坝体的有限元建模及应力应变分析 一、实验目的: 1、掌握ANSYS软件基本的几何形体构造方法、网格划分方法、边界条件施加方法及各 种载荷施加方法。 2、熟悉有限元建模、求解及结果分析步骤和方法。 3、能利用ANSYS软件对结构进行有限元分析。 二、实验设备: 微机,ANSYS软件。 三、实验内容: 计算分析模型如图所示,分析坝体的应力、应变。 四、实验步骤: 1 进入ANSYS 程序→ANSYS →change the working directory into yours →input Initial jobname: dam 2设置计算类型 ANSYS Main Menu: Preferences →select Structural → OK 3选择单元类型

ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→Options… →select K3: Plane Strain →OK→Close (the Element Type window) 4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→ OK 5生成几何模型 生成特征点 ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0,0),2(1,0),3(1,5),4(0.45,5)→OK 生成坝体截面 ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS→依次连接四个特征点,1(0,0),2(1,0),3(1,5),4(0.45,5) →OK 生成坝体截面如图一 图一 6 网格划分 ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条横边:OK→input NDIV: 15 →Apply→依次拾取两条纵边:OK →input NDIV: 40 →OK →(back to the mesh tool window)Mesh: Areas, Shape: Quad, Mapped →

ansys有限元分析作业经典案例

有 限 元 分 析 作 业 作业名称 输气管道有限元建模分析 姓 名 陈腾飞 学 号 3070611062 班 级 07机制(2)班 宁波理工学院

题目描述: 输气管道的有限元建模与分析 计算分析模型如图1所示 承受内压:1.0e8 Pa R1=0.3 R2=0.5 管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。 图1受均匀内压的输气管道计算分析模型(截面图) 题目分析: 由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。然后根据结构的对称性,只要分析其中1/4即可。此外,需注意分析过程中的单位统一。 操作步骤 1.定义工作文件名和工作标题 1.定义工作文件名。执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。 2.定义工作标题。执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。 3.更改目录。执行Utility Menu-File→change the working directory –D/chen 2.定义单元类型和材料属性 1.设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK

2.选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →apply Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。 图2 3.设置材料属性。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,如图3所示,选择OK并关闭对话框。 图3 3.创建几何模型 1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK

有限元上机题

注:题中E表示材料弹性模量,μ表示泊松比,ρ表示密度。 一静力结构分析 1 如图1所示为普通订书钉,E=2.1×105MPa,μ=0.3,横截面尺寸为宽B=0.64mm,高H=0.402mm。当订书钉被压入纸张时,约需要120N的载荷,载荷均匀地分布在订书钉上部。以下面两种情况进行有限元分析。(单位:mm)(1)订入时A、B点为铰支条件; (2)订入时A、B点为固定约束。 图1 载荷和尺寸情况 2、小型铁路桥由横截面积为3250mm2的钢制杆件组装而成。一辆火车停在桥上,其载荷施加在桥梁两侧的桁架上,单侧的桁架如图2所示,等效载荷为F1,F2,E=2.1×105MPa,μ=0.3,ρ=7.8×103kg/m3。试计算位置R处由于载荷作用而沿水平方向移动的距离以及支反力,同时,分析各个节点的位移和非单元应力。 图2 铁路桥单侧桁架及载荷情况 3如图3所示,模型参数为:E=3.0×1010Pa,A1=30m,A2=10m,B=80m,t=20m,p=2200Pa。 有关风载的确定,按照海洋井架行业标准,有以下方法: 风压(Pa)=0.6115×风速(m/s)×高度系数×形状系数对于一般的海洋井架及建筑物,高度在30m左右,高度系数取为1.1,形状系数取为1.25,风速取为47.8m/s。换算出来后得到的风压为2200Pa。

图3 高层建筑物及其风载荷 4对于含裂纹体的结构及材料,若按照线弹性力学分析,会在裂纹的尖端处产生应力的奇异性,这时需要计算裂纹尖端处的应力强度因子(对于Ⅰ型裂纹,有K1=σ(πa)1/2),并以应力强度因子作为准则来对材料的裂纹是否扩展进行判断。图4所示为一块矩形平板,其边缘存在长为a的裂纹,板的两端承受拉应作用。利用结构上下的对成性,取矩形的一半建立有限元模型,完成看一力σ 下工作: (1)球裂纹的张角θ(在施加载荷前=0,θ=0) (2)沿直线AO,画出y方向应力σy沿x变化的曲线图。假设 σy= K1/(2πx)1/2利用回归方法估计K1。将计算结果与计算无限大平板的修正结果进行比较,其中基于无限大平板的修正关系式为K1=1.2σ0(πa)1/2)(3)在裂缝尖端处,进行网格的细化,重新求解(2)中的问题。 模型中的相关参数为 E=2.1×105MPa,μ=0.3,L=400mm,a=9.5mm,b=95mm,σ0=450MPa。 图4 承受拉升载荷的带裂纹平面结构

有限元作业

有限元作业答卷 一、问题解答 1、解:令2 21()()2()2dy p x q x y f x y dx ????=+-?? ??????? π 则可以得到()()y q x y f x π=-, ()y dy p x dx 'π=,()y d d dy p x dx dx dx '?? π= ??? 又有其Euler 方程公式为:0u u d dx ' ππ- = 综上得到原泛函问题的Euler 方程及其边界条件为: ()()(), [,] (1().1.1),()a b d dy p x q x y f x x a b dx dx y a y y b y ?????-+=∈ ?? ?==?? 2、(1)解:引入Sobolev 空间0V H ( )∞=Ω,任取V v ∈乘以方程两端积分: (((,))(,))(,)k x y u q x y u vdxdy f x y vdxdy Ω Ω -???+=???? 再利用格林公式得到: ((,)(,))(,) (,)u k x y u v q x y uv dxdy k x y vds f x y vdxdy n Ω Γ Ω ????+-=?????? 由边界条件得到: (,) ((,)(,))(,)(,) g x y k x y u v q x y uv dxdy f x y vdxdy k x y vds n Ω Ω Γ ????+=+?????? 令 A(,)((,)(,))(,) F()(,)(,)u v k x y u v q x y uv dxdy g x y v f x y vdxdy k x y vds n Ω ΩΓ ?=???+?????=+???????? 得变分方程 A(,)F(), (1.2.1)u v v v V =∈ 其解0u H ()∞∈Ω便为椭圆型方程第一边值问题的Galerkin 意义广义解。 (2)证:下面用Lax-Milgram 定理证明广义解的存在唯一性。 首先,由Hilbert 空间的Schwarz 不等式得到 1 (,)V f v f v f v v ≤≤?∈

2014黑龙江省专业技术人员 第二次作业

水利工程思考题 第二次作业: (本次作业只要求初级职称学员答,中高级职称学员不答 ..) 1、什么是湿地?人工湿地净化技术的基本原理是什么? 湿地是由土壤基质及其浅水潮湿环境和水生植物、微生物、鱼虾类等水中栖息的动物共同组成的生态系统,通过物理、化学和生物作用的优化组合,起到污水处理、净化环境的目的。 人工湿地原理: 人工湿地一般由人工基质和生长在其上的水生植物(如芦苇、香蒲、苦草等)组成,形成基质-植物-微生物生态系统。当污水通过该系统时,污染物质和营养物质被吸收、转化和分解,从而使水体得到净化。人工湿地是一种开发、发展、自我设计的生态系统,涉及多级食物链,形成了内部良好的物质循环和能量传递。 2、何为水体自净?水体自净按作用的机制可分为哪几类? 污染物进入水体后,通过物理、化学和生物因素的共同作用,使污染物的总量减少或浓度降低,受污染的天然水体部分地或完全地恢复原状,这种现象为水体自净 按其作用的机制可分为三类:1、物理净化是指污染物通过稀释、扩散、混合、沉淀和挥发等作用,使自身浓度降低,物理净化只能降低污染物在水中的浓度,而不能减少污染物的总量。2、化学净化作用是指通过水体的氧化还原、酸碱反应、分解化合、吸附与凝聚(属物理化学作用)等作用,使污染物质的存在形态发生变化和浓度降低。3、生物化学净化作用,通过水体中的水生生物、微生物的生命活动,使污染物质的存在状态发生变化,污染物总量和浓度降低。其中,最主要的是微生物对有机污染物的氧化分解作用,以及对有毒污染物的转化。 3、试述坝下游面钢衬钢筋混凝土管道结构计算方法? (1)高尔登法。该方法只适用于轴对称的管道结构,而且计算比较繁琐。 (2)钢衬钢筋混凝土管道非轴对称结构的计算方法,由于考虑管道非轴对称结构的方法在计算外包钢筋混凝土应力时,要采用有限元或模型试验的方法,在使用上比较复杂,其结果与轴对称结构计算结果相差又不大,为此,对于管道混凝土未开裂和裂穿的两种情况,可以采用更为简便的厚壁圆环的组合环法。 (3)钢衬钢筋混凝土管道正交各向异性状态分析方法。

相关文档