文档库 最新最全的文档下载
当前位置:文档库 › 电磁感应中的导轨问题

电磁感应中的导轨问题

电磁感应中的导轨问题
电磁感应中的导轨问题

电磁感应中的导轨问题

一、单棒问题:基本模型

阻尼式

电动式

发电式 二、含容式单棒问题:基本模型

放电式 无外力充电式

有外力充电式 三、无外力双棒问题:基本模型

无外力等距式 无外力不等距式 四、有外力双棒问题:基本模型

有外力等距式 有外力不等距式

·阻尼式单棒:

1.电路特点:导体棒相当于电源。

2.安培力的特点:安培力为阻力,并随速度减小而减小。 3.加速度特点:加速度随速度减小而减小。 4.运动特点:a 减小的减速运动 5.最终状态:静止

6.三个规律 (1)能量关系:

(2)动量关系: (3)瞬时加速度:

7.变化:(1)有摩擦(2)磁场方向不沿竖直方向

2 22

B B l v F B Il R r

==

+2

2

()

B F B l v a m

m R r =

=

+2

0102

m v Q

-=0m v

q B l =R r Q R Q r =00B Il t m v

-??=-22

()B F B l v a m m R r ==+1

·发电式单棒

1.电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv 2.安培力的特点:安培力为阻力,并随速度增大而增大 3.加速度特点:加速度随速度增大而减小 4.运动特点:a 减小的加速运动 5.最终特征:匀速运动

6.两个极值:

(1) v=0时,有最大加速度:

(2) a=0时,有最大速度:

7.稳定后的能量转化规律:

8.起动过程中的三个规律 (1)动量关系:

m F t B L q m g t m v μ--=-

(2)能量关系:

2

12

E m

F s Q m g S m v μ=++

(3)瞬时加速度:

B F F m g

a m

μ--=

9.几种变化

(1) 电路变化(并联式)(2)磁场方向变化 (3)拉力变化(若匀加速拉杆则F 大小恒定吗?) (4) 导轨面变化(竖直或倾斜)加沿斜面恒力、通过定滑轮挂一重物、加一开关

·电容放电式:

1.电路特点:电容器放电,相当于电源;导体棒受安培力而运动。

2

电动势,导致电流减小,直至电流为零,此时UC=Blv 3.运动特点:a 渐小的加速运动,最终做匀速运动。 4.最终特征:匀速运动,但此时电容器带电量不为零。 5.最大速度vm

μ

μ

m F m g a m

μ-=μ

μ

2

2

-+=

()()

m F m g R r v B l

μ2

()

m m

m

B L v F v m g v R r μ=++

C B lv U I R -=

22

2112

B B l (v v )

F B I l R R -==+2012m v (m m )v =+共

6.达最大速度过程中的两个关系:

安培力对导

体棒的冲量: 安培力对导

体棒做的功:

易错点:认为电容器最终带电量为零

7.几种变化(1)导轨不光滑 (2)光滑但磁场与导轨不垂直 ·电容无外力充电式

1.电路特点:导体棒相当于电源;电容器被充电.

2.电流的特点:导体棒相当于电源;F 安为阻力,棒减速,E 减小

有I 感 I 感渐小.电容器被充电。UC 渐大,阻碍电流 当Blv=UC 时,I=0, F 安=0,棒匀速运动。 3.运动特点:

a 渐小的加速运动,最终做匀速运动。

4.最终特征:匀速运动。但此时电容器带电量不为零。 5.最终速度:

·无外力等距双棒

1.电路特点:棒2相当于电源;棒1受安培力而加速起动,运动后产生反

电动势.

2.电流特点: 随着棒2的减速、棒1的加速, 两棒的相对速度v2-v1变小,回路中电流也变小。 v1=0时:电流最大

v2=v1时:电流为0 3.两棒的运动情况: 安培力大小:

两棒的相对速度变小,感应电流变小,安培力变小,棒1做加速度变小的加速运动,棒2做加速度变小的减速运动,最终两棒具有共同速度。 4.两个规律 (1)动量规律

2

2

22

1()22()m m B lC E W m v m B l C ==

+安2

2

m m B l C E I m v m B l C

==

+安21211212

B l v B l v B l (v v )I R R R R --==++012

m B lv I R R =

+

两棒受到安培力大小相等方向相反, 系统合外力为零,系统动量守恒. (2)能量转化规律 系统机械能的减小量等于内能的增加量. (类似于完全非弹性碰撞) 焦耳热之比等于电阻之比。 5.几种变化:

(1)初速度的提供方式不同。(2)磁场方向与导轨不垂直 (3)两棒都有初速度(此时两棒动量仍守恒) (4)两棒位于不同磁场中(此时两棒动量不守恒) ·无外力不等距双棒

1.电路特点:棒1相当于电源;棒2受安培力而起动,运动后产生反电动势. 2.电流特点:

随着棒1的减速、棒2的加速,回路中电流变小。

最终当Bl 1v 1= Bl 2v 2时,电流为零,两棒都做匀速运动

3.两棒的运动情况:棒1加速度变小的减速,最终匀速;

棒2加速度变小的加速,最终匀速. 5.动量规律:系统动量不守恒。 6.两棒最终速度

7.能量转化情况:系统动能→电能→内能 焦耳热之比等于电阻之比

8.流过某一截面的电量

9.几种变化:(1)两棒都有初速度 2)两棒位于不同磁场中 ·有外力等距双棒

1.电路特点:棒2相当于电源;棒1受安培力而起动.

2.运动分析:

3.稳定时的速度差

21222

011m v (m m )v Q 22

=+共+212211R R v Bl v Bl I +-=

2

2

2

10112211122

2

m v m v m v Q

-

-

=22

2B l q m v =-

高二物理-选修3-2-电磁感应-期末重点复习资料

电磁感应专题复习 知识网络 第一部分电磁感应现象、楞次定律 知识点一——磁通量 ▲知识梳理 1.定义 磁感应强度B与垂直场方向的面积S的乘积叫做 穿过这个面积的磁通量,。如果面积S与B不垂直,如图所示,应以B乘以在垂直于磁场方向上的投影面积,即 。 2.磁通量的物理意义 磁通量指穿过某一面积的磁感线条数。 3.磁通量的单位:(韦伯)。 特别提醒: (1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别;另外,磁通量与线圈匝数无关。

(2)磁通量的变化,它可由B、S或两者之间的夹角的变化引起。 ▲疑难导析 一、磁通量改变的方式有几种 1.线圈跟磁体间发生相对运动,这种改变方式是S不变而相当于B变化。 2.线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。 3.线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。其实质也是B不变,而S增大或减小。 4.线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。 二、对公式的理解 在磁通量的公式中,S为垂直于磁感应强度B方向上的有效面积,要正确理解三者之间的关系。 1.线圈的面积发生变化时磁通量是不一定发生变化的,如图(a),当线圈面积由变为时,磁通量并没有变化。 2.当磁场范围一定时,线圈面积发生变化,磁通量也可能不变,如图(b)所示,在空间有磁感线穿过线圈S,S外没有磁场,如增大S,则不变。

3.若所研究的面积内有不同方向的磁场时,应是将磁场合成后,用合磁场根据去求磁通量。 例:如图所示,矩形线圈的面积为S(),置于磁感应强度为B(T)、方向水平向右的匀强磁场中,开始时线圈平面与中性面重合。求线圈平面在下列情况的磁通量的改变量:绕垂直磁场的轴转过(1);(2);(3)。 (1); (2); (3)。负号可理解为磁通量在减少。 知识点二——电磁感应现象 ▲知识梳理 1.产生感应电流的条件 只要穿过闭合电路的磁通量发生变化,即,则闭合电路中就有感应电流产生。 2.引起磁通量变化的常见情况 (1)闭合电路的部分导体做切割磁感线运动。 (2)线圈绕垂直于磁场的轴转动。 (3)磁感应强度B变化。 ▲疑难导析

电磁感应中的“杆导轨”类问题(3大模型)解题技巧

辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧 电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下: 类型一:单杆+电阻+导轨模型类 【初建模型】 【例题1】(2017·模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。重力加速度为g ,导轨电阻不计,杆与导轨接触良好。求: (1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。 【思路点拨】: 【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12 mgx sin θ -m 3g 2R 2sin 2θ B 4L 4 【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I = E R +R 杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v 2R =ma 当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m = 2mgR sin θ B 2L 2 ,方向沿导轨平面向下。 (2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+1 2 mv m 2

高中物理-电磁感应知识点汇总

电磁感应 1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.★楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割

磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动; ③阻碍原电流的变化(自感)。 ★★★★4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v 若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

电磁感应 知识点总结

第16章:电磁感应 L 闭合电路中磁通量发生变化时产生感应电流 当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量: $ =BS 如果该面积与磁场夹角为 a,则其投影面积为 Ssin a,则磁通量为 =BSsin a 。磁通量的单位: 韦伯,符号: Wb 、重、难点知识归纳 1. 法拉第电磁感应定律 (1) .产生感应电流的条件:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两 个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过 该电路的磁通量也一定发生了变化。 当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。 这个表述是充分条件,不是必要的。在导体做切割磁感线运动时用它判定比较方便。 (2) .感应电动势产生的条件:穿过电路的磁通量发生变化。 、知识网络 产生感应电一 闭合电路中的部分导体在做切割磁感线运动 流的方法 闭合电路的磁通量发生变 感应电流方 _ 右手疋则, 向的判定 ? 楞次定律 E=BL v sin 0 感应电动势 A (h 的大小 ■ E - n A t 大小: 方向: 日光 构造 E 2 总是阻碍原电流的变化方向 灯管 镇流器 启动器 日光灯工作原理:自感现象 通电、断电自感实验 实验: 应用 自 感 自感电 动势

这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。 这好比一个电源:不论外电路是否闭合, 电动势总是存在的。 但只有当外电路闭合时, 电路 中才会有电流。 (3) .引起某一回路磁通量变化的原因 a 磁感强度的变化 b 线圈面积的变化 c 线圈平面的法线方向与磁场方向夹角 的变化 (4) .电磁感应现象中能的转化 感应电流做功,消耗了电能。消耗的电能是从其它形式的能转化而来的。 在转化和转移中能的总量是保持不变的。 (5) .法拉第电磁感应定律: a 决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢 b 注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同 —磁通量, 一磁通量的变化量, c 定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的 变化率成正比。 (6 )在匀强磁场中, 磁诵量的变化 △① =①t -①o 有多种形式,主要有 ①S 、 a 不变, B 改变,这时 △①= △ B Ssin a ②B 、 a 不变, S 改变,这时 △①= △ S Bsin a ③B 、 S 不变, a 改变,这时 △①=BS(sin a 2-sin a 1) 在非匀强磁场中,磁通量变化比较复杂。有 几种情况需要特别注意: 形磁铁附近移动,穿过上边线圈的磁通量由方向向 上减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减 小到零,再变为方向向上增大。 ②如图16-2所示,环形导线 a 中有顺时针方向的电流, a 环外有 两个同心导线圈b 、c ,与环形导线a 在同一平面内。当 a 中的电流增 ①如图16-1所示,矩形线圈沿a T b T c 在条 a be 图 16-1 a 图 16-2

电磁感应中的导轨类问题

动态分析 导体棒与导轨问题1、一根导体棒在导轨上滑动(单导体问题) 棒ab长为L,质量为m,电阻为R, 棒ab 长为L,质量为m,电阻为R, 导轨光滑,电阻不计。导轨光滑,电阻不计。 开关闭合后,棒ab受安培力F=BLE/R,此时,a=BLE/mR,棒ab的速度增加一感应电动势BLv增加一安培力F=BIL减小一加速度a减小,当安培力F=0(a=0)时,v最大棒ab释放后下滑,此时a=gsin a 棒ab的速度v增加一一感应电动势E=BLv增加 ――感应电流增加一一安培力F增加一一加速度a减小,当安培力F=mgsin a时,v 最大。 2、两根导体棒在导轨上滑动(双导体问题) 初速度不为零, 不受其他水平外力作用 N Q N t / Q 1 尸V0 / 示M / /M M / P P 意 图质量=m i=m2 电阻=门=「2 质量=m i=m2 电阻=r i=r2 长度=L i=L2 长度=L i=L2 分杆MN做边减速运动,杆PQ做变稳疋时,两杆的加速度为零,两杆的速度 析加速运动,稳定时,两杆的加速度之比为i: 2 为零,以相等的速度匀速运动。 初速度为零,受其他水平外力的作用 \ 1;1 * 1N 电一动一电”型动一电一动”型

动一电一动”型 1 . (2007山东济南)如图所示,水平放置的光滑平行金属导轨上有一质量为 m 的 金属棒ab.导轨地一端连接电阻 R ,其他电阻均不计,磁感应强度为 B 的匀强磁场垂直 I 齐 科匕科 于导轨平面向下,金属棒 ab 在一水平恒力F 作用下由静止起向右运动.贝则(卑*弓焉宦T A .随着ab 运动速度的增大,其加速度也增大 B .外力F 对ab 做的功等于电路中产生的电能 C .当ab 做匀速运动时,外力 F 做功的功率等于电路中的电功率 D ?无论ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能 2、如图所示,有两根和水平方向成 角的光滑平行的金属轨道,上端 接有可变电阻 R ,下端足够长,空间有垂直于轨道平面的匀强磁场, 磁感强 度为B , —根质量为 m 的金属杆从轨道上由静止滑下?经过足够长的时间 后,金属杆的速度会趋近于一个最大速度 V m ,则() A .如果B 增大,v m 将变大 B .如果 变大,V m 将变大 C .如果R 变大,v m 将变大 D .如果m 变小,v m 将变大 3. 如图所示,一光滑平行金属轨道平面与 水平面成 角,两导轨上端用一电阻 R 相连,该装置处于匀强磁场中, 磁场方向垂直轨道平面向上。 质量为m 的金属杆ab ,以初 速度V 0从轨道底端向上滑行,滑行到某一高度 h 后又返回 到底端。若运动过程中,金属杆保持与导轨垂直且接触良 好,并不计 质量=m i =m 2 电阻=r i =r 2 长度=L I =L 2 摩擦力f i =f 2, 电阻=r i =r 2 质量=m i =m 2 长度=L I =L 2 开始时,两杆做变加速运动;稳定时, 两杆以相同的加速度做匀变速直线运 动。 稳定时,若FW 2,则PQ 先变加速后匀 速运动;若F>2f ,则PQ 先变加速,之 后两杆匀加速运动。 F M P * Q r Q F P

物理电磁感应知识点的归纳

物理电磁感应知识点的归纳 物理电磁感应知识点的归纳 1.电磁感应现象 利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb (2)求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右

手定则只适用于导线切割磁感线运动的`情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式:E=n/t 当导体做切割磁感线运动时,其感应电动势的计算公式为 E=BLvsin。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=n/t计算的是在t时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsin中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。 (2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSB/t。 ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势 E=Nbs/t。

电磁感应中的杆导轨类问题大模型解题技巧

电磁感应中的杆导轨类问题大模型解题技巧集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧 电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下: 类型一:单杆+电阻+导轨模型类 【初建模型】 【例题1】(2017·淮安模拟)如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。 整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平 面向下。将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆 cd由静止释放,下滑距离x时达到最大速度。重力加速度为g,导 轨电阻不计,杆与导轨接触良好。求: (1)杆cd下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。 【思路点拨】: 【答案】:(1)g sinθ,方向沿导轨平面向下;,方向沿导轨平面向下;(2)mgx sinθ- 【解析】:(1)设杆cd下滑到某位置时速度为v,则杆产生的感应电动势E=BLv 回路中的感应电流I= 杆所受的安培力F=BIL 根据牛顿第二定律有mg sinθ-=ma 当速度v=0时,杆的加速度最大,最大加速度a=g sinθ,方向沿导轨平面向下 当杆的加速度a=0时,速度最大,最大速度v m=,方向沿导轨平面向下。 (2)杆cd从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sinθ=Q总+mv m 2 又Q杆=Q总,所以Q杆=mgx sinθ-。 【内化模型】 单杆+电阻+导轨四种题型剖析 题型一(v0≠0)题型二(v0=0)题型三(v0=0)题型四(v0=0) 说明杆cd以一定初速 度v0在光滑水平 轨道上滑动,质 量为m,电阻不 计,两导轨间距 为L 轨道水平光滑, 杆cd质量为m, 电阻不计,两导 轨间距为L,拉 力F恒定 倾斜轨道光滑,倾 角为α,杆cd质量 为m,两导轨间距为 L 竖直轨道光滑, 杆cd质量为m, 两导轨间距为L

知识讲解电磁感应复习与巩固基础

电磁感应复习与巩固 编稿:张金虎审稿:李勇康 【学习目标】 1.电磁感应现象发生条件的探究与应用。 2.楞次定律的建立过程与应用:感应电流方向决定因素的探究,楞次定律的表述及意义。 3.法拉第电磁感应定律的运用,尤其是导体棒切割磁感线产生感应电动势 sin EBLv??的计算是感应电动势定量计算的重点所在。在应用此公式时要特别注意导体棒的有效切割速度和有效长度。 4.利用法拉第电磁感应定律、电路知识、牛顿运动定律、能的转化和守恒定律进行综合分析与计算。 【知识络】 【要点梳理】 要点一、关于磁通量?,磁通量的变化??、磁通量的变化率t??? 1、磁通量

磁通量cos BSBSBS???????,是一个标量,但有正、负之分。 可以形象地理解为穿过某面积磁感线的净条数。 2、磁通量的变化 磁通量的变化21??????. 要点诠释: ??的值可能是2?、1?绝对值的差,也可能是绝对值的和。例如当一个线圈从与磁感 线垂直的位置转动180?的过程中21??????. 3、磁通量的变化率 磁通量的变化率t???表示磁通量变化的快慢,它是回路感应电动势的大小的决定因素。 2121ttt????????, 在回路面积和位置不变时BStt??????(Bt??叫磁感应强度的变化率); 在B均匀不变时SBtt??????,与线圈的匝数无关。 要点二、关于楞次定律 (1)定律内容:感应电流具有这样的方向:感应电流的磁场总是阻碍引起感应电流的磁通量发生变化。 (2)感应电流方向的决定因素是:电路所包围的引起感应电流的磁场的方向和磁通量的增减情况。 (3)楞次定律适用范围:适用于所有电磁感应现象。 (4)应用楞次定律判断感应电流产生的力学效果(楞次定律的变式说法):感应电流受到的安培力总是阻碍线圈或导体棒与磁场的相对运动,即线圈与磁场靠近时则相斥,远离时则相吸。 (5)楞次定律是能的转化和守恒定律的必然结果。 要点三、法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即Et????. 要点诠释: 对n匝线圈有Ent????. (1)Ent????是t?时间内的平均感应电动势,当0t??时,Ent????转化为瞬时感应电动势。

电磁感应中导体棒类问题归类剖析

电磁感应中导体棒类问题归类剖析 电磁感应中的导轨上的导体棒问题是历年高考的热点。其频考的原因,是因为该类问题是力学和电学的综合问题,通过它可以考查考生综合运用知识的能力。解滑轨上导体棒的运动问题,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。 一、滑轨上只有一个导体棒的问题 滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。 (一)含电源闭合电路的导体棒问题 例1 如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、 质量为m的金属棒ab,导轨左端接有内阻不计、电动势为E的电源组成回路, 整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S 串联。当闭合电键后,求金属棒可达到的最大速度。 图1 解析闭合电键后,金属棒在安培力的作用下向右运动。当金属棒的速度为 v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。 金属板速度最大时,有 解得

点评本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等) (二)闭合电路中的导体棒在安培力之外的力作用下的问题 1. 导体棒在外力作用下从静止运动问题 例2(全国高考题)如图2,光滑导体棒bc固定在竖直放置的足够长的平行金属导轨上,构成框架abcd,其中bc棒电阻为R,其余电阻不计。一质量为m 且不计电阻的导体棒ef水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直框面。若用恒力F向上拉ef,则当ef匀速上升时,速度多大? 图2 解析本题有两种解法。方法一:力的观点。当棒向上运动时,棒ef受力如图3所示。当ef棒向上运动的速度变大时,ef棒产生的感应电动势变大,感应 =BIL变大,因拉力F和重力mg都电流I=E/R变大,它受到的向下的安培力F 安 不变,故加速度变小。因此,棒ef做加速度越来越小的变加速运动。当a=0时(稳定条件),棒达到最大速度,此后棒做匀速运动(达到稳定状态)。当棒匀速运动时(设速度为),由物体的平衡条件有 图3

电磁感应知识点总结

《电磁感应》知识点总结 1、 磁通量Φ、磁通量变化?Φ、磁通量变化率 t ??Φ 对比表 234、 感应电动势 在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。 (1) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就会产生感应电动势,它相 当于一个电源 (2) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感应电动势,磁通量发生变 化的那部分相当于电源。

5、 公式 n E ?Φ =与E=BLvsin θ 的区别与联系 6、 楞次定律 (2) 楞次定律中“阻碍”的含义

(3)对楞次定律中“阻碍”的含义还可以推广为感应电流的效果总是要阻碍产生感应电流的原因1)阻碍原磁通量的变化或原磁场的变化,即“增反减同”; 2)阻碍相对运动,可理解为“来拒去留”; 3)使线圈面积有扩大或缩小趋势,可理解为“增缩减扩”; 4)阻碍原电流的变化,即产生自感现象。 7、电磁感应中的图像问题 (3)解决这类问题的基本方法 1)明确图像的种类,是B-t图像还是Φ-t图像、或者E-t图像和I-t图像 2)分析电磁感应的具体过程 3)结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律列出函数方程。 4)根据函数方程,进行数学分析,如斜率及其变化,两轴的截距等。 5)画图像或判断图像。 8、自感涡流

(2 ) 自感电动势和自感系数 1) 自感电动势:t I L E ??=,式中t I ??为电流的变化率,L 为自感系数。 2) 自感系数:自感系数的大小由线圈本身的特性决定,线圈越长,单位长度的匝数越多,横截面 积越大,自感系数越大,若线圈中加有铁芯,自感系数会更大。 (3) 日关灯的电路结构及镇流器、启动器的作用 1) 启动器:利用氖管的辉光放电,起着自动把电路接通和断开的作用。 2) 镇流器:在日光灯点燃时,利用自感现象,产生瞬时高压;在日关灯正常发光时,利用自感现 象起降压限流作用。

电磁感应中的导轨问题

电磁感应中的导轨问题 一、单棒问题:基本模型 阻尼式 电动式 发电式 二、含容式单棒问题:基本模型 放电式 无外力充电式 有外力充电式 三、无外力双棒问题:基本模型 无外力等距式 无外力不等距式 四、有外力双棒问题:基本模型 有外力等距式 有外力不等距式 ·阻尼式单棒: 1.电路特点:导体棒相当于电源。 2.安培力的特点:安培力为阻力,并随速度减小而减小。 3.加速度特点:加速度随速度减小而减小。 4.运动特点:a 减小的减速运动 5.最终状态:静止 6.三个规律 (1)能量关系: (2)动量关系: (3)瞬时加速度: 7.变化:(1)有摩擦(2)磁场方向不沿竖直方向 2 22 B B l v F B Il R r == +2 2 () B F B l v a m m R r = = +2 0102 m v Q -=0m v q B l =R r Q R Q r =00B Il t m v -??=-22 ()B F B l v a m m R r ==+1

·发电式单棒 1.电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv 2.安培力的特点:安培力为阻力,并随速度增大而增大 3.加速度特点:加速度随速度增大而减小 4.运动特点:a 减小的加速运动 5.最终特征:匀速运动 6.两个极值: (1) v=0时,有最大加速度: (2) a=0时,有最大速度: 7.稳定后的能量转化规律: 8.起动过程中的三个规律 (1)动量关系: m F t B L q m g t m v μ--=- (2)能量关系: 2 12 E m F s Q m g S m v μ=++ (3)瞬时加速度: B F F m g a m μ--= 9.几种变化 (1) 电路变化(并联式)(2)磁场方向变化 (3)拉力变化(若匀加速拉杆则F 大小恒定吗?) (4) 导轨面变化(竖直或倾斜)加沿斜面恒力、通过定滑轮挂一重物、加一开关 ·电容放电式: 1.电路特点:电容器放电,相当于电源;导体棒受安培力而运动。 2 电动势,导致电流减小,直至电流为零,此时UC=Blv 3.运动特点:a 渐小的加速运动,最终做匀速运动。 4.最终特征:匀速运动,但此时电容器带电量不为零。 5.最大速度vm μ μ m F m g a m μ-=μ μ 2 2 -+= ()() m F m g R r v B l μ2 () m m m B L v F v m g v R r μ=++

人教版高中物理选修3-2重点题型巩固练习] 电磁感应基础知识

人教版高中物理选修3-2 知识点梳理 重点题型(常考知识点)巩固练习 【巩固练习】 一、选择题 1.在电磁学发展过程中,许多科学家做出了贡献,下列说法正确的是( ) A .奥斯特发现了电流磁效应;法拉第发现了电磁感应现象 B .麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在 C .库仑发现了点电荷的相互作用规律;密立根通过油滴实验测定了元电荷的数值 D .安培发现了磁场对运动电荷的作用规律;洛伦兹发现了磁场对电流的作用规律 2. 1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在会展中偶然接错了导线,把另一直流发电机发出的电接到了他自己送展的直流发电机的电流输出端。由此而观察到的现象导致了他的一项重要发明,从而突破了人类在电能利用方面的一个瓶颈,此项发明是( ) A .新型直流发电机 B .直流电动机 C .交流电动机 D .交流发电机 3.法拉第通过精心设计的一系列实验,发现了电磁感应定律,将历史上认为各自独立的学科“电学”和“磁学”联系起来,在下面几个典型的实验设计思想中,所做的推论后来被实验否定的是( ) A .既然磁铁可以使近旁的铁块带磁,静电荷也可以使近旁的导体表面感应出电荷,那么静止导线中的稳恒电流也可在近旁静止的线圈中感应出电流 B .既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流 C .既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势 D .既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可以在近旁的线圈中感应出电流 4.如图所示,矩形线框abcd 放置在水平面内,磁场方向与水平方向成α角,已知4sin 5 α=,回路面积为S ,磁感应强度为B ,则通过线框的磁通量为 ( ) A .BS B . 45BS C .35BS D .34BS 5.如图所示,ab 是水平面上一个圆的直径,在过ab 的竖直平面内有一根通电导线ef 。已知ef 平行于ab ,当ef 竖直向上平移时,电流磁场穿过圆面积的磁通 量将( )

电磁感应中的杆和导轨问题

电磁感应中的杆+导轨问题 “杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是各种考试的热点,考查的知识点多,题目的综合性强,物理情景富于变化,是我们学习中的重点和难点。导轨放置方式可分为水平、竖直和倾斜;轨道可能光滑,也可能粗糙;杆可能有电阻也可能没有电阻;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,多种情景组合复杂,题目形式多变。 下面是几种最基本的模型及分析,有兴趣(无兴趣可以无视)的同学可以学习、体会、研究。 需要注意的是:模型中的结论是基于表中所述的基本模型而言,不一定有普遍性,物理情景有变化,结论可能不同,但分析的方法是相同的、有普遍性的。 1.单杆水平式 物理模型 匀强磁场与导轨垂直,磁感应强度为B,棒ab长为L,质量为m, 初速度为零,拉力恒为F,水平导轨光滑,除电阻R外,其他电 阻不计 动态分析设运动过程中某时测得的速度为v,由牛顿第二定律知棒ab的加速度为a= F m-= B2L2v mR,a、v同向,随速度的增加,棒的加速度a 减小,当a=0时,v最大,电流I= BLv m R不再变化 收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化 物理模型匀强磁场与导轨垂直,磁感应强度为B,导轨间距为L,导体棒质量为m,电阻为R,导轨光滑,电阻不计 动态分析棒ab刚释放时a=g sin α,棒ab的速度v↑→感应电动势E=BLv↑→电流I= E R↑→安培力F=BIL↑→加速度a↓,当安培力F =mg sin α时,a=0,速度达到最大v m= mgR sin α B2L2 收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化 3、有初速度的单杆 物理模型杆cd以一定初速度v0在光滑水平轨道上滑动,质量为m,电阻

电磁感应知识点总结

第16章:电磁感应 一、知识网络 二、重、难点知识归纳 1、 法拉第电磁感应定律 (1)、产生感应电流的条件:穿过闭合电路的磁通量发生变化。 以上表述就是充分必要条件。不论什么情况,只要满足电路闭合与磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定就是闭合的,穿过该电路的磁通量也一定发生了变化。 当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。这个表述就是充分条件,不就是必要的。在导体做切割磁感线运动时用它判定比较方便。 (2)、感应电动势产生的条件:穿过电路的磁通量发生变化。 闭合电路中磁通量发生变化时产生感应电流 当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量:φ=BS 如果该面积与磁场夹角为α,则其投影面积为S sin α,则磁通量为Φ =BS sin α。磁通量的单位: 韦伯,符号:Wb 产生感应电流的方法 自感 电磁感应 自感电动势 灯管 镇流器 启动器 闭合电路中的部分导体在做切割磁感线运动 闭合电路的磁通量发生变 感应电流方向的判定 右手定则, 楞次定律 感应电动势的大小 E=BL νsin θ t n E ??=φ 实验:通电、断电自感实验 大小:t I L E ??= 方向:总就是阻碍原电流的变化方向 应用 日光灯构造 日光灯工作原理:自感现象 感应现象:

这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路就是否闭合,电动势总就是存在的。但只有当外电路闭合时,电路中才会有电流。 (3)、引起某一回路磁通量变化的原因 a磁感强度的变化 b线圈面积的变化 c线圈平面的法线方向与磁场方向夹角的变化 (4)、电磁感应现象中能的转化 感应电流做功,消耗了电能。消耗的电能就是从其它形式的能转化而来的。 在转化与转移中能的总量就是保持不变的。 (5)、法拉第电磁感应定律: a决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢 b注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同 —磁通量,—磁通量的变化量, c定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。 (6)在匀强磁场中,磁通量的变化ΔΦ=Φt-Φo有多种形式,主要有: ①S、α不变,B改变,这时ΔΦ=ΔB?S sinα ②B、α不变,S改变,这时ΔΦ=ΔS?B sinα ③B、S不变,α改变,这时ΔΦ=BS(sinα2-sinα1) 在非匀强磁场中,磁通量变化比较复杂。有几 种情况需要特别注意: ①如图16-1所示,矩形线圈沿a→b→c在条形 磁铁附近移动,穿过上边线圈的磁通量由方向向上 减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减小到 零,再变为方向向上增大。 ②如图16-2所示,环形导线a中有顺时针方向的电流,a环外有两个同心导线圈b、c,与环形导线a在同一平面内。当a中的电流增大时,b、 a b c 图16-1 图16-2

高中物理电磁感应核心知识点归纳

高中物理《电磁感应》核心知识点归 纳 一、电磁感应现象 1、产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。 2、感应电动势产生的条件。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 3、关于磁通量变化 在匀强磁场中,磁通量,磁通量的变化有多种形式,主要有: ①S、α不变,B改变,这时

②B、α不变,S改变,这时 ③B、S不变,α改变,这时 二、楞次定律 1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。 (1)从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。 (2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。 (3)从“阻碍自身电流变化”的角度来看,就是自感现象。自感现象中产生的自感电动势总是阻碍自身电流的变化。 2、实质:能量的转化与守恒 3、应用:对阻碍的理解: (1)顺口溜“你增我反,你减我同”

电磁感应中杆+导轨模型问题

电磁感应中“杆+导轨”模型问题 例1、相距L=的足够长金属导轨竖直放置,质量m1=1kg 的金属棒ab 和质量m2=的金属棒cd ,均通过棒两端的套环水平地套在金属导轨上,如图1所示,虚线上方磁场的方向垂直纸面向里,虚线下方磁场的方向竖直向下,两处磁场磁感应强度大小相同。ab 棒光滑,cd 棒与导轨间动摩擦因数μ=,两棒总电阻为Ω,导轨电阻不计。ab 棒在方向竖直向上、大小按图2所示规律变化的外力F 作用下,从静止开始沿导轨匀加速运动,同时cd 棒也由静止释放。(g=10m/s2) (1)求ab 棒加速度的大小和磁感应强度B 的大小; (2)已知在2s 内外力F 做了的功,求这一过程中两金属棒产生的总焦耳热; (3)求出cd 棒达到最大速度所需的时间t0,并在图3中定性画出cd 棒所受摩擦力fcd 随时间变化的图线。 解: (1), 所 以 , (2分) 由图2的截距可知, ,, (2分) 由图2的斜率可知, ,, (2 分) (2)

, (2分) , (2分) (3) ,,所以有, ,,(2分) 2分) ( 例2、如图所示,两条光滑的金属导轨相距L =1m,其中MN段平行于PQ段,位于同一水平面内,NN0段与QQ0段平行,位于与水平面成倾角37°的斜面内,且MNN0与PQQ0均在竖直平面内。在水平导轨区域和倾斜导轨区域内分别有垂直于水平面和斜面的匀强磁场B1和B2,且B1=B2=。ab和cd是质量均为m=、电阻均为R=4Ω的两根金属棒,ab置于水平导轨上,cd置于倾斜导轨上,均与导轨垂直且接触良好。从t=0时刻起,ab棒在外力作用下由静止开始沿水平方向向右运动(ab棒始终在水平导轨上运动,且垂直于水平导轨),cd棒受到F=(N)沿斜面向上的力的作用,始终处于静止状态。不计导轨的电阻。(sin37°=)(1)求流过cd棒的电流强度Icd随时间t变化的函数关系; (2)求ab棒在水平导轨上运动的速度vab随时间t变化的函数关系; (3)求从t=0时刻起,内通过ab棒的电荷量q; (4)若t=0时刻起,内作用在ab棒上的外力做功为W=16J,求这段时间内cd棒产生的焦耳热Qcd。

电磁感应知识点总结

电磁感应 1、 磁通量Φ、磁通量变化?Φ、磁通量变化率t ??Φ 对比表 2、 电磁感应现象与电流磁效应的比较 3、 产生感应电动势和感应电流的条件比较

4、 感应电动势 在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。 (1) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就会产生 感应电动势,它相当于一个电源 (2) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感应电动 势,磁通量发生变化的那部分相当于电源。 5、 公式 n E ?Φ =与E=BLvsin θ 的区别与联系 6、 楞次定律 (1) 感应电流方向的判定方法

(2)楞次定律中“阻碍”的含义 (3)对楞次定律中“阻碍”的含义还可以推广为感应电流的效果总是要阻碍产生感应电流的原因 1)阻碍原磁通量的变化或原磁场的变化; 2)阻碍相对运动,可理解为“来拒去留”。 3)使线圈面积有扩大或缩小趋势; 4)阻碍原电流的变化。 7、电磁感应中的图像问题 (1)图像问题 (3)解决这类问题的基本方法 1)明确图像的种类,是B-t图像还是Φ-t图像、或者E-t图像和I-t图像 2)分析电磁感应的具体过程 3)结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律列出函数方程。 4)根据函数方程,进行数学分析,如斜率及其变化,两轴的截距等。 5)画图像或判断图像。 8、自感涡流 (1)通电自感和断电自感比较

(2) 自感电动势和自感系数 1) 自感电动势:t I L E ??=,式中t I ??为电流的变化率,L 为自感系数。 2) 自感系数:自感系数的大小由线圈本身的特性决定,线圈越长,单位长度的匝 数越多,横截面积越大,自感系数越大,若线圈中加有铁芯,自感系数会更大。 (3) 涡流 9、电磁感应中的“棒-----轨”模型

80知识讲解 电磁感应现象 感应电流方向的判断(基础)

物理总复习:电磁感应现象 感应电流方向的判断 【考纲要求】 1、知道磁通量的变化及其求解方法,理解产生感应电流、感应电动势的条件; 2、理解楞次定律的基本含义与拓展形式; 3、理解安培定则、左手定则、右手定则、楞次定律的异同,并能在实际问题中熟练运用。 【知识网络】 【考点梳理】 考点一、磁通量 1、定义: 磁感应强度B 与垂直场方向的面积S 的乘积叫做穿过这个面积的磁通量,BS φ=。如果面积S 与B 不垂直,如图所示,应以B 乘以在垂直于磁场方向上的投影面积S '。即 cos BS φθ'=。 2、磁通量的物理意义: 磁通量指穿过某一面积的磁感线条数。 3、磁通量的单位:Wb 21 1Wb T m =?。 要点诠释: (1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别,这时穿过某面的磁通量指的是不同方向穿过的磁通量的代数和。另外,磁通量与线圈匝数无关。 磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负。穿过某一面积的磁通量一般指合磁通量。 (2)磁通量的变化21φφφ?=-,它可由B 、S 或两者之间的夹角的变化引起。 4、磁通量的变化 要点诠释: (一)、磁通量改变的方式有以下几种 (1)线圈跟磁体间发生相对运动,这种改变方式是S 不变而相当于B 变化。 (2)线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。 (3)线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。其实质也是B 不变,而S 增大或减小。 (4)线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。

电磁感应中的双杆双动导轨滑轨能量动量问题大综合

电磁感应中的“双杆问题” 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。 下面对“双杆”类问题进行分类例析 1.“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 [例5] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。 (1)求作用于每条金属细杆的拉力的大小。 (2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。 解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv 由闭合电路的欧姆定律,回路中的电流强度大小为: 因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。 由以上各式并代入数据得N (2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得Q=1.28× 10-2J。 2.“双杆”同向运动,但一杆加速另一杆减速 当两杆分别沿相同方向运动时,相当于两个电池反向串联。 [例6] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd静止,棒ab有指向棒cd的初速度v0。若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少。 (2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少? 解析:ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流。ab棒受到与运动方向相反的安培力作用作减速运动,cd棒则在安培力作用下作加速运动。在ab棒的速度大于cd棒的速度时,回路总有感应电流,ab棒继续减速,cd棒继续加速。两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v作匀速运动。 (1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有根据能量守恒,整个过程中产生

相关文档
相关文档 最新文档