文档库 最新最全的文档下载
当前位置:文档库 › 第六章金属催化剂催化作用讲解

第六章金属催化剂催化作用讲解

第六章金属催化剂催化作用讲解
第六章金属催化剂催化作用讲解

第六章金属催化剂催化作用

章节分配

一、金属催化剂重要类型及重要催化反应示例

二、乙烯环氧化催化作用

1. 乙烯环氧化工业催化剂

2. 乙烯环氧化反应机理

3. 乙烯环氧化中助催剂、促进剂的作用及新型催化剂

三、氨合成催化剂催化作用

1. 合成氨催化剂简况

2. 熔铁催化剂的结构

3. 各种助剂的作用及含量的最佳值范围

4. 氨合成铁催化剂活性中心模型及其作用机理

四、烃类催化重整催化剂作用原理

1. 催化重整反应及重整催化剂

2. 烃类在过渡金属上的吸附态及烃类脱氢

3. 催化重整作用机理

五、其他重要类型金属催化剂简介

1. 镍系催化剂

2. 裂解气中炔烃选择加氢催化剂

六、金属催化剂的电子迁移、d空穴与催化活性

七、多位理论的几何因素与能量因素

八、对多位理论及电子理论的评价

金属催化剂是固体催化剂中研究得最早、最深入,同时也是获得最广泛应用的一类催化剂,例如,氨的合成(Fe)和氧化(Pt),有机化合物的加氢(Ni,Pd,Pt,等)、氢解(Os, Ru,Ni,等)和异构(Ir,Pt,等),乙烯的氧化(Ag),CO的加氢(Fe,

Co,Ni,Ru,等)以及汽车尾气的净化(Pt,Pd,等)等等。其主要特点是具有很高的催化活性和可以使多种键发生开裂。

(1) 自从上世纪P.Sabatier发现金属镍可催化苯加氢生成环己烷以来,迄今除金属催化剂以外,尚未发现过能催化这一反应的其它类型催化剂.又如,乙烷氢解对金属催化剂来说并非难事.然而除金属催化剂之外,也末发现可使乙烷加氢分解的别种催化剂,另外,如众所周知,F—T合成也只有在金属催化剂上才能进行等等.那么,金属催化剂之所以具有这种高的活性,其内在因素是什么?

(2)所有金属催化剂几乎都是过渡金属,而且,金属催化剂的功能又都和d 轨道有关,这是为什么?

(3)当过渡金属催化剂按其活性排列时,对每个反应都有自己独有的序列,即使对每类反应,至今也未发现它们有相同的序列,什么是决定这种序列的内在因素?

(4)对一个反应来说,为什么同类金属又常常有明显不同的选择性?

(5)对某些反应来说,单位表面积的催化活性决定于金属的晶面、金属晶粒的大小(如果金属是负载着的),载体以及制法,为什么对活性有这种差别?又怎样和反应相联系?

(6)由两种金属制成的合金催化剂,其催化功能随组分有强大变化,而且又明显地取决于所研究的反应,产生这些效果的原因是什么?

表6-1 金属催化剂类型(按制备方法划分)

一、金属催化剂的特征

金属催化剂和均相金属配合物催化剂相对比,有下面最具特征的事实。

(一)有裸露着的表面,这一事实包含着以下三种含义:

1、前已述及,配合物中心金属的配位部位可以为包括溶剂在内的配体所全部饱和,而对具有界面的固体金属原子来说,至少有一个配位部位是空着的。

2、金属配合物在溶液中总是移动着的,而且可互相碰撞,以至在配体之间发生交换并保持一种微观的动态上的平衡.但是,固体表面的金属原子则是相对固定的,不能相互碰撞,因此,从能量上来说,处于各种各样的亚稳状态.

3、配体的性质不同,在固体金属中,金属原子四周的邻接原子——配体都是相同的金属原子本身,因此,与此相关的热力学上的稳定性也就不同.

(二)金属原子之间有凝聚作用.和上述3有关,在金属中,金属原子之间有相互凝聚的作用.这是金属之所以具有较大导热性、导电性、展延性以及机械强度等的原因,同时,也反映了金属原子之间化学键的非定域性质。

金属的这种非定域性质使其获得了额外的共轭稳定化能,从而在热力学上具有较高的稳定性.所以金属是很难在原子水平上进行分散的.下面是一些实验事实。

1、金属原子尽管在适当配体作用之下,可以避免进一步凝聚而形成所谓的原子簇化合物.金属原子簇化合物如本书第五章所述,从其结构化学以及化学键理论来看,可以看作金属催化剂的模型,但是,从含底物的催化体系的热力学稳定性的观点加以分析,那么,它和真正的金属催化剂有着明显的区别。

2、金属原子通过金属键凝聚达到稳定的原动力,就在于金属原子之间有很强的集合在一起的倾向,这从金属的原子化热远大于相似配合物的键能得到证明。

3、在由浸渍法制取金属载体催化剂时,可以清楚地看到,原来的金属离子,

是在分散状态下被还原成金属原子的;在还原过程中,生成的金属原子确实具有甩开载体而相互吸引的凝聚力。

4、以“相”的形式参与反应。当固体金属显示出有催化活性时.金属原子总是以相当大的集团,而不是像配合物催化剂那样以分子形式与底物作用,也就是说,金属是以相当于热力学上的一个“相’的形式出现的.这是金属催化剂在热力学上的又一特征。

在催化反应中,由于金属具有上述的非定域化作用,所以,诸如金属的颗粒大小,金属晶面的取向,晶相的种类以及关系到这些性质的制备方法,都对催化剂的性质有明显的影响。

通过以上对固体金属催化剂和金属配合物催化剂的对比,金属催化剂的特征可概括为:

二、过渡金属表面上的表面“配合物”

过渡金属及其氧化物与过渡金属配合物催化性质之间的相似性已被引起广泛的注意。例如它们都能催化有氢和烯烃参与的反应,从上述这些类似性已可以得出以下结论:过渡金属及其化合物的吸附和催化活性应有同一原因,显然,催化活性是由化学吸附分子和过渡金属表面上的单个原子借助于d轨道形成表面“配合物”而产生的.例如前一章描述的过渡金属氧化物的情况也与此类似.至于说到金属的高导电性,那么,这个性质当然在某些情况下可以保证“使吸附分子带有应有的电荷,并使氧化—还原过程易于进行”,然而它并非过渡金属催化剂作用的根本原因。

三、金属催化剂的电子送移、d空穴与催化活性

金属原子中的价电子在原子间高度公共化.用化学键的观点来说,就是金属原子间所构成的化学键是个特大的共扼体系,电子云高度离域化。由此就提出一个问题,作为多相催化作用第一步的化学吸附,它在表面上虽然是与一个或几个原子作用,但是因为原子间的化学键彼此沟通,这种金属聚集态的性质,在多大程度上影响了化学吸附?

既然价电子在原子间沟通,整块金属晶粒就应看成为一个整体.可以认为,化学吸附是作用物(反应物)与催化剂间的电子迁移过程.催化剂的电子能级及电子占有状态,可借用固体物理过程中的能带论来讨论。

按金属与作用物双方的最高电子占有能级及最低末填充能级的相对位置,决定电子由金属流向作用物(负离子吸附),或者由作用物流向金属(正离子吸附),或者两者共享电子对,形成共价吸附。

曾进行一些实验来验证这种模型.例如测定气体在金属膜(如W、Ta、Pt等)吸附后的输出功、膜电阻、磁化率等性质的变化。其大致结果如表6-3所示。

对CO、N2O而言,说明电子迁移方向是从金属催化剂到作用物.但对H2、O2而言,出现某些不一致的情况。

又如NH3的同位素交换反应:D2 + NH3 NH2D + HD,其反应活性与输出功的关系,如图8—l 6所示.从图中可看出,线性关系不好.看来,单纯用电子迁移能力,不可能真实反映客观情况.这是因为催化作用是一种化学作用,应当注意作用时的轨道的方向与对称性。

起先,曾将过渡金属的d状态与催化活性进行关联.固体物理能带论描述过

渡金属的d状态是采用所谓的“d空穴”概念。例如Ni原子的外层电子为3d84s2,当Ni原子互相接近,组成金属固体时,由于s带变宽,s电子部分填充在3d带

中.这样,每个原子平均有9.4个电子在3d带中,0.6个电子在4s带中.d带本来可填充10个电子,所以仍有0.6个空穴,称为d带空穴.如图8—17所示.d 带空穴愈多,说明末配对的d电子愈多,其呈现的磁化率愈大.Cu原子比Ni 原子多一个电子,其外层电子是3d104s1,如在Ni金属中掺人Cu,组成Cu—Ni 合金,则将使Ni的d空穴下降,其磁化率也就随之下降。

图6-1 NH3, D 同位素交换反应的活化能与功函数的关系

用骨架型Ni-Cu催化剂对苯加氢,大体说来,催化活性与磁化率有平行的关系。表明d穴对此催化反应有利(不过,反应速度实际上是与表面镍浓度有关.而合金的表面组成服从降低表面能的热力学原则,与体相组成相差很大。

对苯乙烯加氢,采用Ni-Cu催化剂,也表明d穴对此反应有利.当用纯Ni 时,d穴最多,活性也最大.当用Fe-Ni时,d穴虽比纯Ni更多,但实验表明,Fe含量愈大,催化活性反而降低.这说明d穴也不宜过多,过多则吸附太强,不利于进一步反应.这些实验事实,采用d电子状态来关联催化活性,比之单纯用电子迁移能力已有所进步.

Pauling用另一种办法来描述d状态.他认为金属原子间的化学键轨道,可以由d轨道参与的杂化轨道所组成,d轨道参与的成分越多,则这种金属键的d 成分也越多.他称这种金属键中的d成分为d特征百分数.化学吸附主要是与末参与金属键的d轨道作用,所以,d特征百分数越大,参与化学吸附的d轨道就越少.实际上,d特征百分数是和d空穴互为倒数关系的一种衡量办法.应用d特征百分数概念来解释前述NH3与D2同位素交换的实验事实,其线

性关系会好一些,如图8—18所示.

图6-2 NH3与D2的同位素交换速率与金属d特征%的关系

从现有许多实验事实看来,对金属催化剂的催化作用,既要考虑金属与金属原子间的相互作用,也要考虑金属原子特征.例如从CO在金属上的红外光谱证实,CO在金属上形成的一些化学吸附态,与均相中CO和金属原子构成的单核、双核络合物有相似之处.这表明反应物还是按配位络合的化学特性与金属表面某种原子联接在一起的。

工业上广泛采用金属负载型催化剂.当金属负载的分散度愈来愈高时,金属与金属原子间的作用,一般有某种程度的削弱.例如镍金属原为铁磁性,高度分散后变为顺磁性,说明原子间作用已有所变化.金属晶粒的大小,可能对催化活性有影响,甚至有较大的影响.

金属催化剂的活性中心比起酸、碱催化剂、氧化物催化剂的活性中心来说,是最不明确的.其主要原因是金属原子簇的作用以及原子间的作用,即聚集态的作用加强了.不过,从总的情况看来,把暴露在表面上的一个或多个金属原子作为活性中心,还是多数采用的方法.反应物与这些原子之间有一定的结构和能量匹配问题.下面我们来讨论这个问题.

四、多位理论的几何因素与能量因素

在分子筛催化剂中,分子筛的筛孔通过扩散的限制而有选择性地对某种异构

物起作用,这是一种类型的几何因素。我们现在来讨论其他类型的几何因素。

乙烯在金属催化剂上加氢的反应机理,虽然历来争论激烈,但从乙烯与D2的交换动力学的数据分析,下列机理比较能说明D2分压对同位素交换产物分配的影响.

这机理表明,H2与C2H4是通过离解与不离解的双位[α,β]吸附,然后在表面上互相作用,形成半氢化根吸附态*CH2CH3,最后进一步氢化为乙烷的.如果C2H4确如上面所述的那样是通过双位吸附而活化的,为了活化最省力,原则上除所欲断裂的键外,其他的键长和键角力求不变.这样就要求双核活性中心间有一定核间距.例如,乙烯的双位络合物如下图.

巴兰金强调了催化剂本身晶体结构对催化活性的影响,认为表面结构反映了晶体内部结构,提出催化作用的几伺适应性与能量适应性概念.其基本观点如下反应物分子扩散到催化剂表面,首先物理吸附在催化剂活性中心上,然后,反应物分子指示基团(分子中与催化剂接触进行反应的部分)与活性中心作用,于是分子变形?生成表面中间络合物,最后解吸成为产物.然而使分子变形的力是化学作用力,因而仅当分子与活性中心很靠近时(一般l至2个A)才能起作用.根据最省力原则,要求活性中心与反应分子间有一定的结构对应性,又吸附不能太弱.也不能太强,太弱吸附速度太慢,太强则解吸速度太慢,其间有一定的能量适应的要求.

根据巴兰金基本观点,为力求其键长、键角变化不大,反应分子中指示基团的几何对称性应与表面活性中心结构的对称性相适应;同时又由于是近距离的作用,故对两个对称图象的大小也有严格的要求.

活性中心每个吸附点的位置称为“位”,每一个分子吸附时在催化剂上所占的位数,就是多位理论中的位数.多位理论的名称就是这样来的.多位理论中研究最多的是二位.例如对于乙醇脱氢反应:

方框内表示的是反应指示基因,有时表示反应历程只写出指示基团部分,例如上例简写为:

除了二位外,还有其他多位的反应历程模型.其中,讨论得较详细的是环己烷脱氢、苯加氢的六位模型.这两个课题的研究,为多位理论中关于几何适应性提供了最重要的论据.

除了对称性外,还要求几何尺寸相匹配.根据计算,在力求其它键长、键角不变的条件下,要求金属的原子半径在1.224—1.385A之间.表8—22中位于方框之内的,都是满足上述条件的金属.实验表明,大多数确实能够使环己烷脱氢,仅Zn、Cu对环己烷脱脱的活性不好.其中Re是由理论预期,而后为实验所证实的.多位理论指出,Zn、Cu虽然满足几何因素,但不能满足能量条件,因无足够的空d轨道可供化学结合之用,所以活性不好.β—Fe虽不属立方与六方晶系,但也有活性,后来认为,β- Fe的一些晶面的对称性近似地符合立方晶系(111)面的要求,所以也有活性能量适应性和几何适应性是密切相关的,选择催化剂时必须同时注意这两个方面.要精细地考虑能量适应性问题,必须先知道反应的历程及作用的微观模型,多位理论只对双位催化反应提出模型.设指示基团间的反应为:

AB + CD AD + BC

能量适应性和几何适应性是密切相关的,选择催化剂时必须同时注意这两个方面.要精细地考虑能量适应性问题,必须先知道反应的历程及作用的微观模型,多位理论只对双位催化反应提出模型.

设指示基团间的反应为:

即反应分二步,第一步是反应物与催化剂作用,吸附成为表面活化络合物,放出

能量E’;第二步表面活化络合物解吸为产物,放出能量E’’.二步中放出能量较少(或吸收能量较多)的那一步,反应速度较慢,是反应的决定性步骤.从能量观点来说,欲使反应快,要尽量设法使二步都不要太吃力.这从下面公式的推导即可看出:

其中QAB 是AB二原子间的健能,QAK是A原子与催化剂K间的键能,其余同此.若令

将这些量代人式(1)和(2)得:

如将E'和E”分别对q作图.则得两条相交的直线.两条的斜率各为十1及一1.对于吸热反应(u为负值),交点在横坐标之下,如图8—23所示.对于放热反应(u为正值),交点在横坐标之上.如图8—24所示

交点的坐标为(1/2 s,1/2 u),与催化剂种类无关.

这种图形称为火山式曲线或峰形线.峰形线与催化剂种类无关,而与反应种类有关.

与催化剂有关的只是q值,不同的催化剂,q值不同,即割线FH的位置不同。上面已提过,E值愈大,活化能ε愈小.但E值与活化能ε的定量关系,现在还未最后确定.巴兰金最初提出:

其理由是生成络合物时,待破键只是局部变形,而非全部断裂‘实际上,这个公式只能当作经验式.(在某些情况下,用下列式子,更符合实验事实

现在,我们要进一步讨论多位理论对q值的求法.

反应分子指示基团与催化剂表面原子间的键能估计,是多位理论的一个重要课题.但是由热化学方法、光谱方法、吸附法、统计方法计算键能,都不能真正代表实际的表面络合物的键能,因为表面络合物的真实状态还是未知数.目前一般是先求出化合物中对应的键能,再加上校正项:一种是与催化剂表面的不饱和性,分散度、粗糙度有关的校正项;另一种是由于取代基因的影响而加的校正项(例如共轭效应与诱导效应).

巴兰金提出了类似于自洽的由动力学求出表面键能的方法.这方法的优点在于表面的一些效应,在此法所求的键能中可能反映出来.具体步骤是:先假设ε =-3/4E的关系成立,由动力学实验求得活化能ε后,再求E,最后应用(1)、(2)

式联立求解QAK等.

例如,求QHK,QCK,QOK的键能,可以设计三个反应1) 烃类脱氢:

按此理论的模型机理进行,这样就限制了多位理论的实用范围。但是,一般说来,如果在深入研究反应历程的基础上,考虑提高或降低某种QRK 的办法,在应用上是有价值的。一些物质结构知识的应用,如轨道对称性,轨道重叠,成键方向等等,是往往有参考价值的。对于有机的氢解反应,多位理论模型可能反映了部分的各观实际,因而它可以预测某些有官以团的氢解次序。例如对氯硝基苯在Ni 催化剂上的氢解次序如图8-25所示。已知QNO=61,QCCl=67,QCN=42千卡/克键,所以,按热裂的顺序应为III >I >II 。同时因QNH=84, QClH=103千卡/克键,故从形成产物N-H ,Cl-H 键的趋势来说,II > I 。

如用多位理论的办法求E’,则E’NO=17, E’CCl=9, E’CN=23千卡/克键(正值为放热),由ε‘=-3/4E’,则可预示氢解反应速度 I >II > III

图6-4 对氯硝基苯的氢解顺序(裂解顺序为I >II >III

五、金属催化剂上的反应

金属催化剂是应用最为广泛的催化剂之一,由它催化的反应不知有几百甚至上千种.这里不可能对所有反应作一一介绍和分析,仅打算对一些既具有理论研究意义、又有应用价值的反应,根据已经掌握的比较确切的资料,就其在金属催化剂上的反应机理作扼要的分析,并在此基础上,尽可能地相同类型均相配位催化体系中的反应机理进行对比,深化对由金属催化的反应本质的理解. 被选定的反应有以下几种类型; 1.和氢转移有关的烃类转化反应; 2.氨的合成反应; 3.氧化反应i

4.CO 十H 2转化(F —T 合成).

Cl

II

C

C

C

C C

C N III

I

O 2

l.和氢转移有关的烃类转化反应

石油加工工业中一个最主要的工艺,可以提高汽油辛烷值的反应。

(I)环烷烃脱氢:

(2)链状烷烃脱氢:

(3)环烷烃异构化:

(4)链状烷烃异构化:

(5)链状烷烃芳构化:

等等。这些反应大都和氢的转移有关.研究这些反应在金属催化剂上的作用机理,可以为改进催化剂、提高活性、提高生产能力提供可靠的科学依据。

(a)异构化反应.在金属表面上,烯烃是最容易进行这类反应的.除乙烯、丙烯两种简单烯烃之外,从丁烯开始,无论在有、无氢的条件下都能进行异构.一般说来.在有氢存在的情况下,烯烃异构化既可以借助于生成半氢化状态的α,β转化来说明:

也可以借生成烯丙基中间体的机理来说明

对烯烃异构化研究得最多的当推丁烯.最典型的例子,如丁烯在袒载在Al2O3上的金属催化剂上于100℃有氢存在的情况下异拘时,由丁烯—[1]异构成丁烯—[2]的金属活性序列为Co>Fe—Ni—Rh>Pd>Ru>Os>Pt>Ir—Cu, 即在第八族元素间有3d金属>4d金属>5d金属的关系.对戊烯—1来说,金属的异构化活性有4d金属>5d金属的关系,这与反应活性高的金属,吸附着的烯烃从金属表面脱附也比较容易是相关联的。

活性:新戊烷>异丁烷>正丁烷

(b)脱氢环化.脱氢环化和异构化相类似,所以,在金属上脱氢环化最可能的机理和以上考虑金属上的异构化时所讨论的相同.

(c)加氢分解(氢解).这是一个简单C—C键被切断并同时生成CH4及小量C2H6的过程.在金属表面上,最简单的氢解过程可表示为

氢解机理看来应包含反应分子中邻接碳原子在邻接金属部位上吸附并使C—H 键断裂的过程;为了使C—C键发生断裂.族原子还必须继续脱氢以形成碳—金属的多重键,在某些情况下,碳原子上的氢甚至须完全脱除.

看来金属—碳的键强对C—C键断裂速度起着决定性的作用.C—C键一旦断裂,不同碎片就会分别重新加氢生成CH4或者别的烃类.

氢解需要高温和反应物对催化剂有强的结合力,所以—般难于完全实现.和比较容易进行的加氢反应相比较,这个反应至少需要一对(可能更复杂的集团)金属原子.尽管担载金属的晶粒大小对加氢反应比速度的影响不大,促对氢解速度却有强烈的影响.这些结果显然是和下列要求和事实一致的,即要有强的碳一金属键才能使C—C断裂,而这只有和低配位金属原子,诸如位于角、棱以及高指数晶面上的金属原子相结合时,才能形成较强的键,因为,如众所用知,只有在小的晶粒上才富有这样的金属原子.

合金化的实验结果为催化各种反应需要大小不等的金属原子集团提供了直接的信息.例如.当Ni和Cu成合金时,氢解的活性就会受到很大影响,而对异构及脱氢环化活性的影响并不明显.这种效果被认为就是由于这时,小活性集团、甚至单个活性Ni原子分散于不活性的Cu之中所致.因此得出结论,氢解和异构不同,需有更加复杂的活性金属部位.

(d)加氢.烃类的加氢反应不仅是研究得最多和最深入,而且也是用途最广泛的反应之一.

首先,一个加氢活性的催化剂必须同时对不饱和烃和氢具有吸附能力.所有过渡金属都具有这种性质.

本章结束语

从金属催化剂的研究进展表明,金属催化剂的活性中心,目前已逐渐采用定域化模型.例如,乙烯环氧化催化反应,O2是定域地吸附在表面银原子上,生成吸附态Ag2O2-;,然后乙烯与它直接作用生成环氧乙烷.氨合成铁催化剂对N2的活化与解离机理是,在α-Fe(111)面上的原子簇活性中心上,N2先在吸附中心作端基加多侧基络合,然后在解离中心以及诱导产生的*Hδ+的共同作用下解离.铂重整催化剂对烷烃的异构化是通过定位键位移过渡态而进行的.金属催化剂定域化模型与过渡金属化合物(包括复合氧化物)的定位络合活化的主要区别,在于前者一般是金属原于簇(多核)起螯合活化作用.而后者一般在过渡金属离子上(单核)起络合活化作用.由于是多核作用,晶格参数与催化性能关系一般较明显(几何适应性).

另一方面,由于金属原子的密堆积,金属原子间的键属于电子云高度共享的金属键,单胞与单胞间的波函数作用明显.因而,聚集态的电子迁移性能与催化性能的关系,比过渡金属化合物更为突出.这说明金属的微粒大小及分配、助

催剂在金属微粒上的分布等,与催化性能有密切的关系.因而,电子迁移性能对吸附态的合适稳定化纪有重要影响(能量适应性).

在金属催化剂方面,由于综合利用光电子能谱(XPS.UPS)、Auger能谱(AES),二次离子发射质谱(SIMS),低能电于衍射(LEED),Mossbauer谱和外廷X射线吸收谱精细结构(EXAFS)的方法,配合原有的其它物化方法,对质子簇活性中心、合金催化剂中体相组成与表面组成的明显差异以及吸附态的研究,已进入了科学领域,从而对本章所介绍的某些重要类型催化剂、催化反应机理有了初步的认识.其中把催化反应区分为对催化剂结构灵敏的与对催化剂不灵敏的两大类型,是一种具有重要实际意义的概念.

二、乙烯环氧化催化作用

(一)乙烯环氧化工业催化剂

乙烯环氧化的Ag催化剂的专利早就发表(1935年).1937年投产后,至少有四种工业生产过程.这些过程均用固定床和负载型Ag催化剂.反应温度一般在220一280o C之间.

乙烯气相环氧化是个放热反应:

深度氧化是这过程的副反应,它放出大量的热能,例如:

目前工业上采用的催化剂是负载型Ag催化剂(Ag负载量10~35%(重量%).为了防止催化剂载体表面所引起的深度氧化,在细孔内的扩散限制造成的深度氧化以及防止高温烧结,对载体的选择与制备要特别注意.从所报导的资料来看,大都采用大孔:低表面,耐高温的载体.孔度一般40~50%,比表面一般<1米2/克.例如采用 -Al2O3(则玉)、SiC(金刚砂)细拉,也有用大孔、低表面的SiO2硅酸铝等.1966年的专利曾报道,应用起泡剂使孔度增加,能增加选择性,同

时能在160o C下使用目前催化剂制备一般用浸渍法(因表面粘结法易使Ag粉脱落引起“飞温”),浸溃液是乳酸银或硝酸银溶液,内含Ba、A1、Ca、Ce、Au或Pt 等元素的乳酸盐(少量值到4%)作为助催剂用.在300~400o C活化时析出金属Ag 颗粒。

(二)乙烯环氧化反应机理

在环氧化条件下,乙烯通过Ag催化剂,主要副产物有CO2.

CO2的来源主要是C2H4的直接深度氧化,但产物C2H4O中的一部分也有可能进行再氧化.动力学测定下列反应的速度常数,

反应选择性,一般不超过80%。

在反应产物中约有四分之一是副产物CO2.有人认为这是因为每产生一分子的环氧乙烷,同时就使一个O2-吸附态变为一个O-,从而引起深度氧化,反应式如下:

到底O2的活性吸附态是什么?是否确是O2-引起副反应的? 机理如何?这对于进一步选择新型催化剂有一定的意义.

从热力学上计算,在反应的条件下,由Ag生成Ag2O是不可能的.但用X 射线及电子衍射方法,发现Ag晶体表面层有Ag2O3、Ag2O、AgO2;同时证明,乙烯在各种银氧化物上的环氧化速度顺序为:

Ag2O3>AgO>Ag2O

茂金属催化剂的发展及工业化

专论 综述 弹性体,2003 06 25,13(3):48~52 CHINA EL AST OM ERICS 收稿日期:2002 11 20 作者简介:艾娇艳(1974-),女,湖南,中山大学化学化工学院高分子研究所在读博士。 茂金属催化剂的发展及工业化 艾娇艳1,刘朋生2 (1.中山大学化学与化学工程学院高分子研究所,广东广州 510275;2.湘潭大学化学化工学院,湖南湘潭 411105) 摘 要:讨论了茂金属的发展及其特性,介绍和总结了茂金属聚烯烃的工业化及其最新进展。并从中国茂金属聚烯烃技术发展的实情提出了一些建议。 关键词:茂金属;催化剂;聚烯烃 中图分类号:T Q 314.24 文献标识码:A 文章编号:1005 3174(2003)03 0048 05 茂金属催化剂因其催化活性高、生成的聚合 物相对分子量分布窄、聚合物结构可控、聚合物分子可剪裁等优点,成为继高效载体型催化剂之后的新一代聚烯烃催化剂。茂金属催化剂是90年代初实现工业化的开创性新型催化剂,是90年代聚烯烃技术开发最集中的领域,并正在引起一场聚烯烃工业技术的革命。因此也将直接影响21世纪聚烯烃的基本面貌。目前,世界主要聚烯烃制造商都投入了相当大的人力、物力和财力,加速茂金属催化剂的研究开发及工业化应用速度,并以其生产出新的高附加值、高性能的茂金属聚烯烃。由于茂金属催化剂可以适应现代工业化聚烯烃生产的主要工艺,随着茂金属催化剂成本的降低,其生产的聚烯烃所占的份额会日益增加。1 茂金属的发展史 国外对茂金属的研究可追溯到50年代。1951年Miller 和Pauson 等人首次发现茂金属 二茂铁[1],自此茂金属化合物得到蓬勃发展。随后其他茂金属(茂铬、茂钛、茂锆和茂铪)也制备出来。 1957年,Natta [2] 和Breslow [3]等分别首次引用可溶性的二氯二茂钛(Cp 2T iCl 2)代替TiCl 2与Et 2AlCl 组成的均相催化体系催化乙烯聚合,可以生成聚乙烯,但催化活性不高。 直至1973年,Reichert 和M eyer [4] 首先发现,向CpT i(Et)Cl/AlEtCl 2催化体系加入少量的水, 不但没有使催化剂!中毒?失去活性,反而大大增加了该体系催化乙烯聚合的活性。随后Bres low [5]研究了水对活性不高的催化体系Cp 2T iCl 2/Me 2AlCl 的影响,认为少量的水可以部分水解为Me 2AlCl,形成二聚铝氧烷ClMeAl O AlMeCl,它是较强的lew is 酸,有利于形成对催化乙烯具有高活性的甲基取代产物Cp 2T i(M e)Cl 。 直到80年代初期,茂金属催化剂才真正得到人们的足够重视。1980年W.Kaminsky 和Sinn [6]等人用甲基铝氧烷(MAO)齐聚物与Cp 2ZrMe 2组成催化体系用于乙烯聚合,结果表明催化体系有很高的催化活性(9#106g PE/mol Zr h)。这一划时代的发现,震动了高分子学术界,因为这比当时活性最高的以Mg Cl 2负载的载体催化剂高出几十倍,而且这种均相Zr 催化剂的活性中心的浓度高达100%,而乙烯高效载体催化剂的活性中心的浓度一般只有50%~70%。 另一方面,由于MAO 的发现和新的茂金属催化剂的合成,一批具有新型结构的聚合物应运而生。1984年Brintzinger [7]合成了立体刚性的桥联茂金属催化剂rac Et (Ind)2ZrCl 2和rac (H 4Ind )2ZrCl 2,以及Et (Ind )2T iCl 2和Et (H 4Ind)2T iCl 2,其中Zr 催化剂用MAO 活化后催化丙烯聚合具有很高的立体选择性和催化活性,首次用茂金属催化剂催化丙烯聚合获得了等规聚烯烃。这一发现导致人们用刚性茂金属催化剂对 烯烃的等规聚合进行了更加广泛的研究。此后,大量的桥联茂金属化合物不断涌现,它们都有单一的活性中心和立体选择性。

第六章半导体催化剂的催化作用及光催化原理.

第六章半导体催化剂的催化作用及光催化 原理 ?本章主要内容: ?半导体的能带结构及其催化活性 ?从能带结构出发,讨论催化剂的导电性能、逸出功与催化活性的关 系 ?半导体多相光催化原理 金属氧化物与金属硫化物催化剂概述 过渡金属氧化物与过渡金属硫化物有许多相似之处,多为半导体型化合物。 作为氧化用的过渡金属氧化物催化剂主要催化反应类型是烃类的选择性氧化和NOx的还原等; 作为催化剂的多为过渡金属硫化物,如Mo、W、Ni、Co、Fe等的金属硫化物具有加氢、异构、氢解等催化活性,用于油品的加氢精制;加氢脱硫(HDS)、加氢脱氮(HDN)、加氢脱金属(HDM)等过程。 半导体的能带结构及其催化活性 过渡金属氧化物、硫化物(半导体)催化剂 过渡金属氧化物、硫化物催化剂多属半导体类型,本章用半导体能带理论来说明这类催化剂的催化特性。将半导体的导电性能、电子逸出功与催化活性相关联,解释解释这类催化剂的催化作用。 固体的能带结构 原子核周围的电子是按能级排列的。例如1S,2S,2P,3S,3P……内层电子处于较低能级,外层电子处于较高能级。 固体是由许多原子组成的,固体中许多原子的电子轨道发生重叠,其中外层电子轨道重叠最多。由于这种重叠作用,电子不再局限于在一个原子内运动,而是在整个固体中运动,这种特性称为电子的共有化。 但重叠的外层电子也只能在相应的轨道间转移运动。例如3S引起3S共有化,形成3S 能带;2P轨道引起2P共有化,形成2P能带。 禁带、满带或价带、空带或导带 3S能带与2P能带之间有一个间隙,其中没有任何能级,故电子也不能进入此区,称之为禁带; 下面一部分的能级组成一个带,一般充满或部分充满价电子,称为满带或价带; 上面一部分的能带也组成一个带,在基态时往往不存在电子,只有处于激发态时才有电子进入此带,所以称为空带,又叫导带; 激发到空带中去的自由电子提供了半导体的导电能力。 金属的能带结构 导体、半导体、绝缘体的能带结构比较

【CN109999837A】一种表面缺陷态修饰的金属硫化物催化剂的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910359800.5 (22)申请日 2019.04.29 (71)申请人 淮北师范大学 地址 235000 安徽省淮北市东山路100号 (72)发明人 孟苏刚 郑秀珍 吴惠惠 付先亮  陈士夫  (74)专利代理机构 南京苏高专利商标事务所 (普通合伙) 32204 代理人 柏尚春 (51)Int.Cl. B01J 27/04(2006.01) B01J 37/10(2006.01) C07C 45/27(2006.01) C07C 47/54(2006.01) C07D 307/46(2006.01) (54)发明名称 一种表面缺陷态修饰的金属硫化物催化剂 的制备方法 (57)摘要 本发明公开了一种表面缺陷态修饰的金属 硫化物催化剂的制备方法,包括如下步骤:(1)分 别称取硝酸盐、水合硝酸铟或硝酸镧或硝酸锌、 半胱氨酸三种原料置于装有去离子水的烧杯中, 搅拌溶解,得混合液;(2)将步骤(1)中的混合液 分别转移至聚四氟乙烯内衬中,密封,水热处理 后使用去离子水洗涤、真空烘干,即得表面缺陷 态修饰的金属硫化物催化剂。本发明的催化剂提 高N 2分子反应活性,促进固氮反应的进行。合成 路线简单、易行、 具有通用性。权利要求书1页 说明书7页 附图7页CN 109999837 A 2019.07.12 C N 109999837 A

权 利 要 求 书1/1页CN 109999837 A 1.一种表面缺陷态修饰的金属硫化物催化剂的制备方法,其特征在于:包括如下步骤: (1)分别称取硝酸盐、水合硝酸铟或硝酸镧或硝酸锌、半胱氨酸三种原料置于装有去离子水的烧杯中,搅拌溶解,得混合液; (2)将步骤(1)中的混合液分别转移至聚四氟乙烯内衬中,密封,水热处理后使用去离子水洗涤、真空烘干,即得表面缺陷态修饰的金属硫化物催化剂。 2.根据权利要求1所述的表面缺陷态修饰的金属硫化物催化剂的制备方法,其特征在于:所述步骤(2)中水热处理的温度为200℃。 3.根据权利要求1所述的表面缺陷态修饰的金属硫化物催化剂的制备方法,其特征在于:所述步骤(1)中硝酸盐为硝酸锌。 4.根据权利要求1或3任一项所述的表面缺陷态修饰的金属硫化物催化剂的制备方法,其特征在于:所述步骤(1)的硝酸锌、水合硝酸铟和半胱氨酸摩尔量分别为1.5mmol、1mmol 和3mmol。 5.根据权利要求1或3任一项所述的表面缺陷态修饰的金属硫化物催化剂的制备方法,其特征在于:所述步骤(1)的硝酸锌、水合硝酸铟和半胱氨酸摩尔量分别为2mmol、1mmol和3.5mmol。 6.根据权利要求1或3任一项所述的表面缺陷态修饰的金属硫化物催化剂的制备方法,其特征在于:所述步骤(1)的硝酸锌、水合硝酸铟和半胱氨酸摩尔量分别为2.5mmol、1mmol 和4mmol。 7.根据权利要求1所述的表面缺陷态修饰的金属硫化物催化剂的制备方法,其特征在于:所述步骤(1)中硝酸盐为硝酸镉。 8.根据权利要求1或7任一项所述的表面缺陷态修饰的金属硫化物催化剂的制备方法,其特征在于:所述步骤(1)的硝酸镉、水合硝酸铟和半胱氨酸摩尔量分别为0.5mmol、1mmol 和2mmol。 9.根据权利要求1或7任一项所述的表面缺陷态修饰的催化剂的制备方法,其特征在于:所述步骤(1)的硝酸镉、硝酸镧和半胱氨酸摩尔量分别为0.5mmol、1mmol和2mmol。 10.根据权利要求1或7任一项所述的表面缺陷态修饰的催化剂的制备方法,其特征在于:所述步骤(1)的硝酸镉、硝酸锌和半胱氨酸摩尔量分别为0.75mmol、0.25mmol和2mmol。 2

新型半导体光催化剂——纳米氧化亚铜的性质以及应用研究

新型半导体光催化剂——纳米氧化亚铜的性质以及应用研究 作者:黄祖斌 摘要:综述了纳米氧化亚铜作为半导体光催化材料的性质和在污染降解方面的应用。全文分三部分,首先对半导体光催化材料的应用现状进行了阐述;然后简要对纳米氧化亚铜作为半导体光催化材料的结构和电磁性能进行分析,详细描述了半导体光催化的光催化机理;最后,指出了该材料目前研究的前沿状况同时也指出了其目前的研究困境和需要进一步改善的方面。 关键词:纳米氧化亚铜;光催化,电子—空穴对;光量子产率及光能利用率 1.引言 近几十年来,随着现代化工工业的飞速发展,工业废气、废水、农业农药和生活垃圾等污染物的骤增,使人类赖以生存的环境——空气和水源受到日益严重的污染。这些污染物可归为3类:(1)有机污染物(R);(2)元机污染物;(3)有害金属离子(M )和有害氮氧化合物(NO x )。不容置疑,空气和水的净化、解毒已成为人们必须十分重视的环境保护研究课题。传统的污染处理措施.如空气分离(air-stripping)、碳吸附(carbon—absorption)等,只是对有机、元机污染物的一种转移、转化、稀释处理,没从根本上把它们分解成无毒物质,有时还造成二次污染;而采用氧化和臭氧处理的方法,因为可能会对环境带来其它副作用,具有风险性而被弃用在环境保护应用方面。近20多年来.光催化技术作为一种行之有效的方法对环境污染物具有很好的处理效果,因而成为研究的热点问题。其中半导体异相光催化因其能够完全催化降解污染空气和废水中的各种有机物和无机物而成为最引人注目的新技术,该技术能将许多有机污染物可以完全降 解成为C02、H 20、C1-、P0 4 3-等无机物,从而使体系的总有机物含量(TOC)大大降 低;许多无机污染物如CN-、NO x 、NH 3 、H 2 S等也同样能通过光催化反应而被降解。 半导体光催化是指半导体催化剂在可见光或紫外光作用下产生电子——空穴对,吸附在半导体表面的02、H 2 0及污染物分子接受光生电子或空穴,从而发生一系列的氧化还原反应,使有毒的污染物得以降解为无毒或毒性较小的物质的一种光化学方法:此法可在常温下进行,可利用太阳光,具有催化剂来源广、价廉、无毒、稳定、可回收利用、无二次污染等优点。目前降解有机污染物的光催 化剂多为N 型半导体材料.如TiO 2、ZnO 、CdS、WO、SnO 2 、Fe 2 3 等。但在众多 半导体光催化剂中,二氧化钛、纳米氧化亚铜因其氧化能力强、催化活性高、稳定性好等优势一直处于光催化研究的核心地位。本文就纳米氧化亚铜作为优质半导体催化材料进行阐述。 2纳米氧化亚铜结构 Cu 2 O的晶格结构是带有共价性低配位的所谓红铜矿(氧化亚铜)型结构,如图1

介孔半导体化氧化物和硫化物的研究进展

介孔半导体化氧化物和硫化物 的研究进展 尹贻彬 汤德平 李湘祁 曾国坪 陈琼霞 (福州大学材料科学与工程学院,福建福州350002) 摘要 非硅组成的介孔金属氧化物和硫化物半导体材料在光、电、催化和传感等诸多领域展示了独特的应用前景。介绍了最近几年来国内外有关半导体介孔材料合成和应用的研究动向及最新研究成果,内容包括半导体金属氧化物和硫化物等。 关键词 介孔金属氧化物 介孔金属硫化物 合成 应用 收稿日期:2005-08-25 基金项目:福州大学科技发展基金资助项目(2003-X Q-03,2004-XQ-01),福建省教育厅资助项目(JB01002) 作者简介:尹贻彬(1979~),男,硕士生,主要从事半导体介孔金属硫化物合成研究 李湘祁(1968~)男,副教授,E-mail:chligan@https://www.wendangku.net/doc/21578737.html, The Current State Researches of Mesoporous Semiconducting Metal Oxides and Sulfides Yin Yibin Tang Deying Li Xiangqi Zeng Guoping Chen Qiongxia (Fuzhou Univesity Institute of Science and Engineering of Materials,Fujian Fuzhou 350002) Abstract Non-silicated metal oxides and sulphides are expec ted to show potential uses in many fields such as catal ysis,optics,electricity and gas sensors.The current state researches of this kind of mesostructured materials,including the synthesis and applications of mesoporous semiconducting metal oxides and metal sulfides were reviecved. Keywords mesostructured metal oxides mesostmc tured metal sulfides synthesis applica tion 自1992年Mobil 公司采用长链有机表面活性剂作模板剂成功地制备出介孔SiO 2材料以来,介孔材料以其极高的比表面积、规则有序的孔道、狭窄的孔径分布、孔径大小连续可调等优异特性很快引起了世界各国学者的共同关注[1]。 按照化学组成,介孔材料可分为硅基和非硅基两大类,前者包括MC M 4lS 、HMS 、MSU 、SBA 等系列,后者主要包括金属氧化物、硫化物、磷酸盐和介孔碳等。金属氧化物、过渡金属氧化物、稀土氧化物和硫化物中许多都有半导体性质,在光催化、光电器件、光致变色材料、电致变色材料等方面展示良好的应用前景。 1氧化物介孔材料 1 1 介孔氧化锌 最早的介孔氧化锌是1994年由Q S Huo [2]等人 报导的,随后其它学者陆续发表了相关的研究报 导[3、4] 。早期合成的这些介孔氧化锌都是层状结构,在煅烧去除表面活性剂的过程中,介孔结构发生坍塌,因此得到的都不是真正意义上的介孔材料,直到2003年J.T Jiu 等以甲基丙烯酸-2-羟乙酯(HE MA)与乙二醇二甲基丙烯酸(EGDMA)共聚后形成的凝胶体为模板才合成了结构稳定的介孔氧化锌[5]。他们将模板浸在硝酸锌的甲醇溶液中,然后通过煅烧去除模板得到了介孔氧化锌。这种方法形成的介孔结构虽然不如液晶相那么有序,但它可通过改变交联度来调控孔结构,当[HE MA]/[E GDMA ]=1000时,合成的介孔氧化锌比表面积为115m 2/g,孔径分布窄,随着[HEMA]/[EGDMA]减小,孔径分布变宽,比表面积下降。最近GH Ning 报道用八胺(ODA) 50 第19卷第11期2005年11月 化工时刊Chem ical Industry Tim es Vol.19,No.11Nov.11.2005

茂金属催化剂的合成资料

本科课程论文 《茂金属催化剂的合成简述》 课程名称高等有机化学 姓名梁腾辉 学号 1014122020 专业高分子材料科学与工程 任课教师程琳 开课时间 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:年月日

茂金属催化剂的合成简述 摘要简要介绍了几种茂金属催化剂的有机合成以及其催化机理。 关键词茂金属催化剂合成催化 1 前言 烯烃聚合用茂金属催化剂通常指由茂金属化合物作为主催化剂和一个路易斯酸作为助催化剂所组成的催化体系,其催化聚合机理现已基本认同为茂金属与助催化剂相互作用形成阳离子型催化活性中心。茂金属催化剂一般指由过渡金属元素(如IV B 族元素钛、锆、铪)或稀土金属元素和至少一个环戊二烯或环戊二烯衍生物作为配体组成的一类有机金属配合物。茂金属催化剂具有极高的活性特别是茂锆催化剂含一克锆的均相茂金属催化剂可以催化100t的乙烯聚合但同时助催化剂的用量也是相当大的甚至Al/Zr>2000这在生产中意义不大。因此必须想法设法得倒活性高助催化剂用量少的茂金属催化剂[1]错误!未找到引用源。。 2 茂金属催化机理 均相茂金属催化剂主要分为非桥联单茂金属催化剂、非桥联双茂金属催化剂、桥联型茂金属催化剂、限制几何构型茂金属催化剂以及双核茂金属催化剂等。若茂金属催化剂以烷基铝氧烷为助催化剂,其催化机理是一个形成单一阳离子活性中心的机理。在茂金属催化体系中,一般要求助催化剂MAO必须达到一定的浓

度,以便能够引发催化反应的进行[2]错误!未找到引用源。。其机理如下图所示:3 茂金属的合成 金属有机化合物的制备和处理操作都采用Schlenk 技术,在氮气氛围条件下进行无水无氧操作,所用玻璃反应容器都进行真空烘烤干燥。四氢呋喃、乙醚、甲苯,在氮气氛围下以钠、钾合金/二苯甲酮回流至溶液变成紫色,并在氮气保护下蒸出,封口备用。二氯甲烷、正已烷、石油醚(60 ~ 90°C),在氮气保护下与CaH粉末混合,搅拌回流两天后,在氮气氛围下蒸入安瓶中封口备用[3]错误!未找到引用源。。 3.1 非桥联五甲基环戊二烯水杨醛亚胺铬化合物的合成(非桥联单茂) 此类催化剂结构特征是有一个茂环作为配体:Cp.MR3(CP.=取代环戊二烯基等;M=Zr,Ti,Hf,Cr等;R=卤素、烷基、Oar、RNAr等)这类催化剂具有较大的配位空间,有利于具有较大位阻的烯烃单体的配位插入,但对于构型的控制一般较差[3]。 3.2二甲基二茂锆化合物(1,2-Phz-4-MeCp)2 ZrMe2的合成 两个茂环与中心金属原子配位,从而形成夹心结构,即所谓的非桥联双茂金属催化剂。该系列催化剂用于催化乙烯聚合,由于乙烯配位插入时不存在潜手性α

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备,表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。

茂金属催化剂催化烯烃聚合反应研究的综述

关于“茂金属催化剂催化烯烃聚合反应研究”的文献检索综述 摘要:本文综述了近年来带有给电子配体的单茂金属化合物应用于烯烃聚合的研究。带有给电子配体的单茂金属化合物是目前烯烃配位聚合催化剂的研究热点之一。作为新型的聚合催化剂, 这类催化剂具有合成简单、结构清晰的特点, 用于催化烯烃聚合, 可得到高聚合活性, 同时得到高分子量聚合物。用于共聚时, 具有很好的共聚能力。通过共聚, 可以得到用Ziegler2Natta 催化剂和传统茂金属催化剂不能得到的新的共聚物。通过调整催化剂上茂配体和给电子配体的结构, 可以方便地调节聚合行为, 从而调整聚合物的结构。文中涉及了乙烯、A2烯烃的均聚与共聚, 乙烯与环烯烃共聚合等方面的研究。 关键词单茂金属烯烃聚合给电子配体共聚合 Abstract The present article reviews the recent progress of metallocene with donor ligand( s) as catalyst for olefin polymerization. Metallocene with donor ligand( s) is an important type of catalyst for olefin polymerization, and attracts more and more attentions. As a novel type of polymerization catalyst, the complexwith clear structure could be synthesized in simple procedure. Using as catalyst for olefin polymerization, high activity is available, and affording polymer with high molecular weight. For olefin copolymerization, excellent copolymerization ability could be observed, and some of the obtained copolymers could not be produced by Ziegler2Natta catalyst and traditional metallocene catalyst systems. Polymerization behavior and polymer structure could be adjusted through balancing the structures of cyclopentadienyl ligand and donor ligand. The homo2 and co2polymerization of ethylene and A2olefin, copolymerization of ethylene and cyclic olefin, and styrene polymerization are involved. Key words metallocene; olefin polymerization; copolymerization 聚烯烃是日常生活中最重要的合成聚合物材料,传统材料如聚乙烯(HDPE,LLDPE)、聚丙烯(PP)市场还在不断扩张。近年来,具有新型功能、高附加值的聚烯烃材料逐渐引起研究人员的关注。因为新型材料具有高性能、易于回收、污染小、成本低等特点,如环烯烃共聚物(COC)、乙烯2苯乙烯共聚物等,可取代传统上高成本的材料。过渡金属催化剂可以有效地控制配位聚合。从传统的Ziegler2Natta催化剂到茂金属催化剂,到非茂金属和后过渡金属催化剂来看,烯烃聚合发展的历史就是烯烃聚合催化剂发展的历史。可以说,催化剂技术是聚烯烃工业的命脉。另一方面,烯烃聚合催化剂的发展也促进了催化化学和金属有机化学的基础研究。20世纪80年代以来茂金属催化剂的研究充分说明了这一点。[1]与传统的Ziegler2Natta催化剂相比,茂金属和其他均相催化剂(非茂金属和后过渡金属催化剂)具有更优良的聚合行为,可以赋予聚合材料独特的结构和性能。[1][2]许多高成本和高毒性的材料可以用低成本,环境友好和易于回收的聚烯烃材料代替。 设计新型的有效烯烃聚合过渡金属催化剂必须考虑到一下几点:聚合活性、聚合物分子量及分子量分布、共聚合能力等。配体是设计新型催化剂的关键。配体结构的微小变化可能会引起催化剂性能的巨大变化。一般来说,配体的立体效应、电子效应及其所造成的催化剂构型对催化剂性能有重要影响。所以要精心平衡配体的各种因素,实现烯烃的可控聚合。配体设计主要有以下几个原则:(1)配体与过渡金属作用后,可以形成高效、广谱的烯烃聚合催化剂。(2)配体易于制备。简单的合成路线合和廉价的原料不仅使研究周期短,同时也可以降低研究成本,有利于后期可能的工业应用。更重要的是,简单的和成路线允许方便有效的调整配体上的取代基团,从而平衡络合物中的立体和电子效应,达到可控聚合的目的。(3)

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备, 表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。 1.1研究背景与意义

茂金属催化剂的研究进展及发展趋势

茂金属催化剂的研究进展 及发展趋势 Last revision on 21 December 2020

茂金属催化剂的研究进展及发展趋势 近几年出现了一种新型聚合催化剂,称为茂金属催化剂,应用此催化剂可以生产出具有新物理性能的塑料。茂金属聚烯烃就是以茂金属配位化合物为催化剂,进行烯烃聚合反应所制的的聚合物。茂金属聚合物加工性能好、强度高、刚性和透明性好,耐温,耐化学药品等方面的性能得到了显着的改善,许多用传统催化剂难以合成的材料,在采用茂金属催化技术后变得容易进行。在烯烃聚合物合成中茂金属催化剂正在替代传统催化剂。茂金属催化剂在全球增长非常迅速,具有广阔的应用和市场前景。 一、茂金属催化剂简介 茂金属催化剂是由过渡金属锆(Zr)(也可是钛等)与两个环戊二烯基或环戊二烯取代基及两个氯原子(也可是甲基等)形成的有机金属络合物和助催化剂甲基铝氧烷 (MAO,Methylalummoxane)组成的。其中具有环戊二烯基的有机金属络合物亦称茂金属化合物(Metallocene),中文称环戊二烯。 金属催化剂一般由有机金属络合物、助催化剂、载体三个组分组成。在溶液聚合中不需要载体,有机金属络合物是由过渡金属与各种有机物取代基相结合构成的,其占催化剂的质量分数为1%-2%。助催化剂通常为铝氧化物和氟化有机硼酸盐混合物,具有强化过渡金属系统的作用,与有机金属络合物相比,常常被过量应用。茂金属催化剂的活性是齐格勒一纳塔型催化剂的2-5倍。 现在很多茂金属催化剂被深人研究和充分利用。具有一个以金属为中心的催化剂不同于具有多个中心的传统催化剂(如齐格勒一纳塔催化剂、铬催化剂、钒催化剂),茂金属催化剂的金属催化活性中心处于闭合的空间中,到达其单体的同结构的聚合物。所形成的聚合物提高了强度、硬度、透明度和轻便性。除此之外,可以在更廉价的生产工艺中获得具有指定性能的专用塑料,包括结构塑料。 二、茂金属催化剂的性能特点 茂金属催化剂的性能特点有: (1)超高活性。以过渡金属计,其活性大约相当于氯化镁载体类催化剂的10倍以上。 (2)相对分子质量及组成分布极窄,其Mw[ TX- ] /Mn [ TX-]一般都可低于2(理论值为1),而用钛基齐格勒一纳塔催化剂时,则为3-8;用铬催化剂时则为8-30组成分布也很均匀,如共聚单体宏观质量分数为10%的极低密度聚乙烯,每个分子链中,其共聚单体的

光解水制氢半导体光催化材料的研究进展

光解水制氢半导体光催化材料的研究进展 田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1 (1. 中国科学院地球化学研究所,贵州贵阳550002 ; 2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030) 摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 1021489204 1 引言 在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) , 导带中引入了光生电子(e - ) 。光生空穴和光生电子分别具有氧化和还

原能力。要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 / H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。 2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示: 图1 部分半导体材料的能带结构示意图 Fig 1 Schematic diagram of band st ructure for some semiconductor s TiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。具有代表性的

茂金属催化剂

茂金属催化剂 1.1 茂金属催化剂 早期聚乙烯催化剂是不含金属组分的空气(氧)或过氧化物,同时也不用溶剂。所得聚乙烯质地最纯,加工性能、制品的柔软性和透明性都是其它聚乙烯产品所不能取代的。这是聚烯烃生产中唯一不用催化剂的品种。不过由于能耗和市场等原因,近年来的发展速度已经落后于其它品种。 目前应用较多的催化剂称为“过渡金属催化聚合”,是指主催化剂中含有过渡金属元素的催化体系,过渡金属元素则以钒和钛为主。这类催化剂体系的首创者为德国的 Karl Ziegler和 Giulio Natta,他们曾经因此而获得1963年诺贝尔化学奖,所以通称为Ziegler-Natta催化剂。 由茂金属和助催化剂组成的烯烃聚合催化剂。与常用的齐格勒催化剂相比,具有更高的活性(工业生产上常以每单位容积(或质量)催化剂在单位时间内转化原料反应物的数量来表示,如每立方米催化剂在每小时内能使原料转化的千克数)。茂金属催化剂的代表性基本结构是茂,茚,芴的金属化合物,助催化剂主要有甲基铝氧,如二环戊二烯基二氯合锆[bis(cyclopenta-dienyl) zirconium dichloride]与甲基铝氧(CH3AlO)组成的催化剂用于乙烯聚合,活性比齐格勒催化剂高数十倍。 相对传统Ziegler-Natta催化剂,茂金属催化剂有4个显著的特征: (1)单活性中心优势:因为它的金属原子一般都处在受限制的环境条件下,只允许聚合单体单个进入催化活性点上,因此,它可以形成比较整齐一致而且可以重复制取的聚合物结构,分子量分布和组成分布窄,可生产极均一的均聚物和共聚物。 (2)单体选择优势,能使任何a-烯烃单体聚合。 (3)立体选择优势,能使用a-烯烃聚合生成立构规整度极高的等规或间规聚合物。 (4)可以控制聚合物中乙烯基的不饱和度,可以严格控制聚合过程,使其能持续生产均匀一致的聚合物。 目前茂金属催化剂技术已经成为全球性聚烯烃领域新的开发方向,其相对于目前主流Ziegler-Natta催化剂优势极为明显。 1.2 茂金属烯烃聚合物 茂金属烯烃聚合物是一代新型树脂,以茂金属配位化合物为催化剂,进行烯烃聚合反应所制得,以下均简称茂金属聚烯烃。相比传统的Ziegler-Natta工艺,茂金属烯烃聚合工艺具有更高的灵活性和可控性,广泛应用在弹性体、通用塑料、工程塑料、玻璃、纸以及部分金属中,具有良好的市场前景,部分茂金属聚合物的性能甚至已经延伸到特种工程塑料性能领域,并有逐渐替代普通聚烯烃材料的趋势和潜能。 目前世界范围内已开发的茂金属材料品种繁多,主要有:茂金属聚乙烯(m-PE)、茂金属聚丙烯(m-PP)、茂金属乙丙橡胶(m-EPDM)、茂金属塑性体(POP)、茂金属弹性体(POE)、茂金属聚苯乙烯(m-PS)、茂金属环烯烃共聚物(COC)等。

(精选)半导体材料光催化作用的机理

半导体光催化机理 纳米二氧化钛主要有二种晶体结构,即:锐钛矿和金红石。它们的结构基本单位都是TiO 6八面体,其结构如图1-1所示。二种结构的不同在于八面体的扭曲程度和连接形式。锐钛矿结构由TiO 6八面体通过共边组成,而金红石结构则由共顶点且共边组成。利用纳米TiO 2为光催化剂,在溶液或空气中发生多相光催化降解污染物的反应过程大致包括以下几个主要步骤[5]: 1)TiO 2在光的照射下,被能量大于或等于其禁带宽度的光子所激发,产生具有一定能量的光生电子(e -)和空穴(h +); 2)光生电子(e -)和空穴(h +)在TiO 2颗粒的内部以及界面之间的转移或失活; 3)光生电子(e -)和空穴(h +)到达TiO 2粒子表面并与其表面吸附物质或溶剂中的物质发生相互作用,即发生氧化还原反应,从而产生一些具有强氧化性的自由基团(?OH ,O 2-)和具有一定氧化能力的物质(H 2O 2)。 4)上述产生的具有强氧化性的自由基团和氧化性物质与被降解污染物充分作用,使其氧化或降解为CO 2与H 2O 。 Fig. 1-1 Ti -O 6 octahedron 图1-1 钛氧八面体 H OH Organic h e +— E g O 2O 2-H 2O OH +2-water 2 2Compounds CO 2 2VB CB sun hv + - ·OH Fig. 1-2 Schematic diagram of photocatalytic degradation on semiconductor photocatalysts (TiO 2) [6]

图1-2 半导体光催化反应原理示意图(TiO 2 )[6] 以锐钛矿TiO 2光催化材料为例,当TiO 2 光催化剂受到大于其禁带能量的光 照射时,在其内部和表面都会产生光生电子和光生空穴。一部分光生电子和光生空穴参与光催化反应,另外一部分光生电子与空穴会立即发生复合,以热量的形式散发出去。如果二氧化钛中没有电子和空穴俘获剂,储备的光能在几毫秒的时间内就会通过光生电子和空穴的复合以热能的形式释放出来,或以其它形式散发掉;如果在二氧化钛的表面或者体相中有俘获剂或表面缺陷态时,能够有效阻止光生电子和空穴的重新复合,使电子和空穴有效转移,从而能在催化剂表面发生一系列的氧化-还原反应,将吸收的光能转换为化学能。如图1-2所示[6,7]。以下是一些具体的化学反应式: TiO 2 + h→ h vb+ + e cb- (1-1) h vb + + e cb -→ heat (1-2) h vb + + H 2 O →·OH + H+ (1-3) h vb + + OH-→·OH (1-4) e cb - + O 2 →O 2 -· (1-5) O 2-· + O 2 -· + 2H+→H 2 O 2 + O 2 (1-6) O 2-· + H+→HO 2 · (1-7) HO 2· + H+ + e cb -→H 2 O 2 (1-8) H 2O 2 + h→2·OH (1-9) H 2O 2 + e cb -→·OH + OH- (1-10) 上面的反应式子中,羟基自由基(·OH)和超氧离子自由基(·O 2 -)都有很强 的氧化性,无论它们在气相还是在液相中,都能将一些有机或无机物质氧化,因此,一般认为,·OH和·O 2 -是光催化氧化中主要的也是最重要的活性基团,可 以氧化包括自然界中生物难以转化的各种有机物污染物并使之最后降解成CO 2 、 H 2 O和无毒矿物。对反应的作用物几乎没有选择性,在光催化氧化反应过程中起着决定性作用。而且由于它们的氧化能力强,氧化反应一般不会停留在中间步骤,因而一般不会产生中间副产物。故这种深度氧化的过程在处理环境污染物中具有很大的应用前景,例如:水中的无机、有机污染物卤代烃、芳烃、染料、杀虫剂和除草剂等物质均可根据此原理进行降解除去。但是它们的最大缺点之一是对反应物没有选择性,一定程度上制约了其发展。

茂金属催化剂的研究进展及发展趋势

茂金属催化剂的研究进展及发展趋势 近几年出现了一种新型聚合催化剂,称为茂金属催化剂,应用此催化剂可以生产出具有新物理性能的塑料。茂金属聚烯烃就是以茂金属配位化合物为催化剂,进行烯烃聚合反应所制的的聚合物。茂金属聚合物加工性能好、强度高、刚性和透明性好,耐温,耐化学药品等方面的性能得到了显著的改善,许多用传统催化剂难以合成的材料,在采用茂金属催化技术后变得容易进行。在烯烃聚合物合成中茂金属催化剂正在替代传统催化剂。茂金属催化剂在全球增长非常迅速,具有广阔的应用和市场前景。 一、茂金属催化剂简介 茂金属催化剂是由过渡金属锆(Zr)(也可是钛等)与两个环戊二烯基或环戊二烯取代基及两个氯原子(也可是甲基等)形成的有机金属络合物和助催化剂甲基铝氧烷(MAO,Methylalummoxane)组成的。其中具有环戊二烯基的有机金属络合物亦称茂金属化合物(Metallocene),中文称环戊二烯。 金属催化剂一般由有机金属络合物、助催化剂、载体三个组分组成。在溶液聚合中不需要载体,有机金属络合物是由过渡金属与各种有机物取代基相结合构成的,其占催化剂的质量分数为1%-2%。助催化剂通常为铝氧化物和氟化有机硼酸盐混合物,具有强化过渡金属系统的作用,与有机金属络合物相比,常常被过量应用。茂金属催化剂的活性是齐格勒一纳塔型催化剂的2-5倍。 现在很多茂金属催化剂被深人研究和充分利用。具有一个以金属为中心的催化剂不同于具有多个中心的传统催化剂(如齐格勒一纳塔催化剂、铬催化剂、钒催化剂),茂金属催化剂的金属催化活性中心处于闭合的空间中,到达其单体的同结构的聚合物。所形成的聚合物提高了强度、硬度、透明度和轻便性。除此之外,可以在更廉价的生产工艺中获得具有指定性能的专用塑料,包括结构塑料。 二、茂金属催化剂的性能特点 茂金属催化剂的性能特点有: (1)超高活性。以过渡金属计,其活性大约相当于氯化镁载体类催化剂的10倍以上。 (2)相对分子质量及组成分布极窄,其Mw[ TX- ] /Mn [ TX-]一般都可低于2(理

茂金属催化剂 ——聚烯烃新技术的基础

茂金属催化剂---聚烯烃新技术的基础 清华大学化学系宋心琦 聚烯烃简介 聚烯烃又称烯烃聚合物,是世界上聚合物中产量最大的产品。自1939年聚乙烯开始工业化以来,至今已有70 多年的历史。随着聚乙烯的发展、聚丙烯的问世、其它烯烃聚合物的工业化进程也先后完成,于是就有了聚烯烃作为这类聚合物的总称,实际并没有十分严格的定义,一般认为,聚烯烃是脂肪族单烯烃的均聚物和它与其它烯烃的共聚物的一个总称。而且限定为固体聚合物,不包括液体或石蜡状聚合物在内。虽然聚烯烃还可以细分为塑料与弹性体,但是通常所说的‘聚烯烃’仅指聚烯烃树脂(或聚烯烃塑料)。 1990年,全世界的聚乙烯和聚丙烯的总产量分别为57.06Mt 和30.56Mt。所消耗的原料在乙烯和丙烯总产量中分别占到53.3%和39.8%。当年全世界的塑料总产量约100Mt,其中聚烯烃占到40%以上(我国2008年的聚烯烃产量已达到0.103 Mt)。聚乙烯和聚丙烯不仅在整个石油化工下游产品中占有很高的份额,年增长率也高于其它合成树脂,在塑料工业中,有着举足轻重的地位。固然和原料来源充足、价格低廉不无关系。更重要的是,聚烯烃材料具有性能优异、能够同时覆盖塑料、纤维和橡胶的应用领域的优点。例如通过共聚改性等途径,可以开发出高抗冲击、高耐热性、高透明度、低热封温度和导热、导磁以及高性能屏蔽性材料等。因此聚烯烃合成工艺的开发和研究一直是高分子化学和塑料工业的热门课题之一。 在聚烯烃的技术发展过程中,早期聚乙烯的生产用的是高压自由基聚合工艺。所用引发剂是不含金属组分的空气(氧)或过氧化氢,同时也不用溶剂。所得聚乙烯质地最纯,加工性能、制品的柔软性和透明性都是其它聚乙烯产品所不能取代的。这是聚烯烃生产中唯一不用催化剂的品种,不过由于能耗和市场等原因,近年来的发展速度已经落后于其它品种。所以催化聚合方法和催化剂的研究与开发是聚烯烃生产技术中竞争最激烈、进步也最迅速的一个领域。 除去传统的高压法外,聚烯烃的其他生产工艺几乎都离不开催化剂。这类催化聚合作用有着不同的名称,如?配位聚合?、?配位催化聚合?或?催化聚合?,但以催化聚合最为简明易懂。所谓?过渡金属催化聚合?,指主催化剂中含有过渡金属元素的催化体系,过渡金属元素则以钒和钛为主。这类催化剂体系的首创者为德国的Karl Ziegler和Giulio Natta(他们曾经因此而获得1963年诺贝尔化学奖),所以通称为Ziegler-Natt a催化剂。但是并不包括全部过渡金属催化剂,如美国Philips公司后来开发的铬系氧化物催化剂,就不属于Ziegler -Natta催化剂的范畴。 茂金属--第三代过渡金属催化剂 已有的过渡金属催化剂体系大致可以分为三代,第一代钛系催化剂的主催化剂是四氯化钛(TiCl4),助催化剂是一氯二乙基铝(C2H5)2AlCl,(最早的Ziegler-Natta催化剂中用的

相关文档