文档库 最新最全的文档下载
当前位置:文档库 › 三角形的各个心总结与归纳

三角形的各个心总结与归纳

三角形的各个心总结与归纳
三角形的各个心总结与归纳

三角形的四种心

重心:三中线的交点,三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍;垂心:三高的交点;

内心:三内角平分线的交点,是三角形的内切圆的圆心的简称;

外心:三中垂线的交点;

当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心.

一、三角形重心

1、重心到顶点的距离与重心到对边中点的距离之比为2:1。

2、重心和三角形3个顶点组成的3个三角形面积相等

二、三角形垂心的性质

垂心:三高的交点;

锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外

三、三角形内心

1、三角形的三条角平分线交于一点,该点即为三角形的内心.

2、三角形的内心到三边的距离相等,都等于内切圆半径r.

3、(内角平分线分三边长度关系)

⊿ABC中,0为内心,∠A 、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QA=a/b, CP/PA=a/c, BR/RC=c/b.

四、三角形外心

1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.

2、锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心在斜边上,与斜边中点重合.

3、GA=GB=GC=R.

全等三角形知识点总结

全等三角形知识梳理 一、知识网络 ??????????→?????????????? ???对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。 (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; > (4)有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等(即对应元素相等)

3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等(SSS)。 (2)两边和它们的夹角对应相等的两个三角形全等(SAS)。 (3)两角和它们的夹边对应相等的两个三角形全等(ASA)。 , (4)两角和其中一角的对边对应相等的两个三角形全等(AAS)。 (5)斜边和一条直角边对应相等的两个直角三角形全等(HL)。 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。 注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 尺规作图 < (二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等, 因此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找

第十一章三角形知识点归纳

第十一章三角形知识点归纳 考点一:三角形的三边关系 1、三角形两边的和 第三边 2、三角形两边的差 第三边 3、判断三边能组成三角形的方法:最小两数之和大于第三边 4、已知三角形两边的长度为a 和b ,则第三边的取值范围是 两边之差<第三边<两边之和 例:下列长度的三条线段能组成三角形的是( ) A.5,6,10 B.5,6,11 C.3,4,8 D.4,4,8 例:已知三角形的两边分别是7和12,则第三边长得取值范围为( ) 考点二:5、三角形具有 性,四边形具有 性 例:下列图形具有稳定性的是( ) A.正方形 B.矩形 C.平行四边形 D.直角三角形 考点三: 1. 三角形的高 从△ABC 的顶点向它的对边BC 所在的直线画垂线,垂足为D , 那么线段AD 叫做△ABC 的边BC 上的高。 注:三角形面积=底×底边上的高 例:AD 是△ABC 的高,∠ADB=∠ADC= 例:AD 是△ABC 的高,AD=3,BC=5,则△ABC 的面积是 2. 三角形的中线 连接△ABC 的顶点A 和它所对的对边BC 的中点D , 所得的线段AD 叫做△ABC 的边BC 上的中线。 几何语言: AD 是△ABC 的中线 BD=CD=2 1BC 注:三角形的中线可以将三角形分为面积相等的两个小三角形

D 例:AD 是△ABC 的中线 ,BD=3,则CD= ,BC= , 若△ABC 的面积是18,则△ABD 的面积等于 。 3. 三角形的角平分线 ∠A 的平分线与对边BC 交于点D ,那么线段AD 叫做三角形的角平分线。 几何语言: AD 是△ABC 的角平分线 ∴∠BAD=∠CAD=2 1∠BAC 例:AD 是△ABC 的角平分线,∠BAC=70度,则∠BAD= ,∠CAD= 考点四:三角形内角和定理 三角形三个内角的和等于 几何语言:∠A+∠B+∠C= 例:在△ABC 中,∠B=45度,∠C=55度,则∠A= 考点五:三角形的外角 1、定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角。 2. 性质:三角形的一个外角等于与它不相邻的两个内角之和。 几何语言: ∠ACD 是△ABC 的外角 ∴∠ACD=∠A+∠B 例:如图,已知∠ACD=120度,∠B=50度,则∠A= 考点六:n 边形的内角和公式等于 例:计算五边形的内角和是 例:一个多边形的内角和是720度,则这个多边形的边数是 考点七:多边形的外角和等于 例:十二边形的外角和等于 例:正多边形的每个外角的度数都是40度,则这个正多边形的边数是

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

(完整版)数学四年级下三角形知识点总结

三角形 由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。 从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。 三角形具有稳定性 三角形内角和是180° 组成三角形的两个条件: 三角形任意两边之和大于第三边 三角形任意两边之差小于第三边 三角形分类 按角来分 锐角(0°

锐角三角形的三条高(三条虚线) 直角三角形的三条高(一条虚线加两条直角边) 钝角三角形的三条高(三条虚线) 按边分 底 直角边 C B A 直角边C B A C B A 底 边 等边三角形(三条边都相等,每个角都是60°) 等腰三角形(两条边相等,两个底角相等)

※已知三角形两条边各长a、b(a>=b),求第三边长度c的范围 方法:a-b5 能(等边三角形/正三角形) 例:已知三条线段分别是10cm、10cm、20cm,它们能不能组成三角形? 10+10=20 不能 ※多边形内角和问题

平面几何五种模型

平面几何五种模型 等积,鸟头,蝶形,相似,共边 1、等积模型 等底等高的2个三角形面积相等 2个三角形高相等,面积比=底之比 2个三角形底相等,面积比=高之比 夹在一组平行线之间的等积变形(方方模型) 等积模型就是基本应用应就是烂熟于心的 都就是利用面积公式得到的推定比例 如下: 1等底等高的2个平行四边形面积相等 2三角形面积等于它等底等高的平行四边形面积的一半 3 2个平行四边形高相等,面积比=底之比;2个平行四边形底相等,面积比=高之比 2、鸟头模型(共角定理) 鸟头定理:2个三角形中,有一个角相等或互补,这2个三角形叫做共角三角形。共角三角形的面积比等于对应角(相等角或互补角)两夹边的 乘积之比(夹角2边) 鸟头定理的使用要火眼金睛,经常需要自己补一条辅助线同时经过2次以上转换对应才能得到结果。

A B C D E 如图,浅紫色的三角形ADE 跟大三角形ABC 就是公用A 角的,等于浅紫色三角形就是“嵌入”在大三角形ABC 里面,注意,鸟头定理用的就是乘积比!不就是单独的线段比~ 记忆上用夹角2边 最好记,这里等于 对顶角A C E D A E D 互补角A B C D E A B E D 鸟头定理的证明,写出来就是因为很多题目的解题过程,都需要补这么一条辅助线来过度连接2个瞧起来无关的图形。证明的途径其实跟我们日常解题途径重合,所以写出来,仔细瞧。

A 等高,面积比=底之比 S△ABE:S△ABC=AE:AC 等高,面积比=底之比 S△ADE:S△ABE=AD:AB A B C A B E B C D E D E 经由媒介的?ABE,联系了?ADE与大三角形?ABC BE辅助线很重要!鸟头定理就是用等高(等于就是用等积推算而得) 第二种的证明方式将对顶角压回来?ABC内,对顶角性质就是相等的,所以压回来的新?跟?ADE就是全等?,再做一条辅助线就能用共角的方式证明出对角的鸟头定理 互补角的鸟头定理证明 S△ADE=S△AD'E,因为同底等高 AD=AD',高相等,所以面积相等 D' A B D E 写了这几个证明,其实说的目的只有一个:连接小三角形与大三角形过度的那条辅助线,特别重

全等三角形知识点总结

全等三角形知识点总结 经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。以下是全等三角形知识点总结,欢迎阅读。 以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定: (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等三角形。 (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等三角形。 (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等三角形。 (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等三角形。 (hypotenuse -leg) (斜边、直角边):直角三角形中一条斜边和一条直角边都对应相等,该两个三角形就是全等三角形。 不同的定义推理出不同的判定方法,这就是全等三角形的特殊之处。

、基本概念 1、“全等”的理解全等的图形必须满足:形状相同的图形;大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 2、全等三角形的性质 全等三角形对应边相等;全等三角形对应角相等; 3、全等三角形的判定方法 三边对应相等的两个三角形全等。 两角和它们的夹边对应相等的两个三角形全等。 两角和其中一角的对边对应相等的两个三角形全等。 两边和它们的夹角对应相等的两个三角形全等。 斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上灵活运用定理 证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。运用定理证明三角形全等时要注意以下几点。

全等三角形知识点梳理.pdf

第十二章全等三角形 2018.9 杨1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.对应边相等。 2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.对应角相等。 证明三角形全等基本思路: 三角形全等的判定(1) 三边分别相等的两个三角形全等,简写成边边边或SSS. 1.如图,AB=AD,CB=CD,求证:(1)△ABC≌△ADC;(2)∠B=∠D. 证明:(1)连接AC,在△ABC与△ADC中, ∴△ABC≌△ADC(SSS). (2)∵△ABC≌△ADC,∴∠B=∠D. 2.已知在四边形ABCD中,AB=CD,AD=BC,,求证AD//BC A D 做辅助线,连接AC,利用SSS证明全等,得到∠ DAC=∠ACB ,从而证明平行 B C 三角形全等的判定(2) 两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”). 两边和其中一边的对角对应相等的两个三角形不一定全等. 1.如图,将两个一大、一小的等腰直角三角尺拼接(A,B,D三点共线,AB=CB,EB=DB,∠ ABC=∠EBD=90°),连接AE,CD,试确定AE与CD的关系,并证明你的结论. 解:结论:AE=CD,AE⊥CD. 证明:延长AE交CD于F,在△ABE与△CBD中AB=CB, ∠ABE=∠CBD, BE=BD, , ∴△ABE≌△CBD(SAS),∴AE=CD,∠EAB=∠DCB, ∵∠DCB+∠CDB=90°,∴∠EAB+∠CDB=90°, ∴∠AFD=90°,∴AE⊥CD. F

2.在△ABC和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=90°,AE与BD交与点 F (1)求证:△ACE≌△BCD (2)求证:AE⊥BD 1,利用SAS证明全等, AC=BC DC=EC ∠BCD=∠ACE 2,全等得到角相等∠CAE=∠DCB ∠CAB+∠EAB+∠ABC=90° ∠DCB∠EAB+∠ABC=90° 三角形全等的判定(3) 两角和它们的夹边分别对应相等的两个三角形全等,简称角边 角或ASA. 两个角和其中一个角的对边分别相等的两个三角形全等,简称 角角边或AAS. 求证:三角形一边的两端点到这边的中线或中线延长线的距离相等. 如图,AD为△ABC的中线,且CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:BE=CF. 证法1: ∵AD为△ABC的中线,∴BD=CD.∵BE⊥AD,CF⊥AD, ∴∠BED=∠CFD=90°.在△BED与△CFD中∠BED=∠CFD,∠BDE=∠CDF,BD=CD, ∴△BED≌△CFD(AAS),∴BE=CF. 证法2:∵S△ABD=1 2 AD·BE,S△ACD= 1 2 AD·CF, 且S△ABD=S△ACD(等底同高的两个三角形面积相等), ∴1 2 AD·BE= 1 2 AD·CF,∴BE=CF. 三角形全等的判定(4) 斜边和一条直角边分别对应相等的两个直角三角形全等,简称“斜边、直角边”或“HL”. 如图,E,F分别为线段AC上的两点,且DE⊥AC于点E,BF⊥AC于点F,若AB=CD,AE=CF,BD交AC于点M. 求证:BM=DM,ME=MF. 证明:∵AE=CF,∴AE+EF=CF+EF∴AF=CE. 在Rt△ABF与Rt△CDE中AB=CD,AF=CE, ∴Rt△ABF≌Rt△CDE(H L), ∴BF=DE.∵DE⊥AC,BF⊥AC,∴∠DEM=∠BFM=90°. 在△BFM与△DEM中∠BFM=∠DEM,∠BMF=∠DME,BF=DE, ∴△BFM≌△DEM(A AS), ∴BM=DM,ME=MF. 角的平分线的性质 角平分线的性质:角的平分线上的点到角的两边的距离相等. 文字命题的证明方法: a.明确命题中的已知和求证; b.根据题意,画出图形,并用数学符号表示已知和求证; c.经过分析,找出由已知推出要证的结论的途径,写出证明过程.

中考 三角形知识点复习归纳总结

D C B A 中考三角形知识点复习归纳总结 ⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形. 三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. ⒉ 三角形的分类: (1)按边分类: (2)按角分类: ⒊ 三角形的主要线段的定义: (1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD 是△ABC 的BC 上的中线. 2.BD=DC=12 BC. 注意:①三角形的中线是线段; ②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形. 三角形 等腰三角形 不等边三角形 底边和腰不相等的等腰三角形 等边三角形 三角形 直角三象形 斜三角形 锐角三角形 钝角三角形

21D C B A D C B A (2)三角形的角平分线 三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线. 2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段; ②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线. (3)三角形的高 从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:1.AD 是△ABC 的BC 上的高线. 2.AD ⊥BC 于D. 3.∠ADB=∠ADC=90°. 注意:①三角形的高是线段; ②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外; ③三角形三条高所在直线交于一点. ⒋ 在画三角形的三条角平分线,三条中线,三条高时应注意: (1)如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2)如图4,三角形的三条中线交点一点,交点都在三角形内部.

中考数学之平面几何总结经典习题

平面几何知识要点(一) 【线段、角、直线】 1.过两点有且只有一条直线。 2.两点之间线段最短。 3.过一点有且只有一条直线和已知直线垂直。 4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。 垂直平分线,简称“中垂线”。 定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的 垂直平分线(中垂线)。 线段的垂直平分线可看作和线段两端点距离相等的所有点的

集合。 中垂线性质:垂直平分线垂直且平分其所在线段。 垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。 逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分 线上。 .三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶 点的距离相等。 角 1.同角或等角的余角相等。

2.同角或等角的补角相等。 3.对顶角相等。 角的平分线性质 角的平分线是到角的两边距离相等的所有点的集合 定理1:角的平分线上的点到这个角的两边的距离相等。 定理2:到一个角的两边距离相等的点,在这个角的平分线上。 三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。 【平行线】 平行线性质1:两直线平行,同位角相等。 平行线性质2:两直线平行,内错角相等。

平行线性质3:两直线平行,同旁内角互补。 平行线判定1:同位角相等,两直线平行。 平行线判定2:内错角相等,两直线平行。 平行线判定3:同旁内角互补,两直线平行。 平行线判定4:如果两条直线都和第三条直线平行,这两条直线也互相平行。 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段 成比例。

初二数学上全等三角形知识点总结汇编

全等三角形 知识梳理 一、知识网络 ???? ?? ????→??????? ?? ?? ???? ? ?对应角相等 性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。 (2)两角和它们的夹边对应相等的两个三角形全等。 (3)两角和其中一角的对边对应相等的两个三角形全等。 (4)两边和它们的夹角对应相等的两个三角形全等。 (5)斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上

(二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等, 因此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找 ①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS) 证明两三角形全等或利用它证明线段或角的相等的基本方法步骤: 1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系); 2.回顾三角形判定公理,搞清还需要什么; 3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。 常见考法 (1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等; (2)利用判定公理来证明两个三角形全等; (3)题目开放性问题,补全条件,使两个三角形全等。 误区提醒 (1)忽略题目中的隐含条件;

(完整版)初中数学全等三角形的知识点梳理

《全等三角形》 一、结构梳理 二、知识梳理 (一)概念梳理 1.全等图形 定义:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同.例如图1中的两个图形形状相同,但大小不同,不能重合在一起,因此不是全等图形,图2中的两个图形面积相同,但形状不同,也不是全等图形. 2.全等三角形 这是学好全等三角形的基础.根据全等形定义:能够完全重合的两个三角形叫全等三角形.完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等.符号“≌”也形象、直观地反映了这一点.“∽”表示图形形状相同,“=”表示图形大小相等. (二)性质与判定梳理 1.全等图形性质:全等多边形的对应边、对应角分别相等. 全等三角形的对应边、对应角分别相等. 2.全等三角形的判定 这是学好全等三角形的关键.只给定一个条件或两个条件画三角形时,都不能保证所画出的三角形全等,只要有三个条件对应相等就可以,于是判定两个三角形全等的方法有: (1)三边对应相等的两个三角形全等,简记为:SSS ; (2)两角和它们的夹边对应相等的两个三角形全等,简记为:ASA; (3)两角和其中一角的对边对应相等的两个三角形全等,简记为:AAS; (4)两边和它们的夹角对应相等的两个三角形全等,简记为:SAS. 若是直角三角形,则还有斜边、直角边公理(HL)。由此可以看出,判断三角形全等,无论用哪一条件,都要有三个元素对应相等,且其中至少要有一对应边相等. (5)注意判定三角形全等的基本思路 从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有 图 2

三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边(角)去迅速准确地确定要补充的边(角),不致盲目地而能有目标地完善三角形全等的条件.从而得到判定两个三角形全等的思路有: ?? ???→→SSS SAS 找另一边找夹角 ??? ?????????→→→→→SAS AAS ASA AAS 找该角的另一边找这条边上的对角找这条边上的另一角边就是角的一条边 找任一角边为角的对边 ???→→AAS ASA 找任一边找两角的夹边 (6)学会辨认全等三角形的对应元素 辨认全等三角形的对应元素最有效的方法是,先找出全等三角形的对应顶点,再确定对应角和对应边,如已知△ABC ≌EFD ,这种记法意味着A 与E 、B 与F 、C 与D 对应,则三角形的边AB 与EF 、BC 与FD 、AC 与ED 对应,对应边所夹的角就是对应角,此外,还有如下规律:(1)全等三角形的公共边是对应边,公共角是对应角,对顶角是对应角;(2)全等三角形的两个对应角所夹的边是对应边,两条对应边所夹的角是对应角. (三)基本图形梳理 注意组成全等三角形的基本图形,全等图形都是由图形的平移、旋转、轴对称等图形变换而得到的,所以全等三角形的基本图形大致有以下几种: 1.平移型 如图3,下面几种图形属于平移型: 它们可看成有对应边在一直线上移动所构成的,故该对应边 的相等关系一般可由同一直线上的线段和或差而得到. 2 .对称型 如图 4,下面几种图形属于对称型: 它们的特征是可沿某一直线对折,直线两旁的部分能完全重合(轴对称图形),重合的顶点就是全等三角形的对应顶点. 3.旋转型 如图5,下面几种图形属于旋转型: 它们可看成是以三角形的某一顶点为中心旋转 所构成的,故一般有一对相等的角隐含在 对顶角、某些角的和 或差中. 三、易混、易错点剖析 1.探索两个三角形全等时,要注意两个特例 (1两个三角形不一定全等;如图6(1已知两边 已知一边一角 已知两角 图3 图4 图6(1)

有关三角形知识点总结

有关三角形知识点总结

————————————————————————————————作者:————————————————————————————————日期:

三角形知识点汇总 1、三角形 一、三角形三边的关系 1、三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边。(判断三条线段能否组成三角形的依据) 2、已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b 3、给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长(提示:一定要记得分类讨论) 方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。 二、三角形的高、中线、角平分线 1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角 形的高.(90°角和互余关系) 锐角三角形锐角三角形的三条高都在三角形的内部,三条高的交点也在三角形内部. 直角三角形直角三角形的三条高交于直角顶点. 钝角三角形钝角三角形有两条高落在三角形外部,一条在三角形内部,三条高所在直线交于三角形外一点。

2 、三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.三角形的三 条中线交于一点,这一点叫做“三角形的重心”。 三角形的中线可以将三角形分为面积相等的两个小三角形。 3、三角形的角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. 三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。 要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。 4、方法利用:求三角形中未知的高或者底边的长度,可利用“等积法”将三角形的面积用两种方式表达,求其中未知的高或者底边的长度 三、三角形具有稳定性 1. 三角形具有稳定性 2. 四边形及多边形不具有稳定性 要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。 四、与三角形有关的角 1. 三角形的内角和定理:三角形的内角和为180°,与三角形的形状无关。

初中平面几何知识点汇总(一)

平面几何知识点汇总(一) 知识点一相交线和平行线 1.定理与性质 对顶角的性质:对顶角相等。 2.垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4.平行线的性质: 性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 5.平行线的判定: 判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。 知识点二三角形 一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形中的三种重要线段 (1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. (2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. (3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.

二、三角形三边关系定理 ①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b. ②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c, c>b-a. 注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可 三、三角形的稳定性 三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理. 四、三角形的内角 结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180° 结论2:在直角三角形中,两个锐角互余. 注意:①在三角形中,已知两个内角可以求出第三个内角 如:在△ABC中,∠C=180°-(∠A+∠B) ②在三角形中,已知三个内角和的比或它们之间的关系,求各内角. 如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数. 五、三角形的外角 1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角. 2.性质: ①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. ③三角形的一个外角与与之相邻的内角互补 六、多边形 ①多边形的对角线 2)3 ( n n条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°

全等三角形知识点总结及复习.docx

全等三角形知识点总结及复习 、知识网络 ?对应角相等 对应边相等 I r 作图 角平分线性质与判定定理 、基础知识梳理 (一)、基本概念 1、全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。 同样我们把能够完全重合的两个三角形叫做全等三角形。 全等三角形定义:能够完全重合的两个 三角形称为全等三角形。(注:全等三角形是相似三角形中 的特殊情况) 当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合 的角叫做对应角。 由此,可以得出:全等三角形的对应边相等,对应角相等。 (1) 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2) 全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3) 有公共边的,公共边一定是对应边; (4) 有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法 (1) 三边对应相等的两个三角形全等。 (2) 两角和它们的夹边对应相等的两个三角形全等。 (3) 两角和其中一角的对边对应相等的两个三角形全等。 (4) 两边和它们的夹角对应相等的两个三角形全等。 '边 边 边 角形J 边 角 边 判定J 角 边 角 角 角 边 斜 边 、 全等形、全等三 SSS SAS ASA AAS 直角边 HL

(5)斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条 件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA )②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找 ①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS) (三)经典例题 例1.已知:如图所示,AB=AC , 一一一「二亠 ~ ■■ ■■,求证l?''1'. 例2.如图所示,已知:AF=AE,AC=AD,CF与DE交于点B。求证:I-二AL二 例3 .如图所示,AC=BD,AB=DC ,求证:二匸厶

全等三角形知识点总结

全等三角形 一、知识框架: 二、知识概念: 1.基本定义: ⑴全等形:能够完全重合的两个图形叫做全等形. ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. (注意对应的顶点写在对应的位置上) ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。 两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,一个三角形经过平移、翻折、旋转可以得到它的全等形。 2、全等三角形的性质和表示 性质: (1):全等三角形的对应边相等、对应角相等。 (2):全等三角形的周长相等、面积相等。 (3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。 表示: 全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC 全等于三角形DEF”。 注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3.全等三角形的判定定理:

⑴边边边(SSS):三边对应相等的两个三角形全等. ⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等. (只适用于两个直角三角形) 4、学习全等三角形应注意以下几个问题: (1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义; (2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”5、全等变换 只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。 (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。 6.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题). 7.角平分线: ⑴画法:(课本48页,必须要掌握) ⑵性质定理:角平分线上的点到角的两边的距离相等. (在做题时,只要满足条件就可以直接运用定理) ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 7.证明命题基本方法: ⑴明确命题中的已知和求(包括隐含条件,如公共边、公共角、对顶角、角平 分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证. ⑶经过分析,找出由已知推出求证的途径,写出证明过程.

平面几何定理及公式

平面几何定理及公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理n边形的内角的和等于(n-2)×180° 51推论任意多边的外角和等于360°

苏教版全等三角形知识点总结习题单元测试题

第一章 三角形全等 1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。 理解:①全等三角形形状与大小完全相等,与位置无关; ②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等..; ③三角形全等不因位置发生变化而改变。 2、全等三角形的性质: ⑴全等三角形的对应边相等、对应角相等。 理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角; ②对应角的对边为对应边,对应边对的角为对应角。 ⑵全等三角形的周长相等、面积相等。 ⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。 3、全等三角形的判定: ①边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等。 ②角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等。 ③推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等。 ④边边边公理(SSS) 有三边对应相等的两个三角形全等。 ⑤斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等。 4、证明两个三角形全等的基本思路: ⑴已知两边:①找第三边(SSS );②找夹角(SAS );③找是否有直角(HL ). ⑵已知一边一角:①找一角(AAS 或ASA );②找夹边(SAS ). ⑶已知两角:①找夹边(ASA );②找其它边(AAS ). 例题评析 例1 已知:如图,点D 、E 在BC 上,且BD=CE ,AD=AE , 求证:AB=AC . 例2 已知:如图,A 、C 、F 、D 在同一直线上,AF =D C ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF . A D E

相关文档
相关文档 最新文档