文档库 最新最全的文档下载
当前位置:文档库 › 盐析法快速分离鸡蛋清卵白蛋白的初步研究

盐析法快速分离鸡蛋清卵白蛋白的初步研究

盐析法快速分离鸡蛋清卵白蛋白的初步研究
盐析法快速分离鸡蛋清卵白蛋白的初步研究

盐析法快速分离鸡蛋清卵白蛋白

2

摘要:鸡蛋清原液用pH 9.0的Tris-HCl缓冲液稀释5倍,4℃下静置至少6 h,采用30%~80%不同饱和度的硫酸铵分离卵白蛋白,采用Bradford法测定盐析后蛋白含量,SDS-PAGE检测其纯度,结果表明,60%饱和度的硫酸铵分离鸡蛋清卵白蛋白效果较好。

关键词:盐析法;鸡蛋清;卵白蛋白

鸡蛋中含有丰富的生命必需元素,营养价值较高。随着对鸡蛋生理生化活性研究的不断深入,对鸡蛋的利用逐渐超越简单的初加工阶段,趋向于开发具有较高附加值的生理活性物质[1-2]。蛋清是一种以水为分散介质,以蛋白质为分散相的典型胶体物质,鸡蛋清中的蛋白质含量约为总量的11%,除不溶性的卵黏蛋白外,均为可溶性蛋白质。卵白蛋白、卵铁传递蛋白和溶菌酶是其中3种主要的生物活性蛋白质。

卵白蛋白是蛋清中主要的活性蛋白,约占蛋清蛋白质含量的54%。卵白蛋白具有许多功能特性[3],例如,卵白蛋白对胰蛋白酶有强烈抑制作用,能部分抑制枯草杆菌蛋白酶活性[4];Fujita用胃蛋白酶水解卵白蛋白,并用RP-HPLC分离出具有血管舒张活性的物质OA358-365[5];Davalos和Xu等研究发现,卵白蛋白酶降解物具有强抗氧化活性的多肽[6-7]。卵白蛋白是生物化学中一种重要的参考蛋白质,包含所有的必需氨基酸,而且比例合理。高度纯化和结晶的卵白蛋白可以作为载体、稳定剂、封阻剂或标准物等,也可作为营养添加剂应用于食品工业。虽然许多学者对卵白蛋白进行了大量研究,但对其生物学特性和功能的了解仍不够全面,本文采用硫酸铵盐析的方法,对鸡蛋清中的卵白蛋白进行了快速初步分离,为其进一步开发利用提供理论依据。

1 材料与方法

1.1 材料

新鲜鸡蛋,购自超市;卵白蛋白标准品,Sigma公司;硫酸铵分析纯,购自天津市风船化学试剂科技有限公司;透析袋,Amersham Bioscicnccs(SF)Corp。

1.2 试验方法

1.2.1 鸡蛋清原液的制备

取新鲜鸡蛋,用双层灭菌纱布过滤得到水样成分,充分搅拌30 min(搅拌剧烈程度以不起泡沫为准)。为了降低鸡蛋清粘度以利于后续试验,取5 mL鸡蛋清用pH 9.0的Tris-HCl缓冲液(50 mL 0.1M Tris-base 溶液与5.7 mL 0.1M HCl溶液混匀后,冷却到室温,加水定容到100 mL)进行5倍稀释,4℃下静置至少6 h。

1.2.2 鸡蛋清卵白蛋白盐析法分离

将静置蛋清4℃、10000 rpm离心10 min,取上清液,缓慢多次加入烘干研磨成粉末的硫酸铵,磁力搅拌,使加入粉末溶解,并参考硫酸铵溶液饱和度计算表,使其饱和度分别达到30%、40%、50%、60%、70%和80%。4℃静置过夜,于4℃、12000rpm离心10 min,不同饱和度离心所得沉淀均用pH 9.0的Tris-HCl 缓冲液溶解,并在4℃、0.05 M的Tris-HCl缓冲液中进行透析。期间更换透析液2~4次,透析过夜。

1.2.3 蛋白质检测

蛋清盐析蛋白质含量采用Bradford法测定[8-9]:考马斯亮蓝G-250在游离状态下呈红色,与蛋白质结合则呈现蓝色,蛋白与考马斯亮蓝反应后,溶液在分光光度计波长595 nm处吸光度与蛋白质含量成正比。用BSA蛋白标准液在波长595 nm处测得的吸光值绘制标准曲线(见表1),不同饱和度盐析得到的蛋白样品在595 nm波长测得的吸光值,通过标准曲线得到蛋白含量。采用SDS-PAGE检测盐析后卵白蛋白的纯度。

表1 标准曲线配比表

处理序号0.01%BSA标准液

(μL)

蒸馏水(μL)

考马斯亮蓝

(μL)

蛋白质含量

(μg/mL)

1 0 200 1000 0

2 40 160 1000 20

3 80 120 1000 40

4 120 80 1000 60

5 160 40 1000 80

6 200 0 1000 100

2 结果与分析

2.1 蛋白含量检测

根据不同浓度BSA蛋白标准液在波长595 nm处测得的吸光度(表2)绘制标准曲线(图1)。由表2可知,30%硫酸铵饱和度盐析能沉淀较多的杂蛋白,经60%饱和度硫酸铵盐析后蛋白质的SDS-PAGE电泳条带与卵白蛋白标准品一致,70%和80%饱和度硫酸铵盐析能沉淀较多的目的蛋白,但杂蛋白较多,需要进一步纯化。

图2 蛋白质含量标准曲线

表2 样品中蛋白质含量

硫酸铵饱和度(%)蛋白量含量(μg)回收率(%)

30 2818.8 9.36

40 4472 14.86

50 1721 5.71

60 5424 18.02

70 13310 44.22

80 4468.8 14.85

总蛋白30110 - - -

2.2 卵白蛋白的分离

SDS-PAGE检测盐析后卵白蛋白的纯度,由图1可见,30%硫酸铵饱和度进行盐析,能从蛋清中沉淀出较多的杂蛋白,经60%饱和度硫酸铵盐析后蛋白质的电泳条带与卵白蛋白标准品一致,70%和80%饱和度硫酸铵盐析能沉淀较多的目的蛋白。

图1 不同饱和度硫酸铵盐析形成的蛋白质SDS-PAGE电泳

(1-卵白蛋白标准品;2-卵转铁蛋白标准品;3-溶菌酶标准品;4、5、6、7、8、9-分别为30%、40%、

50%、60%、70%和80%盐析稀释10x蛋白样品;M-蛋白Marker)

3 小结与讨论

盐析是蛋白质粗分离常用的方法,具有处理量大、成本低、操作简便、对蛋白质生物活性有稳定作用等优点。在促进蛋白质沉淀时,所用硫酸铵的浓度要比氯化钠或氯化钾浓度低,因此,常选用硫酸铵盐对蛋清进行盐析[8]。硫酸铵先行制备成硫酸铵溶液,可以较好的与鸡蛋清稀释液充分混匀,不易引起局部硫酸铵浓度过高而使蛋白沉淀。由于本试验盐析硫酸铵所要达到的饱和度较高,硫酸铵溶液使得溶液体积增加过大,不便后续离心,因此,选用硫酸铵粉末进行盐析试验。另外,分级硫酸铵盐析所得蛋白中各种蛋白pI值不同,透析时要根据蛋白透析情况对透析用的Tris-HCl缓冲液的pH值进行调节。

鸡蛋清中的卵白蛋白具有良好的加工性能及生物学特性,广泛应用于食品加工业及相关科学研究。本文以鸡蛋清为原料,使用Tris-HCl缓冲液进行稀释,降低鸡蛋清粘度,增加可溶性蛋白质的溶出和提取率,以利于后续试验。采用60%硫酸铵进行盐析的方法获得卵白蛋白的粗提物,回收率达到18.02%,SDS-PAGE 显示卵白蛋白为主要条带,可有效分离鸡蛋中卵白蛋白,操作过程简单、快捷、成本低。综合考虑卵白蛋白纯度和提取率,可采用60%饱和度的硫酸铵盐析分离卵白蛋白。

参考文献

[1]Stadelman W.鸡蛋的新用途[J].国外畜牧科技,1999,26(6): 41-42.

[2]吴定,路挂红.蛋壳和蛋清的综合利用[J].农牧产品开发,1996(5): 33-35.

[3] Mine Y,Noutomi T,Haga N. Emulsifying and structural properties of ovalbumin [J]. Journal of Agricultural and Food Chemistry,1991,39: 443-446.

[4]方林求,薛静.鸡卵清蛋白对蛋白酶抑制作用的研究[J].中国生化药物杂志,1995,16(6): 262-265.

[5] Fujita H,Usui H,Kurahashi K,et al. Isolation and characterization of ovokinin,a bradykinin B1 agonist peptide derived from ovalbumin[J]. Peptides,1995,16(5): 785-790.

[6] Davalos A,Miguel M,Bartolome B,et al. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis[J]. Journal of Food Protection,2004,67(9): 1939-1944.

[7] Mingsheng Xu,Xinchen Shangguan,Wenjun Wang,et al. Antioxidative activity of hen egg ovalbumin hydrolysates[J]. Asia Pac J Clic Nutr,2007,16(1): 178-182.

[8]宋宏新,李敏康.现代生物化学实验技术教程[M].西安:陕西人民出版社,2002.

[9]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000.

[10]马美湖.禽蛋制品生产技术[M].北京:中国轻工业出版社,2003.

Preliminary study on the rapid separation of ovalbumin with salt fractionation from egg white

Fu Bing1,Ji Xiuling2,Yu Huiying2,Wei Yunlin21

蛋白质的盐析与透析

蛋白质的盐析与透析 一、实验目的 1.了解蛋白质的分离纯化方法 2.掌握蛋白质的盐析及透析方法 二、实验原理 在蛋白质溶液中加入一定浓度的中性盐,蛋白质即从溶液中沉淀析出,这种作用称为盐析。盐析法常用的盐类有硫酸铵、硫酸钠等。 蛋白质用盐析法沉淀分离后,需脱盐才能获得纯品,脱盐最常用的方法为透析法。蛋白质在溶液中因其胶体质点直径较大,不能透过半透膜,而无机盐及其它低分子物质可以透过,故利用透析法可以把经盐析法所得的蛋白质提纯,即把蛋白质溶液装入透析袋内,将袋口用线扎紧,然后把它放进蒸馏水或缓冲液中,蛋白质分子量大,不能透过透析袋而被保留在袋内,通过不断更换袋外蒸馏水或缓冲液,直至袋内盐分透析完为止。透析常需较长时间,宜在低温下进行。 三、实验材料和试剂 10%鸡蛋白溶液,含鸡蛋清的氯化钠蛋白溶液,饱和硫酸铵溶液,硫酸铵晶体,1%硝酸银溶液。 四、实验步骤 (一)蛋白质盐析 取10%鸡蛋白溶液5ml于试管中,加入等量饱和硫酸铵溶液,微微摇动试管,使溶液混合后静置数分钟,蛋白即析出,如无沉淀可再加少许饱和硫酸铵溶液,观察蛋白质的析出; 取少量沉淀混合物,加水稀释,观察沉淀是否会再溶解。 (二)蛋白质的透析 注入含鸡蛋清的氯化钠蛋白溶液5ml于透析袋中,将袋的开口端用线扎紧,然后悬挂在盛有蒸馏水的烧杯中,使其开口端位于水面之上。 经过10分钟后,自烧杯中取出1ml溶液于试管中,加1%硝酸银溶液一滴,如有白色氯化银沉淀生成,即证明蒸馏水中有Cl-存在。 再自烧杯中取出1ml溶液于另一试管中,加入1ml 10%的氢氧化钠溶液,然后滴加1-2滴1%的硫酸铜溶液,观察有无蓝紫色出现。 每隔20分钟更换蒸馏水一次,经过数小时,则可观察到透析袋内出现轻微混浊,此即为蛋白质沉淀。继续透析至蒸馏水中不再生成氯化银沉淀为止。 实验报告记录透析完毕所需的时间。 附:胶棉半透膜的制备 市售5%的胶棉液,加入干燥的150mL锥形瓶中,将锥形瓶横斜不断转动,使瓶的内壁和瓶口都均匀沾有胶棉液。倒出多余的胶棉液,然后倒置约1min使乙醚、乙醇不断蒸发,直到干燥。逐步剥离瓶口的薄膜,沿瓶壁薄膜夹缝注入蒸馏水,使薄膜逐步跟瓶壁胶离,轻轻取出,浸入蒸馏水中备用。 如有侵权请联系告知删除,感谢你们的配合!

盐析法快速分离鸡蛋清卵白蛋白的初步研究

盐析法快速分离鸡蛋清卵白蛋白 2 摘要:鸡蛋清原液用pH 9.0的Tris-HCl缓冲液稀释5倍,4℃下静置至少6 h,采用30%~80%不同饱和度的硫酸铵分离卵白蛋白,采用Bradford法测定盐析后蛋白含量,SDS-PAGE检测其纯度,结果表明,60%饱和度的硫酸铵分离鸡蛋清卵白蛋白效果较好。 关键词:盐析法;鸡蛋清;卵白蛋白 鸡蛋中含有丰富的生命必需元素,营养价值较高。随着对鸡蛋生理生化活性研究的不断深入,对鸡蛋的利用逐渐超越简单的初加工阶段,趋向于开发具有较高附加值的生理活性物质[1-2]。蛋清是一种以水为分散介质,以蛋白质为分散相的典型胶体物质,鸡蛋清中的蛋白质含量约为总量的11%,除不溶性的卵黏蛋白外,均为可溶性蛋白质。卵白蛋白、卵铁传递蛋白和溶菌酶是其中3种主要的生物活性蛋白质。 卵白蛋白是蛋清中主要的活性蛋白,约占蛋清蛋白质含量的54%。卵白蛋白具有许多功能特性[3],例如,卵白蛋白对胰蛋白酶有强烈抑制作用,能部分抑制枯草杆菌蛋白酶活性[4];Fujita用胃蛋白酶水解卵白蛋白,并用RP-HPLC分离出具有血管舒张活性的物质OA358-365[5];Davalos和Xu等研究发现,卵白蛋白酶降解物具有强抗氧化活性的多肽[6-7]。卵白蛋白是生物化学中一种重要的参考蛋白质,包含所有的必需氨基酸,而且比例合理。高度纯化和结晶的卵白蛋白可以作为载体、稳定剂、封阻剂或标准物等,也可作为营养添加剂应用于食品工业。虽然许多学者对卵白蛋白进行了大量研究,但对其生物学特性和功能的了解仍不够全面,本文采用硫酸铵盐析的方法,对鸡蛋清中的卵白蛋白进行了快速初步分离,为其进一步开发利用提供理论依据。 1 材料与方法 1.1 材料 新鲜鸡蛋,购自超市;卵白蛋白标准品,Sigma公司;硫酸铵分析纯,购自天津市风船化学试剂科技有限公司;透析袋,Amersham Bioscicnccs(SF)Corp。 1.2 试验方法 1.2.1 鸡蛋清原液的制备 取新鲜鸡蛋,用双层灭菌纱布过滤得到水样成分,充分搅拌30 min(搅拌剧烈程度以不起泡沫为准)。为了降低鸡蛋清粘度以利于后续试验,取5 mL鸡蛋清用pH 9.0的Tris-HCl缓冲液(50 mL 0.1M Tris-base 溶液与5.7 mL 0.1M HCl溶液混匀后,冷却到室温,加水定容到100 mL)进行5倍稀释,4℃下静置至少6 h。 1.2.2 鸡蛋清卵白蛋白盐析法分离 将静置蛋清4℃、10000 rpm离心10 min,取上清液,缓慢多次加入烘干研磨成粉末的硫酸铵,磁力搅拌,使加入粉末溶解,并参考硫酸铵溶液饱和度计算表,使其饱和度分别达到30%、40%、50%、60%、70%和80%。4℃静置过夜,于4℃、12000rpm离心10 min,不同饱和度离心所得沉淀均用pH 9.0的Tris-HCl 缓冲液溶解,并在4℃、0.05 M的Tris-HCl缓冲液中进行透析。期间更换透析液2~4次,透析过夜。 1.2.3 蛋白质检测 蛋清盐析蛋白质含量采用Bradford法测定[8-9]:考马斯亮蓝G-250在游离状态下呈红色,与蛋白质结合则呈现蓝色,蛋白与考马斯亮蓝反应后,溶液在分光光度计波长595 nm处吸光度与蛋白质含量成正比。用BSA蛋白标准液在波长595 nm处测得的吸光值绘制标准曲线(见表1),不同饱和度盐析得到的蛋白样品在595 nm波长测得的吸光值,通过标准曲线得到蛋白含量。采用SDS-PAGE检测盐析后卵白蛋白的纯度。 表1 标准曲线配比表 处理序号0.01%BSA标准液 (μL) 蒸馏水(μL) 考马斯亮蓝 (μL) 蛋白质含量 (μg/mL) 1 0 200 1000 0 2 40 160 1000 20 3 80 120 1000 40 4 120 80 1000 60 5 160 40 1000 80

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

蛋白质的分离纯化--有机溶剂分离纯化法

蛋白质的分离纯化--有机溶剂分离纯化法 文章出处:朱敏 蛋白质的分离纯化--有机溶剂分离纯化法 有机溶剂能降低溶液的介电常数,从而增加蛋白质分子上不同电荷的引力,导致溶解度降低。有机溶剂与水作用能破坏蛋白质的水化膜,使蛋白质在一定浓度的有机溶剂中沉淀析出。常用的有机溶剂是乙醇和丙酮,由于有机溶剂的加入易引起变性失活,尤其乙醇和水混合释放热量,操作一般宜在低温下进行,且在加入有机溶剂时注意搅拌均匀以免局部浓度过大。用此法所析出的沉淀一般比盐析法易过滤或离心沉降。分离后的蛋白质沉淀应立即用水或缓冲液溶解,以降低有机溶剂的浓度。操作时的pH值大多数控制在待沉淀蛋白质等电点附近。有机溶剂在中性盐存在时能增加蛋白质的溶解度,减少变性和提高分离的效果。一般在有机溶剂沉淀时添加中性盐的浓度在0.05mol左右,过多不仅耗费有机溶剂,而且可能导致沉淀不好.沉淀的条件一经确定,就必须严格控制,才能得到重复性结果.有机溶剂浓度通常以有机溶剂和水容积比或用百分浓度素示.故操作条件比盐析法严格。 许多有机溶剂,如碳链较长的醇,它溶于水,但有限度。其量大到一定程度后则分成两相,一相以水为主,一相以有机溶剂为主。某些第3组分的存在可以改变两相的比例和组成。有许多蛋白质在两相中均能溶解,形成分配。在同一个两相的溶剂系统中,不同的蛋白质有不同的分配系数。根据这一原理,操作全部机械化的有逆流分溶。因要求实验室温度恒定且操作也繁杂,虽一直有人在用但很不普遍。分配层析也是应用这一原理,但在分离纯化蛋白质工作中用得不多,主要是因为多数蛋白质在有机溶剂中,特别是在易与水分相的溶剂中溶解度小且易变性。 疏水层析是近年发展的新方法。它利用蛋白质表面有一部分疏水性,与带有疏水性的载体在高盐浓度时结合。洗脱时将盐浓度逐渐降低,蛋白质因疏水性不同而逐个地先后被洗脱而纯化。此法能分离其它一些方法不易纯化的蛋白质。 利用分子形状和大小不同的分离方法 蛋白质形状有细长的如纤维,有密实的如圆球,形状很不相同。蛋白质的分子量从6000左右开始,有各种大小,大的可以大到几百万。利用这些差别,有几种方法可用来分离蛋白质。 凝胶层析 属最常用的蛋白质分离方法。系混合物随流动相流经装有凝胶作为固定相的层析柱时,混合物中各物质因分子大小不同而被分离的技术。所指凝胶从广义上说是一类具有三维空间多孔网状结构的物质,如天然物质中的马铃薯淀粉及琼脂糖凝胶,人工合成品的葡聚糖凝胶及带离子交换基团的葡聚糖凝胶等。把适当的凝胶颗粒装填到玻璃管中制成层析柱,于柱内加入欲分离的混合物,然后用大量蒸镏水或其它稀溶液洗柱,由于混合物中各物质的分子大小和形状不同,在洗柱过程中,分子量最大的物质不能进入凝胶网孔而沿凝胶颗粒间的空隙最先流出柱外。分子量最小的物质因能进入凝胶网孔而受阻滞,流速缓慢,致使最后流出柱外。整个过程和过滤相似,故又名凝胶过滤、凝胶渗透过滤、分子筛过滤等。由于物质在分离过程中的阻滞减速现象,有人也称之为阻滞扩散层析、排阻层析等。

蛋白质的盐析与透析

蛋白质的分离纯化 一、实验目的 1.了解蛋白质的分离纯化方法 2.掌握蛋白质的盐析及透析方法 二、实验原理 在蛋白质溶液中加入一定浓度的中性盐,蛋白质即从溶液中沉淀析出,这种作用称为盐析。盐析法常用的盐类有硫酸铵、硫酸钠等。 蛋白质用盐析法沉淀分离后,需脱盐才能获得纯品,脱盐最常用的方法为透析法。蛋白质在溶液中因其胶体质点直径较大,不能透过半透膜,而无机盐及其它低分子物质可以透过,故利用透析法可以把经盐析法所得的蛋白质提纯,即把蛋白质溶液装入透析袋内,将袋口用线扎紧,然后把它放进蒸馏水或缓冲液中,蛋白质分子量大,不能透过透析袋而被保留在袋内,通过不断更换袋外蒸馏水或缓冲液,直至袋内盐分透析完为止。透析常需较长时间,宜在低温下进行。 三、实验材料和试剂 10%鸡蛋白溶液,含鸡蛋清的氯化钠蛋白溶液,饱和硫酸铵溶液,硫酸铵晶体,1%硝酸银溶液,双缩脲试剂 四、实验步骤 (一)蛋白质盐析 取10%鸡蛋白溶液5ml于试管中,加入等量饱和硫酸铵溶液,微微摇动试管,使溶液混合后静置数分钟,蛋白即析出,如无沉淀可再加少许饱和硫酸铵溶液,观察蛋白质的析出; 取少量沉淀混合物,加水稀释,观察沉淀是否会再溶解。 (二)蛋白质的透析 注入含鸡蛋清的氯化钠蛋白溶液5ml于透析袋中,将袋的开口端用线扎紧,然后悬挂在盛有蒸馏水的烧杯中,使其开口端位于水面之上。 经过10分钟后,自烧杯中取出1ml溶液于试管中,加1%硝酸银溶液一滴,如有白色氯化银沉淀生成,即证明蒸馏水中有Cl-存在。 再自烧杯中取出1ml溶液于另一试管中,加入1ml 10%的氢氧化钠溶液,然后滴加1-2滴1%的硫酸铜溶液,观察有无蓝紫色出现。 每隔20分钟更换蒸馏水一次,经过数小时,则可观察到透析袋内出现轻微混浊,此即为蛋白质沉淀。继续透析至蒸馏水中不再生成氯化银沉淀为止。 实验报告记录透析完毕所需的时间。

人卵清蛋白特异性IgE(OVA sIgE)酶联免疫分析试剂盒使用说明

人卵清蛋白特异性IgE(OVA sIgE)酶联免疫分析 试剂盒使用说明书 本试剂盒仅供研究使用 特异性:本试剂盒可同时检测人OVA sIgE,且与其他抗体无交叉反应。 有效期:6个月 预期应用:ELISA法半定量测定人血清、血浆或其它相关生物液体中OVA sIgE含量。 说明 1.试剂盒保存:-20℃(较长时间不用时);2-8℃(频繁使用时)。 2.浓洗涤液低温保存会有盐析出,稀释时可在水浴中加温助溶。 3.中、英文说明书可能会有不一致之处,请以英文说明书为准。 4.刚开启的酶联板孔中可能会含有少许水样物质,此为正常现象,不会对实验结果造成任何影响。 实验原理 用OVA包被酶标板,制成固相载体。向微孔中先加入待测样品进行反应,然后再加入辣根过氧化物酶标记抗人IgE抗体进行反应,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的OVA sIgE呈正相关。用酶标仪在450nm波长下测定吸光度(OD值),计算样品中OVA sIgE的效价(抗血清最终能显色的最高稀释倍数记为效价)。试剂盒组成及试剂配制 1.酶联板(Assay plate):一块(96孔)。 2.样品稀释液(Sample Diluent):1×20ml/瓶。 3.辣根过氧化物酶标记抗小鼠IgE抗体稀释液(HRP-anti-guinea IgE Diluent):1×10ml/瓶。 4.辣根过氧化物酶标记抗小鼠IgE抗体(HRP-anti-guinea IgE):1×120μl/瓶(1:100)。 5.底物溶液(TMB Substrate):1×10ml/瓶。 6.浓洗涤液(Wash Buffer):1×20ml/瓶,使用时每瓶用蒸馏水稀释25倍。 7.终止液(Stop Solution):1×10ml/瓶(2N H2SO4)。

兔(Rabbit)卵清蛋白特异性IgG(OVA-sIgG)-NEWA

上海笃玛生物科技有限公司 本试剂盒只能用于科学研究,不得用于医学诊断 兔(Rabbit)卵清蛋白特异性IgG(OVA-sIgG) ELISA 检测试剂盒 使用说明书 检测原理 试剂盒采用双抗体一步夹心法酶联免疫吸附试验(ELISA)。往预先包被抗卵清蛋白特异性IgG(OVA-sIgG)抗体的包被微孔中,依次加入标本、标准品、HRP标记的检测抗体,经过温育并彻底洗涤。用底物TMB显色,TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的卵清蛋白特异性IgG (OVA-sIgG)呈正相关。用酶标仪在450nm 波长下测定吸光度(OD 值),计算样品浓度。样品收集、处理及保存方法1. 血清:使用不含热原和内毒素的试管,操作过程中避免任何细 胞刺激,收集血液后,3000转离心10分钟将血清和红细胞迅速小心地分离。2. 血浆:EDTA、柠檬酸盐或肝素抗凝。3000转离心30分钟取上清。 3.细胞上清液:3000转离心10分钟去除颗粒和聚合物。 4. 组织匀浆:将组织加入适量生理盐水捣碎。3000转离心10分钟 取上清。5. 保存:如果样本收集后不及时检测,请按一次用量分装,冻存 于-20℃,避免反复冻融,在室温下解冻并确保样品均匀地充分解冻。自备物品 1.酶标仪(450nm) 2.高精度加样器及枪头:0.5-10uL、2-20uL、20-200uL、200-1000uL 3.37℃恒温箱操作注意事项1. 试剂盒保存在2-8℃,使用前室温平衡20分钟。从冰箱取出的 浓缩洗涤液会有结晶,这属于正常现象,水浴加热使结晶完全溶解后再使用。2.实验中不用的板条应立即放回自封袋中,密封(低温干燥)保 存。3. 浓度为0的S0号标准品即可视为阴性对照或者空白;按照说明书操作时样本已经稀释5倍,最终结果乘以5才是样本实际浓度。4. 严格按照说明书中标明的时间、加液量及顺序进行温育操作。

蛋白质的分离纯化和表征

蛋白质的分离纯化和表征 第一节蛋白质的酸碱性质 各个解离基团的pK 值与游离氨基酸的不完全相同。等电点要用等电聚焦等方法测定。 第二节蛋白质分子的大小与形状

一、根据化学组成测定最低相对分子质量 假定某种微量成分只有一个,测出其百分含量后,可用比例式算出最低相对分子质量。 若测出两种微量成分的百分含量,分别用比例式算出的最低相对分子质量不相同时,可计算两个最低相对分子质量近似的最小公倍数。 例题:一种纯酶含亮氨酸(Mr 131)1.65%,含异亮氨酸(Mr131)2.48%,求最低相对分子质量。 解:按照Leu 的百分含量计算,最低Mr X1: X1=(100′ 131)/1.65=7939.4。 按照Ile 的百分含量计算最低Mr X2: X2=(100′ 131)/2.48=5282.3。 由于X1 和X2 数字差异较大,提示这种酶含Leu 和Ile 不止1 个,为了估算Leu 和Ile 的个数,首先计算: X1/X2=7939.4/5282.3≈1.5。 这种酶含任何氨基酸的个数均应是整数,说明该酶至少含有2 个Leu,3 个Ile,其最低相对分子质量为: 7939.4 ′2 =15878.8或5282.3×3=15846.9。 二、渗透压法测定相对分子质量 三、沉降分析法测定相对分子质量

基本原理: (一)离心力(centrifugal force,Fc) 当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“Fc”由下式定义: F=m·a=m·ω2 r a—粒子旋转的加速度,m—沉降粒子的有效质量,ω—粒子旋转的角速度,r—粒子的旋转半径(cm)。 (二)相对离心力(relative centrifugal force,RCF) 由于各种离心机转子的半径或者离心管至旋转轴中心的距离不同,离心力而受变化,因此在文献中常用“相对离心力”或“数字×g”表示离心力,只要RCF 值不变,一个样品可以在不同的离心机上获得相同的结果。 RCF 就是实际离心场转化为重力加速度的倍数。

盐析法

盐析法综述 摘要:沉淀法是利用沉淀反应,将被测组分转化为难溶物,以沉淀形式从溶液中分离出来,并转化为称量形式,最后称定其重量进行测定的方法。盐析法是其中的一种,盐析法是在中药水提液中,加入无机盐至一定浓度,或达饱和状态,可使某些成分在水中溶解度降低,从而与水溶性大的杂质分离。常作盐析的无机盐有氯化钠、硫酸钠、硫酸镁、硫酸铵等。 关键词:沉淀法;盐析;原理;方法评价;蛋白质盐析 沉淀法 沉淀法是利用沉淀反应,将被测组分转化为难溶物,以沉淀形式从溶液中分离出来,并转化为称量形式,最后称定其重量进行测定的方法。 有机溶剂沉淀法多用于生物小分子、多糖及核酸产品的分离纯化,有时也用于蛋白质沉淀。有机溶剂的沉淀机理是降低水的介电常数,导致具有表面水层的生物大分子脱水,相互聚集,最后析出。等电点沉淀法用于氨基酸、蛋白质及其它两性物质的沉淀。但此法单独应用较少,多与其它方法结合使用。两性电解质分子上的净电荷为零时溶解度最低,不同的两性电解质具有不同的等电点,以此为基础可进行分离。、非离子多聚体沉淀法用于分离生物大分子非离子多聚物是六十年代发展起来的一类重要沉淀剂,最早用于提纯免疫球蛋白、沉淀一些细菌和病毒,近年来逐渐广泛应用于核酸和酶的分离提纯。最常用的是铅盐法,可以用于除去杂质,也可用于沉淀有效成分。沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合液中加人适当的沉淀剂制备前驱体沉淀物,再将沉淀物进行干燥或锻烧,从而制得相应的粉体颗粒。一般来说,所有固体溶质都可以在溶液中加入中性盐而沉淀析出,这一过程叫盐析。在生化制备中,许多物质都可以用盐析法进行沉淀分离,如蛋白质、多肽、多糖、核酸等,其中以蛋白质沉淀最为常见,特别是在粗提阶段。 对沉淀形式的要求 (1)沉淀的溶解度要小,以保证被测组分能沉淀完全。 (2)沉淀要纯净,不应带入沉淀剂和其他杂质。 (3)沉淀易于过滤和洗涤,以便于操作和提高沉淀的纯度。 (4)沉淀易于转化为称量形式。 盐析法 胶体的盐析 胶体的盐析是加盐而使胶粒的溶解度降低,形成沉底析出的

实验五 鸡蛋清中卵类粘蛋白分离纯化及活性测定

实验五鸡蛋清中卵类粘蛋白分离纯化及活性测定 一、实验目的和要求 1)设计从鸡蛋清中分离纯化卵类粘蛋白的试验方案。 2)设计从鸡蛋清中分离纯化卵类粘蛋白的试验操作条件。 3)了解离子交换层析系统中四大组成部分和实验主要影响因素。 4)掌握熟离子交换层析层析仪的使用方法和注意事项。 5)学会凝胶预处理和装柱、平衡、洗脱的方法。 二、器材和试剂 1.实验器材: 层析系统LH-2,(包括自动部分收集器,紫外检测仪,记录仪,蠕动泵,梯度混合器)6套;高速离心机;布氏漏斗;烧杯500ml,100ml,各16个;移液管1、2、5ml, 各16个;量筒50ml,100ml,各16个;真空干燥器 4个;滴管, 16个;滤纸φ120, 1盒; 2.实验试剂: (1)丙酮;(2)1%,pHl.15的三氯乙酸:将称取的三氯乙酸置烧杯内,加入2/3总体积的蒸馏水溶解,用6mol/L氯氧化钠调至约pHl.15,静置约1h,然后在pH计上校正至pH 1.15,最后补充水到所配体积;(3)0.02 mol/L,pH6.5,磷酸盐缓冲液;(4)0.5mol/L 氯化钠—0.5mol/L氢氧化钠溶液;(5)0.5mol/L盐酸溶液;(6)0.3mol/L氯化钠—0.02mol /L磷酸盐缓冲液,pH6.5;(7)底物缓冲液:0.05mol/L,Tris-HCl缓冲液,pH8.0,内含2.22mol/L的氯化钙;(8)2mmol/1,BAEE底物:用底物缓冲液配制;(9)lmg/mL胰蛋白酶溶液:用0.001 mol/L盐酸配制;(10)DEAE-纤维素粉(DE-32);(11)SphadexG-25;(12)鸡蛋 30个;(13)1%硝酸银 三、实验原理 1.蛋清中蛋白质结构组成为:卵清蛋白、卵转铁蛋白、卵类粘蛋白、卵粘蛋白、溶菌酶、G2、G3球蛋白、卵抑制素、卵糖蛋白、黄素蛋白、卵巨球蛋白、蛋白抑制剂、抗生物素蛋白。2.鸡卵类粘蛋白(chickenovomucoid,CHOM)的性质: 鸡卵类黏蛋白(chickenovomucoid,CHOM)是由鸡卵清中制得的一种糖蛋白,可强烈地抑制胰蛋白酶,对枯草芽孢杆菌蛋白酶也有一定程度的抑制作用,但对胰凝乳蛋白酶无抑制作用,对人的胰蛋白酶也无明显的抑制作用。常用于胰蛋白酶酶学性质的研究。也可将其制成亲和吸附剂,通过亲和层析技术有效地分离与纯化胰蛋白酶。

蛋白质的分离纯化方法(参考资料)

蛋白质的分离纯化方法 2.1根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 2.2 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

蛋白质的分离方法

蛋白质的分离方法 蛋白质的分离方法有哪些?他们各依据蛋白质的什么性质或特点?蛋白质的分离纯化方法 分子大小 透析和超过滤:透析指利用蛋白质分子不能通过半透膜而与小分子分离;超滤是利用压力或离心力使小分子溶质通过半透膜而蛋白质被截留在膜上而分离。 密度梯度离心:蛋白质颗粒在具有密度梯度的介质中离心时,质量和密度大的颗粒比质量和密度小的颗粒沉降得快,且每种蛋白质颗粒沉降到与其自身密度相等的介质密度梯度时,即停止不前,最后各种蛋白质在离心管中被分离成不同的区带。 凝胶过滤:即分子排阻层析。凝胶颗粒内部为多孔的网状结构。大分子最先流出层析柱。 溶解度 等电点沉淀和pH控制 盐溶和盐析:中性盐在低浓度时可增加蛋白质的溶解度,即盐溶。原因是蛋白质分子吸附盐类离子后,带电层使蛋白质分子彼此排斥,而与水分子相互作用加强;当离子强度增大到足够高时,此时与蛋白质疏水基团接触的自由水被移去以溶剂化盐离子,导致蛋白质疏水基团暴露,使蛋白质因疏水作用凝聚沉淀。 有机溶剂分级分离法:一是降低介质的介电常数,二是与蛋白质争夺水化水。

温度沉淀:温度对溶解度有影响,低温稳定,高温不稳定。在0~40℃,大部分的球状蛋白质溶解度随温度升高而增加。 电荷 电泳(净电荷、分子大小、形状):区带电泳、聚丙烯酰氨凝胶电泳(PAGE)、毛细管电泳 离子交换层析 等电聚焦:外加电场时,蛋白质混合物在具有pH梯度的介质中移向并聚焦(停留)在等于其等电点的pH处,形成区带。 层析聚焦:层析柱中建立连续的pH梯度,蛋白质样品由柱上端随缓冲液的展开而聚焦在各自的等电点pH处,形成区段。 吸附: 吸附层析,吸附剂(硅石、氧化铝、活性碳)和疏水吸附剂,与待分离分子和杂质分子的吸附与解吸能力不同。 特异亲和力:亲和层析 其它:如高效液相层析(HPLC),快速蛋白液相层析(FPLC)

蛋白酶的盐析沉淀实验报告

蛋白酶的盐析沉淀实验报告 班级:生工1005 学号:020******* 姓名:朱同辉 实验目的: 1.掌握使蛋白质胶体溶液保持稳定的因素; 2.了解蛋白质沉淀的几种方法及其意义; 3.掌握测定蛋白酶活力的原理和方法; 4.学习酶活力的计算方法。 实验原理: 盐析法 在蛋白质溶液中加入少量中性盐,蛋白质溶解度增加,称为盐溶;而加入大量中性盐达一定浓度,蛋白质就会沉淀,称为盐析。 原理 : ①大量盐加入后,能与蛋白质争夺水分子,去除水膜; ②大量盐能中和蛋白质分子表面电荷,使分子间静电斥力减弱,疏水作用增强,使蛋白质沉淀。 盐析效果: 二价离子 > 一价离子 离子半径小 > 离子半径大 阳离子∶Mg2+>Ca2+>Ba2+>NH4+>Na+>K+>Pb+>Cs+ 阴离子∶PO43->SO42->Cl->Br->NO3->I->SCN- 蛋白质的溶解度与盐离子强度间的关系可以用Cohn 经验式来表示: 式中:S —蛋白质的溶解度 I —离子强度 β—常数,与温度和pH 有关 Ks —盐析常数,与蛋白质和盐的种类有关 其中I 根据下式计算: 式中:ci —i 离子的浓度(mol/L ) zi —i 离子所带的电荷 蛋白酶活力的测定 福林(Folin )试剂在碱性条件下可被酪氨酸还原成兰色化合物,蛋白酶水解酪蛋白产生酪氨酸,将产物中未被水解的酪蛋白除去后与福林试剂作用,根据显兰色的深浅可以计算出酪氨酸的产生量,从而推断酶活力的大小。 蛋白酶液的稀释、酶活测定和计算 K —在酪氨酸标准曲线上O.D 值为l 时酪氨酸的微克数(μg ),K 值为 108.53 680 D .O N K 10 4 ???=酶活力I K S log s -β=2 i i z c 2 1I ∑=

实验六 鸡蛋清中清蛋白的提取与定量测定

实验八:鸡蛋中卵清蛋白的提取和定量测定 分16组,每组两人 一、目的 掌握盐析沉淀法提取鸡蛋卵清蛋白的提取和定量测定(考马斯亮蓝G-250) 二、原理 沉淀法也称溶解度法。其纯化生物大分子物质的基本原理是,根据各种物质的结构差异(如蛋白质分子表面疏水基团和亲水基团之间比例的差异)来改变溶液的某些性质,(如PH,极性离子强度,金属离子等),就能使抽提液中有效成分的溶解度发生变化。换句话说就是,不同物质置入相同的溶液,溶解度是不同的;相同的物质置入不同的溶液,溶解度也是不一样的。因此选择适当的溶液就能使欲分离的有效成分呈现最小溶解度,而使杂质呈现最小的溶解度,或者相反,有效成分呈现最小溶解度,而杂质呈现最大的溶解度,然后经过适当的处理,即可达到从抽提液中分离有效成分的目的。 盐析法是根据蛋白质再稀盐溶液中,溶解度会随着盐浓度的增高而上升(盐溶),但当盐浓度增高到一定数值时,其溶解度又逐渐下降,直到蛋白质析出(盐析),盐析导致蛋白质分子表面电荷被中和,水化膜被破坏,最终引起蛋白质分子间相互聚集并从溶液析出。三、实验材料 鸡蛋

四、实验步骤 1.将鸡蛋一端敲一小孔,用吸管吸取卵清蛋白 2.5毫升,加生理盐水 2.5毫升得到稀释液 2.逐滴加入饱和硫酸铵溶液5毫升(边加边搅拌)静置10分钟,3000转每分钟离心10分,弃沉淀,取上清液。 3.再在上清液中加固体硫酸铵,至不能在溶解硫酸铵为止,静置10分钟 4. 置于离心管中以3000转每分钟离心十分钟,弃上清液,沉淀用5毫升生理盐水溶解(粗产品) 5. 取1毫升粗产品进行稀释,使其吸光值在0.1-1之间。 6. 用1毫克每毫升的标准牛血清蛋白溶液制作标准曲线及测定上述稀释后产品的蛋白含量 7.记录结果,数据处理。

盐析法沉淀蛋白质的原理

盐析法沉淀蛋白质的原理 1 中性盐沉淀(盐析法) 在溶液中加入中性盐使生物大分子沉淀析出的过程称为“盐析”。除了蛋白质和酶以外,多肽、多糖和核酸等都可以用盐析法进行沉淀分离。 盐析法应用最广的还是在蛋白质领域,已有八十多年的历史,其突出的优点是: ①成本低,不需要特别昂贵的设备。 ②操作简单、安全。 ③对许多生物活性物质具有稳定作用。 ⑴中性盐沉淀蛋白质的基本原理 蛋白质和酶均易溶于水,因为该分子的-COOH、-NH2和-OH都是亲水基团,这些基团与极性水分子相互作用形成水化层,包围于蛋白质分子周围形成1nm~100nm颗粒的亲水胶体,削弱了蛋白质分子之间的作用力,蛋白质分子表面极性基团越多,水化层越厚,蛋白质分子与溶剂分子之间的亲和力越大,因而溶解度也越大。亲水胶体在水中的稳定因素有两个:即电荷和水膜。因为中性盐的亲水性大于蛋白质和酶分子的亲水性,所以加入大量中性盐后,夺走了水分子,破坏了水膜,暴露出疏水区域,同时又中和了电荷,破坏了亲水胶体,蛋白质分子即形成沉淀。

⑵中性盐的选择 常用的中性盐中最重要的是(NH4)2SO4,因为它与其他常用盐类相比有十分突出的优点: 1) 溶解度大:尤其是在低温时仍有相当高的溶解度,这是其他盐类所不具备的。由于酶和各种蛋白质通常是在低温下稳定,因而盐析操作也要求在低温下(0~4℃)进行。 2) 分离效果好:有的提取液加入适量硫酸铵 盐析,一步就可以除去75%的杂蛋白,纯 度提高了四倍。 3) 不易引起变性,有稳定酶与蛋白质结构的 作用。有的酶或蛋白质用2~3mol/L浓度的 (NH4)2SO4保存可达数年之久。 4) 价格便宜,废液不污染环境。 ⑶盐析的操作方法 最常用的是固体硫酸铵加入法。将其研成细粉,在搅拌下缓慢均匀少量多次地加入,接近计划饱和度时,加盐的速度更要慢一些,尽量避免局部硫酸铵浓度过大而造成不应有的蛋白质沉淀。盐析后要在冰浴中放置一段时间,待沉淀完全后再离心与过滤。 在低浓度硫酸铵中盐析可采用离心分离,高浓度硫酸铵常用过滤方法。

盐析

盐析 主要内容: 1.盐析原理 2.盐析的优缺点 3.盐析实验步骤 4.分段盐析 5.盐析曲线的制作 6.盐析注意事项 7.盐析的影响因素 8.盐析法应用 9.盐析常见问题分析 盐析原理 一般是指溶液中加入无机盐类而使溶解的物质析出的过程。如:加浓(NH 4)2SO 4使蛋白质凝聚的过程。 蛋白质在水溶液中的溶解度是由蛋白质周围亲水基团与水形成水化膜的程度,以及蛋白质分子带有电荷的情况决定的。当用中性盐加入蛋白质溶液,中性盐对水分子的亲和力大于蛋白质,于是蛋白质分子周围的水化膜层减弱乃至消失。同时,中性盐加入蛋白质溶液后,由于离子强度发生改变,蛋白质表面电荷大量被中和,更加导致蛋白溶解度降低,使蛋白质分子之间聚集而沉淀。 盐析的优缺点 1. 成本低,不需要特别昂贵的设备。2. 操作简单、安全。3. 不会引起蛋白质变性,经透析去盐后,能得到保持生物活性的纯化蛋白质。4.效果不理想,通常只是作为初步的分离纯化,还需要结合其它的纯化。 盐析实验步骤 蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。其中应用最多的硫酸铵,由下表可以看出:它的优点是温度系数小而溶解度大(20℃时饱和溶液为754克/升;0℃时饱和溶解度为706克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。硫酸铵溶液的pH 常在4.5-5.5之间,当用其他pH 值进行盐析时,需用硫酸或氨水调节。表1几种盐在不同温度下的溶解度(克/100毫升水) 饱和硫酸铵法 1.取x ml 血清加x ml 生理盐水,于搅拌下逐滴加入2xml 饱和硫酸铵,硫酸铵的终饱和度为50%。 ℃ 20℃80℃100℃(NH 4)2SO 470.675.4 95.3103Na 2SO 4 4.918.9 43.342.2NaH 2PO 4 1.67.893.8101

实验一 鸡蛋清中卵白蛋白和卵球蛋白分离与纯化

实验一鸡蛋清中卵白蛋白和卵球蛋白分离与纯化 一、实验目的 了解盐析分级分离蛋白质的基本原理及操作. 了解葡聚糖凝胶SephadexG-25分离蛋白质的基本原理和凝胶柱的制备及洗脱技术. 二、实验原理 据研究结果分析每百克鸡蛋含蛋白质12.8克,主要为卵白蛋白和卵球蛋白,还含有少量的卵粘蛋白、卵转铁蛋白、类卵粘蛋白、溶菌酶等,其中含有人体必需的8种氨基酸。本次实验利用盐析法和柱层析法分离和纯化卵白蛋白和卵球蛋白。 盐析的原理:蛋白质是亲水胶体,在高浓度的中性盐影响下脱去水化层,同时,蛋白质分子所带的电荷被中和,结果蛋白质胶体的稳定性遭到破坏而沉淀析出。盐析不同的蛋白质所需中性盐浓度与蛋白质的种类及pH有关。分子量大的蛋白质(球蛋白)比分子量小(白蛋白)易析出。改变盐浓度,使不同分子量的蛋白质分别析出。 脱盐的原理:含盐蛋白质溶液流经凝胶层析柱时,小分子量的盐分子因进入凝胶的筛孔中,向下移动的速度较慢;而大分子的蛋白质不能进入凝胶的筛孔,以较快的速度流过凝胶柱,从而使蛋白质与盐分开。G-25:1000---5000;G-50:1500---30000;G-75:3000---80000 三、实验用品 仪器:752型紫外可见分光光度计、离心机、层析装置 器皿:5ml试管20支、50ml烧杯2个、试管架、玻棒、石英比色皿、玻璃层析柱 药品及材料:新鲜蛋清、固体硫酸铵、饱和硫酸铵溶液、凝胶SephadexG-25 饱和硫酸铵溶液:称固体硫酸铵(分析纯)850g,置于1000ml蒸馏水中,在70-80℃水温中搅拌溶解。将酸度调节至pH7.2,室温中放置过夜,瓶底析出白色结晶,上清液即为饱和硫酸铵溶液。 四、实验步骤 1、卵清蛋白与卵球蛋白的分离 取卵清2mL于试管中;加2mL的半饱和硫酸铵溶液,搅拌均匀,静置2分钟;3000r/min,离心5分钟;沉淀为卵球蛋白(M130000),加蒸馏水定容至4mL溶液。 取上清液,加入固体硫酸铵(计算4mL溶液饱和度由50%变化为100%需要加入硫酸铵的克数1.57g);3000r/min,离心5分钟;沉淀为卵清白蛋白(M43000),加蒸馏水定容至4mL溶液。 2、凝胶柱层析(重点讲解,不安排做试验) (1) 凝胶柱的准备:sephadexG-25沸水溶胀30分钟,倾泻法倾去悬浮的小颗粒,湿装法装柱。 (2) 加样和洗脱:先将柱内液体用滴管轻轻吸去,使液面下降到刚与凝胶表面相切,用枪吸取1mL样液沿着管壁加入柱子上方,再加3mL蒸馏水,开始脱盐,每管收集2mL共15管。 (3)收集和测定:280nm紫外吸收测定蛋白质含量或者用考马斯亮蓝法在在595nm波长测吸光度值。 (4)以洗脱体积为横坐标,吸光值为纵坐标,绘制洗脱曲线,将蛋白质溶液收集待用。(5)将每管的洗脱液取出1ml,加入几滴BaCl2溶液,观察是否有沉淀,以此判断脱盐是否完全。 五、数据结果与分析

蛋白质的分离纯化方法

蛋白质的分离纯化方法 根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有 用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

相关文档