文档库 最新最全的文档下载
当前位置:文档库 › 104电空制动系统

104电空制动系统

104电空制动系统
104电空制动系统

制动系统

前言

牵引与制动是一对矛盾,人为地使列车减速或阻止它加速叫做制动。制动是调速的一种特殊形式。当车辆需要减速、停车或在长大下坡道上运行需要限制列车的速度时,都必须采取制动措施,控制车辆的运行速度。现代铁路运输的安全性,在很大程度上取决于车辆制动性能的好坏。随着铁路运输的发展,行车速度的不断提高,对车辆的制动性能也相应提出了更高的要求,以更好的保证列车高速运行时的安全性和可靠性。

第一节总述

1. 概述

本车采用104集成式电空制动机,其电空制动系统包括列车管、总风管、104集成式电空阀、气路控制箱(餐车没有)、球芯截断塞门与集尘器联合体、副风缸、总风缸1、总风缸2(餐车没有)、工作风缸、缓解风缸、进口SAB电子防滑器、球芯折角塞门、排风塞门、紧急制动阀、止回阀及截断塞门等,车上设有排风塞门拉把,具体参见附图一:带气路控制箱电空制动系统原理图。

制动机、气路控制箱、各种风缸及管路等通过螺栓及管卡吊挂于车辆底架下,各大部件通过管路连接起来,管路上设有各种截断塞门、止回阀等。

各截断塞门手把顺着管子方向为开启,垂直管子为关闭,车辆运行时各风缸下部排水塞门必须处于关闭状态。注:各风缸排水塞门为防石击型,须用三角钥匙来开启或关闭。

手制动装置安装于一位角外端墙上,下部由手制动拉杆与一位盘形制动缸相连。

2.主要技术参数

列车管、总风管压力 600kPa

副风缸容积 234L

工作风缸容积 11L

紧急制动时制动缸压力 420±10kPa(104集成式电空阀)

总风缸1、总风缸2容积 120L(餐车没有总风缸2)

缓解风缸容积 40L

3.主要特点

①列车纵向管路采用整体管排上车,使得车下管路布置整齐有序,固定牢靠,

安装方便,为实现纵向管路车下组装、整体吊装提供了有利的条件。

②生活用风(塞拉门和集便器)与空簧用风采用两路独立的辅助供风系统,互不影响,提高了供风质量。

③采用104集成式电空制动机,增设了防护罩,能更有效地防水、防尘,便于维护和检修,并提高了车辆高速运行时的防石击能力。

④装有气路控制箱,便于操作和维护,其全封闭结构能有效地提高防石击能力。

⑤在列车管和制动缸管路中设有压力传感器测试点,为行车安全监测装置提供压力信号。

第二节104集成式电空阀

1 简要说明

最近这些年来,随着旅客列车运行速度的不断提高,对铁路运营的安全以及旅客在列车运行中的舒适度也有了更高的要求,旅客列车电空制动机的使用,不仅对列车运行的安全提供了一定的保证,并且它的制动和缓解性能的提高,减少了旅客列车在运行中调速和停车时的纵向冲动,这就提高了旅客列车运行的平稳性,尽可能地满足旅客乘车时的舒适度。

现已装车运用的104型电空制动机,其结构型式是在104空气制动机的基础上设计而成的,主要是增设了电空阀座,并将其安装在104制动机的主阀和中间体之间,原主阀与中间体的相关气路依旧相通。因为当时要保持原有的装车条件不变,主要是为了旧车改造的方便,从而使得电空制动机的结构显得略微庞大,安装、检修不便。经过对104电空制动机的多年安装、使用及试验,我们认为可将104电空制动机改为集成式安装,这样的话,可方便电空制动机的安装、检修和维护,且其整体结构将趋于紧凑、合理。我们主要对104型电空制动机在安装、使用及性能方面作进一步的探讨和研究,提高104型电空制动机这项技术的各项指标或性能,以适应提速旅客列车的安全运行要求。

2 整机技术指标

2.1 适用范围

适用于所有装有自动式制动系统的客车。

2.2 使用环境

所有电器部件符合电器通用标准,电器部分、空气部分均适应温度±50℃,相对湿度 85%。

2.3 采用板式安装,正面安装阀类部件,背面安装各容积风缸及进行管路连接。

2.4 电空制动用电磁阀与原有104电空制动机的电磁阀一致,有良好的通用性和互换性,额定工作电压直流110V。

2.5 采用自动作用式。

2.6 常用全制动制动缸压力为420kPa。

2.7 具有电空紧急制动功能,紧急制动制动缸压力为420±10kPa。

2.8 具有阶段缓解性能功能,阶段缓解次数不少于5次。

2.9 电气失效后,列车能自动转为空气制动机状态。

2.10 能与现有装有104电空制动机的客车混编使用。

2.11 实现真正意义上的集成,可根据不同需求进行部件的选择安装组成,可实现104空气制动、104电空制动等功能。

3 104型集成电空制动机的特点

104电空制动机的集成化研究,就是将电空制动机的所有零部件集中安装在一块集成板子上,并有外罩把这些部件罩住,外罩的作用主要是为了防尘和密封,取消了104制动机的中间体。在集成板上,正面装有104主阀,紧急阀,充气阀,电磁阀,电磁阀安装座等;集成板背面有容积室组合,包括容积室(3.85升),紧急室(1.5升),局减室(0.6升),列车管、副风缸、工作风缸、制动缸、缓解风缸的法兰接口,电空制动用电缆线接口G3/4″。这样,所有阀类等零部件在安装板的正面,容积风缸和管路连接在集装板后面。

下图为104电空制动集成板的正面安装及背面示意图。

(正面)

1—集成安装板 2—104主阀 3—104紧急阀 4—保压电

磁阀 5—制动电磁阀 6—缓解电磁阀 7—充气阀 8

—电磁阀安装座 9—保压管 10—穿电缆线口G3/4″ 11

—接线端子

12—列车管法兰接头 13—制动缸法兰接头 14—副风缸法兰接头 15—缓解风缸法兰接头 16—工作风缸法兰接头 17—容积室组合

4 主要部件及作用说明

4.1 集成安装板

用来安装制动机阀类、电器件、容积风缸、法兰接头及其他部件。

4.2 104主阀

104主阀为普通104空气制动机的主阀,其可与运用车的104主阀互换。

4.3 104紧急阀

104紧急阀为普通104空气制动机的紧急阀,其可与运用车的104紧急阀互换。

4.4 电磁阀安装座

用来安装各电磁阀、充气阀及接线端子等,可以整体拆下,方便检修。4.5 电磁阀

104集成电空制动机共设三个电磁阀:缓解、保压和制动三个电磁阀为结构相同,采用了与原104电空制动机一致的电磁阀,相互之间可以互换使用。4.5.1 制动电磁阀

制动电磁阀的常闭阀口遮断了列车管到大气的通路,当它得电时,常闭阀

口打开,接通列车管到大气的通路,列车管的压力空气通过制动电磁阀排入大气;失电时,则停止排气。这样可以用制动电磁阀的得失电来控制列车管的排气。4.5.2 缓解电磁阀

缓解电磁阀是用来控制缓解风缸与列车管之间的通路,失电时是常闭位,遮断了两者之间的通路;得电沟通了缓解风缸和列车管,当缓解风缸内的压力高于列车管时,则缓解风缸内的压力空气会流向列车管。

4.5.3 保压电磁阀

保压电磁阀是用来控制104主阀容积室排气口到大气的通路,用的是它的常开位,无电时此通路畅通,保证容积室到大气的通路;得电时则切断该通路,如果容积室内有空气存在,则不能排出。

4.6 充气阀

充气阀相当于原104电空制动机电磁阀安装座上的充气止回阀,只是结构有所变化,缓解风缸的压力空气可以由副风缸通过该充气阀充风。如果将副风缸换成总风缸,也可以满足缓解风缸的充风要求,并且缓解风缸的压力空气不能向副风缸或总风缸逆流。

4.7 保压管

连接104主阀容积室排气口与电磁阀安装座,容积室的压力可由保压电磁阀控制。

4.8 电空制动用电缆线接口G3/4″为穿电空制动用电缆线用。

4.9 容积室组合

容积室组合与安装板采用法兰连接,包含有容积室、紧急室和局减室。4.10 风缸和空气管路接口

共有五个风缸和空气管路接口,都采用法兰连接的方式,分别为列车管(连接车辆的列车管支管)、制动缸、副风缸(或总风缸)、工作风缸、缓解风缸等法兰接头。

5. 安装使用说明

104型集成电空制动机的各风缸、列车支管、5芯主电缆和电空连接器与原104电空制动机的一致。104型集成电空制动机的安装分空气管路部分和电气部分安装。

5.1 空气管路部分的安装

5.1.1 将104主阀和紧急阀用M16的螺栓紧固在集成安装板的正面,之间用橡胶密封垫密封。

5.1.2 将电磁阀座用4个M10的内六角螺栓紧固在集成安装板上,电磁阀座上的其它部件也要求安装完毕。

5.1.3 用保压管的两端分别接电磁阀座下部的ZG3/8"孔和主阀上的容积室排气

(ZG3/8"接口)。

孔d

3

5.1.4 将容积组合安装在集成安装板的背面,结合处用橡胶密封垫密封。

5.1.5 将副风缸、工作风缸、制动缸、缓解风缸和列车管的法兰接口分别用M12和M16螺栓连接。

5.1.6 将集成安装板用6个M16的螺栓装在集成电空制动机的安装架上,各风缸和列车管按设计要求安装,并分别与集成安装板上的各相应接口连接。其中副风缸、工作风缸、制动缸、缓解风缸的接口为ZG3/4",列车管接口为ZG1"。5.2 电气部分的安装

5.2.3 由车体中间或车上分线盒引出四芯电缆到集成电空制动机安装板的左上角,穿过电空制动用电缆线接口G3/4″后进入安装板的正面,电缆连接器有5芯,四芯电缆编号为1#(红)、2#(绿)、3#(黄)、5#(黑),分别相应接于电磁阀组成上的接线端子,面对接线端子,从左至右的顺号为3,1,2,4,5,此编号相应接于3#-保压电磁阀(+)、1#-制动电磁阀(+)、2#-缓解电磁阀(+)、5#-上述3个电磁阀的(—)。

5.2.4 安装完毕后,检查各电缆的护套是否完整,各线路是否正确、无误,并保证各线芯之间无短路现象。

将装有密封胶条密封罩与集成安装板用搭扣连接,并销开口销,下部有可拆卸的活折页,两侧有防脱链。

6. 104集成电空制动机的综合作用说明

根据电空制动使用时的实际情况,我们首先给出电空制动机中各电磁阀在电空制动作用时的动作情况。

6.1 充气缓解位

也即运转位,客车电空阀的主阀作用与104分配阀的作用完全相同,主阀此时处于充气缓解位,三个电磁阀均不得电。常开的保压电磁阀通路保障着:容积→保压管→保压电磁阀→大气的通路畅通,容积室压力为零,制动缸压力室→d

3

为零;同时列车管压力空气→副风缸→缓解风缸。

电磁阀作用表:

6.2 常用制动位

此时客车电空阀的制动电磁阀得电,列车管的压力空气可经制动电磁阀排向大气。同时,另有少量列车管压力空气由机车中继阀或操纵阀排出,104分配阀处于常用制动位,副风缸向制动缸充气,制动缸升压。如果不考虑机车中继阀的排风作用,那么制动电磁阀得电时间的长短决定着列车管减压量的大小。当控制制动电磁阀间断得失电时,也就得到了阶段制动的作用。

6.3保压位

此时制动电磁阀失电,列车管停止排气,待稳定后分配阀处于正常保压位置,副风缸停止向制动缸充气;且保压电磁阀得电,容积室排气口经保压电磁阀通大气的通路被关断,保持容积室压力,也就使得制动缸压力保持不变。

6.4 制动后的缓解位

此位置仅缓解电磁阀得电,打开缓解电磁阀中缓解风缸与列车管的通路,使缓解风缸的压力空气经电磁阀注入列车管,加快列车管的充气,迅速使主阀处于缓解位。同时由于保压电磁阀失电,使容积室至大气的通路畅通,容积室压力空气经保压电磁阀排入大气,制动缸得以能够缓解。

6.5 制动后的阶段缓解作用

由于容积室压力空气排大气的通路受到保压电磁阀的控制,所以尽管分配阀是一次性缓解阀,在它处于缓解位时,可以通过保压电磁阀的间断得失电,控制着容积室的阶段性排气,而104分配阀为间接作用式,制动缸的压力又受容积室压力的控制,故保压电磁阀的间断得失电,也就控制了制动缸的阶段排气,制动缸得以阶段缓解。

6.6 紧急制动位

紧急制动时,紧急阀同空气紧急制动一样作用,同时制动电磁阀得电,使列车管压力迅速降到零,制动缸快速升压。

其它的作用同原104空气制动机。

7. 104集成电空制动机的故障分析

104集成电空制动机在平时的性能检查、单车试验或者列车运用中可能会出现一些故障,对此必须加以综合分析,找出故障发生的部位及原因,及时排除,以保障运输安全。为此,我们对这类可能的易见的故障、问题及其处理方法作一个详细的介绍:

7.1 电空制动时无相应的电空制动、缓解、保压及阶段缓解作用

7.1.1 原因:电磁阀不动作

处理办法:检查不动作电磁阀相应的电缆、电线是否有断路,检查电磁阀的引线是否正常,如电线回路均正常,则电磁阀内部的阀杆被卡住或电磁阀有其他不易排除的故障,建议更换电磁阀。列车运行中电磁阀的不动作不会对列车运行安全起到不利的作用,只是没有相应的电空制动性能,仅仅是空气制动作用。

7.1.2 原因:相应的气路中有阻塞现象。

处理办法:清理相应的气路即可。

7.2电空作用与试验设备或机车的输出不对应

原因:电磁阀误动作。

处理办法:检查相应的电磁阀、电空制动连接器与其他电磁阀的电器回路是否有短路的现象。

7.3在纯电空制动时,列车管减压过快

原因:主要是电磁阀安装座下方列车管排气口的缩口风堵松动或丢失,造成排风通径过大。

处理办法:应检查电磁阀安装座下方列车管排气口的缩口风堵是否正常。缩口风堵的孔径为φ2.0mm,如有异常,及时处理即可。如不能及时处理,当排风速度太快时,有可能会引起列车、车辆的意外紧急制动。

7.4 在纯电空制动时,列车管减压过慢甚至不排风。

原因:缩口风堵孔径有异物垫住,或者列车管排气道有堵塞。

处理办法:清理通路。

7.5 在失电状态下时,制动电磁阀排风不止

原因:制动电磁阀常闭阀口被异物垫住或阀杆被卡住不能关严,或者是电磁阀内部密封不严

处理办法:可先将该电磁阀通电动作数次,电磁阀仍排风不止,建议更换电磁阀。如在运行途中发生此情况,手头又没有备用电磁阀,可将该电磁阀反装,以堵住各气路,让电磁阀不起作用即可。等有备件后,再换电磁阀。

7.6自缓

7.6.1 原因:主阀故障。

处理办法:上705试验台检修主阀。

7.6.2 原因:缓解电磁阀关不严,造成缓解风缸与列车管相通。

处理办法:更换缓解电磁阀或反装缓解电磁阀,切除缓解电磁阀的作用。

7.6.3 原因:缓解风缸与列车管在电空安装座内部串气。

处理办法:在排除主阀和缓解电磁阀的故障后,仍有自缓发生且可能伴有制动时间偏长,方可对此种故障进行确认,处理办法为更换电空安装座。

7.7 缓解不良或不缓解

7.7.1 原因:主阀故障。

处理办法:上705试验台检修主阀。

7.7.2 原因:保压电磁阀、保压管有堵塞现象。

处理办法:分步排除故障,对故障件可疏通或更换。注意切不能将保压电磁阀反装,这样会造成车辆制动后不缓解。

7.8在阶段缓解时,没有阶段缓解性能

7.8.1 原因:保压电磁阀未动作或漏泄。

处理办法:检修或更换保压电磁阀。

7.8.2 原因:电空安装座或保压管有漏泄,造成在阶段缓解保压时容积室的压力空气仍在从漏泄处排大气。

处理办法:可分步排除漏泄处,尤其以保压管的接头处因拧紧不够造成漏泄为多。有此故障的车辆在阶段缓解时,制动机无阶段缓解性能,只能一次缓解。

7.9 集成安装板漏泄

原因:铸造缺陷。

处理办法:更换集成安装板。

7.10 其他故障

制动机的其它故障及处理与原104空气制动机相同。

8. 104集成电空制动机零部件明细表

第三节104集成式电空制动机单车试验方法

104集成式电空制动机单车试验方法:

1. 主题内容与适用范围

本文件规定了104集成式电空制动机的单车试验方法。

2. 试验准备

2.1 在安装电空阀前,必须先用压缩空气将制动主管、各风管及阀安装面各孔吹净后,再装上电空阀及连接管路。

2.2 单车试验前,必须用压缩空气将风缸内水分及污垢吹净。并进行绝缘测量,用500V级绝缘电阻计测量车辆端头电空连接线各芯对地绝缘,要求不得低于2M Ω。

2.3 单车试验时,车辆上装设的其他风动装置应处于车辆运行时工作状态且不影响制动机的正常作用。

2.4 可采用104集成式电空制动机试验时所用的客车电空制动单车试验器进行试验。单车试验器应按相应的机能检查要求,每半月进行一次机能检查,在单车试验前,应确认单车试验器机能试验未过期及性能良好。单车试验器的调压阀压力调为600kPa(简称定压)。

2.5 在制动缸管路上和副风缸排水堵处或副风缸管路上各安装一块范围为0 1000kPa的1.5级的压力表,试验完毕,将压力表拆下。

3. 试验步骤及要求

3.1 空气制动试验(切断试验电源)

3.1.1 制动管漏泄试验

将单车试验器与车辆一端制动软管连接,将电插头插入座内,关闭车辆另一端折角塞门及支管截断塞门。单车置一位充风,待制动管充至规定压力后(600kPa),将单车移置三位保压,保压1min,制动管漏泄量不得大于10kPa。

3.1.2 全车漏泄试验

开放支管截断塞门,使用一位充风,副风缸压力稳定后(大于580kPa),单车置三位保压1min,制动管路系统漏泄量不得大于10kPa。

3.1.3 制动和缓解感度试验

手把置一位充气,待副风缸达到规定压力后,单车置四位减压40 kPa时立即置三位,应达到下列要求:

3.1.3.1 制动管减压40 kPa前应发生制动作用。

3.1.3.2 制动管压力稳定1min后,制动管漏泄量不得大于10 kPa。

3.1.3.3 保压1min不得产生自然缓解。

3.1.3.4 手把置二位充气,104分配阀应在45s内缓解完毕。

3.1.4 制动安定试验。

手把置一位充气,待副风缸达到规定压力后,用单车置五位,制动管减压170 kPa时立即置三位保压,应达到下列要求:

3.1.

4.1 制动管减压170 kPa以前,制动机不得发生紧急制动作用。

3.1.

4.2 制动缸压力稳定后,保压1min,制动缸漏泄量不得大于10 kPa。

3.1.6 紧急制动试验

手把置一位充气,待副风缸达到规定压力后,单车置六位减压,制动管减压100 kPa(104阀)以前制动机应发生紧急制动作用。制动缸最高压力值为420±10kPa(无空重车阀条件下),制动机发生紧急制动后,须在15秒之后,方可将手把移至一位充气缓解,以免纵向冲动力太大而引发断钩等事故。

3.2电磁阀性能试验(接通单车试验器的电空制动电源,切断操纵阀电接点连锁开关,亦即将“转换开关”扳置于下位)。

说明:在进行试验时,凡按压某一开关,则同名的指示灯应亮,电流表应指示出100~200mA(104阀)或50~150mA(F8阀);当松开该按钮开关时,同名的指示灯熄灭,电流表指针回到零。

3.2.1制动电磁阀试验

手把置一位充气,待副风缸达到规定压力后,将手把移至三位。按压“制动”按钮开关,常用制动电磁阀排气口应有压力空气排出,列车管应减压,制动机实施制动作用。当列车管减压170kPa时,松开“制动”按钮开关,常用制动电磁阀排气口应停止排气,列车管应停止减压。

3.2.2缓解电磁阀试验

按压“缓解”按钮开关,列车管压力应回升,制动缸应排气,制动缸产生缓解作用。当松开“缓解”按钮开关时,列车管压力应停止上升。(对于104阀其制动缸应继续排气缓解)

3.2.3保压电磁阀试验(104阀有此试验)

当按压“缓解”按钮开关时,制动缸排气缓解;当松开“缓解”按钮开关,同时按压“保压”按钮时,制动缸应立即停止排气缓解。维持几秒钟后松开“保压”按钮开关,制动缸应能继续排气缓解。间断地按压“保压”按钮开关,应能实现阶段缓解作用。

3.3 电空制动试验(接通单车试验器的电空制动电源,接通操纵阀电接点连锁开关,亦即将“转换开关”扳置于上位,电和空气同时作用)

说明:手把置一、二位时,缓解指示灯应亮,其他指示灯熄灭;手把置三位时,保压指示灯应亮,其他指示灯熄灭;手把置四位、104电空位、五位,常用制动指示灯应亮,其他指示灯熄灭;手把置六位时,常用、紧急制动两个指示灯应亮,其他指示灯熄灭;一个指示灯亮时,电流表应指示出100~200mA(104阀);2个指示灯亮时,电流表应指示值加倍。

3.3.1 制动和缓解感度试验

手把置一位充气,待副风缸达到规定压力后,将手把移至四位,常用制动电磁阀排气口须有压力空气排出,列车管应减压,实现常用制动。然后手把移至二位,缓解电磁阀应动作,列车管应增压,实现缓解作用。制动机应在30s内缓解完毕。

3.3.2 制动安定试验

手把置一位充气,待副风缸达到规定压力后,将手把移至104电空位,当列车管减压170kPa时,将手把移至三位保压,应达到下列要求:

3.3.2.1列车管减压170kPa以前,制动机不得发生紧急制动作用。

3.3.2.2常用制动电磁阀排气口须有压力空气排出,而手把移至三位时,常用制动电磁阀须停止排气。

3.3.3 阶段缓解试验

在上一次试验结束后,将手把在一位、三位间往复移动,这时缓解指示灯和保压指示灯应交替地点亮和熄灭,制动机发生阶段缓解作用,阶段缓解应达5次以上。

3.3.4 紧急制动试验

手把置一位充气,待副风缸达到规定压力后,将手把移置六位减压,要求:3.3.4.1制动机发生紧急制动作用。

空压机的种类

空气压缩机(空压机)的种类很多。 1、按工作原理可分为三大类:容积型、动力型(速度型或透平型)、热力型压缩机。 空压机分类 空压机分类 2、按润滑方式可分为无油空压机和机油润滑空压机。 3、按性能可分为:低噪音、可变频、防爆等空压机。 4、按用途可分为:冰箱压缩机、空调压缩机、制冷压缩机、油田用压缩机、天然气加气站用、凿岩机用、风动工具、车辆制动用、门窗启闭用、纺织机械用、轮胎充气用、塑料机械用压缩机、矿用压缩机、船用压缩机、医用压缩机、喷砂喷漆用。 5、按型式可分为:固定式、移动式、封闭式。 容积式压缩机——直接依靠改变气体容积来提高气体压力的压缩机。 活塞式压缩机——是容积式压缩机,其压缩元件是一个活塞,在 活塞式空气压缩机 活塞式空气压缩机 气缸内做往复运动。 回转式压缩机——是容积式压缩机,压缩是由旋转元件的强制运动实现的。 滑片式压缩机——是回转式变容压缩机,其轴向滑片在同圆柱缸体偏心的转子上作径向滑动。截留于滑片之间的空气被压缩后排出。 液体-活塞式压缩机——是回转容积式压缩机,在其中水或其它液体当作活塞来压缩气体,然后将气体排出。 罗茨双转子式压缩机——属回转容积式压缩机,在其中两个罗茨转子互相啮合从而将气体截住,并将其从进气口送到排气口。没有内部压缩。 螺杆压缩机——是回转容积式压缩机,在其中两个带有螺旋型齿轮的转子相互啮合,使两个转子啮合处体积由大变小,从而将气体压缩并排出。螺杆式空气压缩机中的螺杆压缩组件,采用最新型数控磨床内部制造,并配合在线激光技术,确保制造公差精确无比。其可靠性和性能可确保压缩机的运转费用在使用期内一直极低。调整压缩机、一体式压缩机和干燥剂系列都是L/LS系列压缩机中的新产品。 速度型压缩机——是回转式连续气流压缩机,在其中高速旋转的叶片使通过它的气体加速,从而将速度能转化为压力。这种转化部分发生在旋转叶片上,部分发生在固定的扩压器或回流器挡板上。 离心式压缩机——属速度型压缩机,在其中有一个或多个旋转叶轮(叶片通常在侧面)使气体加速。主气流是径向的。 轴流式压缩机——属速度型压缩机,在其中气体由装有叶片的转子加速。主气流是轴向的。混合流式压缩机——也属速度型压缩机。其转子的形状结合了离心式和轴流式两者的一些特点。 喷射式压缩机——利用高速气体或蒸汽喷射流带走吸入的气体,然后在扩压器上将混合气体的速度转化为压力。 永磁变频压缩机——由于变频化的螺杆空压机利用了变频器的无级调速特点,通过控制器或变频器内部的PID调节器,能平缓启动;对用气量波动比较大的场合,又能快速调节响应。文章由:东莞市石碣盛发空压机提供编辑

空压机种类有哪些及优缺点

空压机种类有哪些及优缺点 欧阳学文 空压机作为一种动力能源的消耗产品,其应用的范围及行业非常广泛,空压机作为工业产品类重要的能源,可称之为工业产品生产的“生命气源”。 空压机是一种压缩气体体积并提高气体压力和输送气体的机械设备,能将气体体积缩小、压力增高、具有一定的动能,可作为机械动力或其他用途。 空气压缩机电动机,涡轮等动力装置到动力以产生压缩空气,各行业里长使用也是不可缺少一部分。 空压机种类有哪些,按所压缩气体不同,压缩机可分为空气压缩机、氧气压缩机、氨压缩机、天然气压缩机等。 空压机种类有哪些,按安装工程类别划分为:活塞式压缩机、回转式螺杆压缩机、离心式压缩机(电动机驱动)等。 空压机种类有哪些,按照压缩机气体方式可分为:容积式压缩机和动力式压缩机两大类。按结构型式和工作原理,

容积式压缩机可分为往复式(活塞式、膜式)压缩机和回转式(滑片式、螺杆式、转子式)压缩机;动力式压缩机可分为轴流式压缩机、离心式压缩机和混流式压缩机。 空压机种类有哪些,按压缩次数方式可分为:单级压缩机、两级压缩机、多级压缩机。 空压机种类有哪些,按气缸的布置方式可分为:立式压缩机、卧式压缩机、L型压缩机、V型压缩机、W型压缩机、扇形压缩机、M型压缩机、H型压缩机。 空压机种类有哪些:按气缸的排列方法可分为:串联式压缩机、并列式压缩机、复式压缩机、对称平衡式压缩机——气缸横卧排列在曲轴轴颈互成180°的曲轴两侧,布置成H型、D型、M型,其惯性力基本能平衡(大型压缩机都朝这个方向发展)。 空压机种类有哪些:按照压缩机的排气最终压力划分,可以分为:低压压缩机——排气压力在0.3~1.0MPa;中压压缩机——排气压力在1.0~10.0MPa;高压压缩机——排气压力在10.0~100.0MPa;超高压压缩机——排气压力在100.0MPa

104型制动机

移动,构成不同的气路,产生充气、局减、制动、保压、缓解等作用。 主活塞包括主活塞杆、主活塞压板、主活塞膜板、主活塞及密封圈等零件。滑阀由翅形滑阀弹簧压紧在滑阀座上,并嵌于主活塞杆上、下两肩之间,滑阀与主活塞两肩之间沿轴向有4mm间隙。节制阀嵌在主活塞杆上的节制阀槽内,由节制阀弹簧将其压紧在滑阀背面的节制阀座上,节制阀随主活塞同步移动,配合滑阀实现分配阀的各种作用。稳定装置安装于主活塞杆尾部的内腔,由稳定杆、稳定弹簧、稳定弹簧座和挡圈组成。稳定杆的顶部与滑阀下端面相接触,由于稳定弹簧有—定的预压力,使得制动管的轻微压力波动不会引起节制阀、主活塞动作,防止制动管的轻微压力波动引起主活塞动作而产生自然制动或自然缓解。 (2)充气部:充气部的功能是控制对副风缸与工作风缸的充气速度,使它们保持—致,并防止副风缸压力空气逆流。充气部由充气止回阀部和充气阀部两部分构成,充气止回阀上方通充气阀室,充气止回阀下方通主活塞上部,即与制动管相通,当其下方制动管压力高于上方压力时,充气止回阀被“吹起”离开止回阀座(“吹开”),制动管压力空气流人充气阀上部。当充气阀开启时,即可向副风缸充气。副风缸充气结束时,则充气止回阀在上方空气压力和止回阀弹簧作用下关闭,可以防止在制动减压时副风缸压力空气逆流人制动管,造成局部增压,影响制动作用甚至造成自然缓解。 充气活塞下方通工作风缸,上方通副风缸,当工作风缸压力高于副风缸压力时,充气活塞被顶起,充气活塞顶杆顶开充气阀,于是从充气止回阀来的制动管压力空气经开放的充气阀口充人副风缸。当副风缸与工作风缸压力接近相同时,在充气活塞、充气阀的自重及充气阀弹簧作用下,充气阀下移关闭阀口,停止了制动管向副风缸充气,这样即协调了副风缸与工作风缸充气速度。 (3)均衡部:均衡部的功能是根据容积室的压力变化,控制制动缸的排气、充气和保压作用。均衡部由均衡阀(作用阀)部和均衡活塞部两部分构成。 均衡阀与均衡阀杆用销子联接,以使均衡阀动作灵活,容易与均衡阀座关闭严密。均衡阀室装滤尘套,过滤副风缸进入主阀体的压力空气中的杂质。均衡阀弹簧室经阀体暗道通制动缸。均衡活塞杆上半部设有轴向中心孔,中部4个径向孔经阀体暗道通向大气,在径向孔上、下设两道密封圈以防止制动缸压力空气漏人大气。均衡活塞下部经阀体暗道通向容积室。铜质缩堵Ⅱ以螺纹形式拧在均衡活塞上部通向制动缸的阀体暗道上,将制动缸与均衡活塞上部连通,使制动缸压力与容积室压力同步、稳定变化。 制动缸的排气、充气和保压作用对应均衡阀的的三种开闭状态,均衡阀的开闭状态由均衡活塞相应的位置控制,均衡活塞的位置由均衡活塞上下两侧的压力差控制。 制动缸的排气作用:当容积室压力小于制动缸压力时,制动缸空气压力推动均衡活塞下移,使均衡活塞杆上端口脱离均衡阀,制动缸压力空气经均衡活塞杆上端口、轴向孔、径向孔d5以及均衡部排气口d6排向大气。 制动缸的充气作用:当容积室压力高于制动缸压力时,容积室空气压力推动均衡活塞上移,均衡活塞杆顶开均衡阀,使得副风缸压力空气经均衡阀口充到制动缸;同时进入均衡阀弹簧室及均衡活塞上方(经缩堵II)。 制动缸的保压作用:当容积室空气压力大致等于制动缸空气压力时,在均衡阀弹簧室制动缸压力、均衡阀弹簧的伸张力作用下,均衡阀推均衡活塞杆下移,均衡阀与均衡阀座密贴,关闭了副风缸向制动缸充气的通路。此时均衡活塞杆顶部与均衡阀仍密贴,均衡阀和均衡活塞杆上端部之间的作用力大小大致为均衡阀弹簧室制动缸压力所产生,制动缸排气通路未开通,形成制动缸保压状态。 (4)局减阀:局减阀的功能是在制动作用刚开始阶段,使制动管的部分压力空气经局减阀充人制动缸,使制动管产生局部减压,加快后部车辆产生制动作用,以提高制动波速,改善制动性能,同时本车制动缸压力获得跃升,缩短空走距离。局减阀位于作用部与均衡部之间,由局减阀、局减阀活塞及局减阀弹簧等构成,局减阀盖上有Φ3轴向孔使局减活塞外侧室通大气,在局减活塞外移时消除空气背压,使局减阀开闭灵活。局减阀盖将压圈和局减膜板紧固于主阀体上,毛毡被局减阀弹簧紧压在阀盖轴心孔内,防止杂质侵入。局减阀套上有8个Φ1径向孔,经阀体暗道通滑阀座上的局减阀孔。局减阀杆缩颈处有两个Φ3径向孔经轴向孔及均衡阀下方通制动缸。 局减阀的作用原理:平时在局减阀弹簧伸张作用下,局减活塞与局减阀向内侧移动,局减阀开放,即开通滑阀座局减阀孔到制动缸的通路,这样在制动作用开始阶段,使制动管压力空气经局减阀充人制动缸,产生所谓的第二阶段局部减压作用,提高制动波速。当制动缸压力(也即局减活塞内侧压力)达50~70kPa时,局

DK-1型电空制动机的作用原理

一.电空位操纵 将电空转换扳钮扳至“电空位”,则有: (1)气路:作用管与b管连通。 (2)电路:微动开关3SA1闭合电路899—801,并断开电路899—800。即,闭合电源电路。 (一)空气制动阀手柄在运转位,电空制动控制器手柄在各位的作用 该工况一般称为自动制动作用工况,即通过电空制动控制器来操纵全列车的制动、缓解与保压。 当空气制动阀手柄在运转位时,则有: (1)气路:不连通a、b管的充、排风气路。 (2)电路:微动开关3SA2闭合电路809—818。即,为排风1电空阀254YV得电作准备。 1.运转位 (1)电空制动控制器:使导线803、809、813得电。 ①导线803得电,经中间继电器451KA 13—14(SS8机车:451KA 1—2)常闭联锁、中间继电器452KA 9—10(SS8机车452KA 1—2)常闭联锁、455KA 9—10常闭联锁,使缓解电空阀258YV、排风2电空阀256YV得电:一方面连通总风经调压阀55(输出压力为定压)向均衡风缸充风的气路,即均衡风缸压力升高;另一方面关断过充风缸经256YV的排风气路。 ②导线809得电,经微动开关3SA2使导线818得电,再经中间继电器451KA 15—16(S S8机车:451KA 3—4)常闭联锁、中间继电器452KA11—12(SS8机车:452KA 3—4)常闭联锁、455KA 11—12(SS8机车:455KA 1—2)常闭联锁,使排风1电空阀254YV得电:连通作用管向大气排风的气路,即作用管压力降低。 ③导线813得电,为实现DK-1型电空制动机与列车分离、制动管断裂、车长阀(或121、122塞门)制动及列车安全运行监控记录装置自动停车功能的配合作准备。 (2)中继阀:包括两部分动作。 ①总风遮断阀:由于中立电空阀253YV失电而连通总风遮断阀管向大气排风的气路,所以,遮断阀左移并打开遮断阀口,使总风充入双阀口式中继阀的供气室内。 ②双阀口式中继阀:随着均衡风缸压力升高,活塞膜板带动顶杆右移而顶开供气阀口,连通总风向制动管及活塞膜板右侧充风的气路,即制动管压力升高;当活塞膜板右侧及制动管压力升高至与均衡风缸压力平衡时,在供气阀弹簧作用下,关闭供气阀口,且不打开排阀口,即停止制动管充风。 (3)分配阀:包括三部分动作。 ①主阀部:随着制动管压力升高,主活塞通过主活塞杆带动滑阀、节制阀下移,连通制动管向工作风缸充风的气路;同时,尽量连通作用馆通往156塞门的气路;但由于156塞门的关断(电空位下,156塞门关断),故156不开通作用管排大气的气路。 ②紧急增压阀:随着制动管的压力升高,增压阀柱塞保持在下端,切断总风向作用管充风的气路。

空压机产品大全及空压机的分类介绍

空压机产品大全及空压机的分类介绍 空压机种类繁多,空压机的使用由城市到农村,随时到处可见。那么,不同种类的空压机外形与功能上有什么区别呢。 一般用途的空压机指国家的标准规定,它的排气压力为 0. 7MPa,即通常所说的7个大气压或7公斤(过去老国标为 0.8MPa),通常提到的空压机排气压力即0. 7MPa或0. 8MPa,如果高于此或低于此即属于非标准的特种空压机。 下面我们来看一下每种空压机的图文详情: 1.活塞空压机活塞式空压机是往复式空压机中的一种,其压缩元件是一个活塞,在气缸内部做往复运动,按活塞同气体。 工业用活塞式空气机技术参数序号型号电机功率排气量最大使用压力外型尺寸HP/kW m3/min MPa (kg/cm2G) mmXmmXmml KS10 1.5/ 1.1 0. 08 0.8 (8) 810X240X8002 KS15 2.0/ 1.5 0. 12 0.8 (8) 860X350X7103 KS20 3.0/

2.2 0. 18 0.8 (8) 980X370X8004 KS30 3.0/ 2.2 0. 25 0.8 (8) 1000X450X7505 KS40 4.0/3 0. 40 0.8 (8) 1500X520X10506 KS55 5.5/4 0. 55 0.8 (8) 1500X520X10507 KS75 7. 5/ 5.5 0. 75 0.8 (8) 1600X570X11108 KS10010/ 7.5 1.00 0.8 (8) 1650X600X12009 KS15015/11 1.50 0.8 (8) 1850X650X137010 KS20020/15 2.00 0.8 (8) 1850X680X142011 KS24020/15 2.40 0.8 (8) 1850X710X144011 W327-D125/18. 5 3.20 0.7 (7)

104电空制动系统

制动系统 前言 牵引与制动是一对矛盾,人为地使列车减速或阻止它加速叫做制动。制动是调速的一种特殊形式。当车辆需要减速、停车或在长大下坡道上运行需要限制列车的速度时,都必须采取制动措施,控制车辆的运行速度。现代铁路运输的安全性,在很大程度上取决于车辆制动性能的好坏。随着铁路运输的发展,行车速度的不断提高,对车辆的制动性能也相应提出了更高的要求,以更好的保证列车高速运行时的安全性和可靠性。 第一节总述 1. 概述 本车采用104集成式电空制动机,其电空制动系统包括列车管、总风管、104集成式电空阀、气路控制箱(餐车没有)、球芯截断塞门与集尘器联合体、副风缸、总风缸1、总风缸2(餐车没有)、工作风缸、缓解风缸、进口SAB电子防滑器、球芯折角塞门、排风塞门、紧急制动阀、止回阀及截断塞门等,车上设有排风塞门拉把,具体参见附图一:带气路控制箱电空制动系统原理图。 制动机、气路控制箱、各种风缸及管路等通过螺栓及管卡吊挂于车辆底架下,各大部件通过管路连接起来,管路上设有各种截断塞门、止回阀等。 各截断塞门手把顺着管子方向为开启,垂直管子为关闭,车辆运行时各风缸下部排水塞门必须处于关闭状态。注:各风缸排水塞门为防石击型,须用三角钥匙来开启或关闭。 手制动装置安装于一位角外端墙上,下部由手制动拉杆与一位盘形制动缸相连。 2.主要技术参数 列车管、总风管压力 600kPa 副风缸容积 234L 工作风缸容积 11L 紧急制动时制动缸压力 420±10kPa(104集成式电空阀) 总风缸1、总风缸2容积 120L(餐车没有总风缸2) 缓解风缸容积 40L

3.主要特点 ①列车纵向管路采用整体管排上车,使得车下管路布置整齐有序,固定牢靠, 安装方便,为实现纵向管路车下组装、整体吊装提供了有利的条件。 ②生活用风(塞拉门和集便器)与空簧用风采用两路独立的辅助供风系统,互不影响,提高了供风质量。 ③采用104集成式电空制动机,增设了防护罩,能更有效地防水、防尘,便于维护和检修,并提高了车辆高速运行时的防石击能力。 ④装有气路控制箱,便于操作和维护,其全封闭结构能有效地提高防石击能力。 ⑤在列车管和制动缸管路中设有压力传感器测试点,为行车安全监测装置提供压力信号。 第二节104集成式电空阀 1 简要说明 最近这些年来,随着旅客列车运行速度的不断提高,对铁路运营的安全以及旅客在列车运行中的舒适度也有了更高的要求,旅客列车电空制动机的使用,不仅对列车运行的安全提供了一定的保证,并且它的制动和缓解性能的提高,减少了旅客列车在运行中调速和停车时的纵向冲动,这就提高了旅客列车运行的平稳性,尽可能地满足旅客乘车时的舒适度。 现已装车运用的104型电空制动机,其结构型式是在104空气制动机的基础上设计而成的,主要是增设了电空阀座,并将其安装在104制动机的主阀和中间体之间,原主阀与中间体的相关气路依旧相通。因为当时要保持原有的装车条件不变,主要是为了旧车改造的方便,从而使得电空制动机的结构显得略微庞大,安装、检修不便。经过对104电空制动机的多年安装、使用及试验,我们认为可将104电空制动机改为集成式安装,这样的话,可方便电空制动机的安装、检修和维护,且其整体结构将趋于紧凑、合理。我们主要对104型电空制动机在安装、使用及性能方面作进一步的探讨和研究,提高104型电空制动机这项技术的各项指标或性能,以适应提速旅客列车的安全运行要求。

空压机原理及结构图介绍图

压缩机: 压缩机,是一种将低压气体提升为高压气体的从动的流体机械,是制冷系统的心脏。 空气压缩机: 空气压缩机是一种用以压缩气体的设备。空气压缩机与水泵构造类似。大多数空气压缩机是往复活塞式,旋转叶片或旋转螺杆。 种类: 空气压缩机的种类很多。 1、按工作原理可分为三大类:容积型、动力型、热力型压缩机。 2、按润滑方式可分为无油空压机和机油润滑空压机。 3、按性能可分为:低噪音、可变频、防爆等空压机。 4、按用途可分为:冰箱压缩机、空调压缩机、制冷压缩机、油田用压缩机、天然气加气站用、凿岩机用、风动工具、车辆制动用、门窗启闭用、纺织机械用、轮胎充气用、塑料机械用压缩机、矿用压缩机、船用压缩机、医用压缩机、喷砂喷漆用。 5、按型式可分为:固定式、移动式、封闭式。 容积式压缩机——直接依靠改变气体容积来提高气体压力的压缩机。 活塞式压缩机——是容积式压缩机,其压缩元件是一个活塞,在气缸内做往复运动。 回转式压缩机——是容积式压缩机,压缩是由旋转元件的强制运动实现的。

滑片式压缩机——是回转式变容压缩机,其轴向滑片在同圆柱缸体偏心的转子上作径向滑动。截留于滑片之间的空气被压缩后排出。 液体-活塞式压缩机——是回转容积式压缩机,在其中水或其它液体当作活塞来压缩气体,然后将气体排出。 罗茨双转子式压缩机——属回转容积式压缩机,在其中两个罗茨转子互相啮合从而将气体截住,并将其从进气口送到排气口。没有内部压缩。 螺杆压缩机——是回转容积式压缩机,在其中两个带有螺旋型齿轮的转子相互啮合,使两个转子啮合处体积由大变小,从而将气体压缩并排出。螺杆式空气压缩机中的螺杆压缩组件,采用最新型数控磨床内部制造,并配合在线激光技术,确保制造公差精确无比。其可靠性和性能可确保压缩机的运转费用在使用期内一直极低。调整压缩机、一体式压缩机和干燥机系列都是L/LS系列压缩机中的新产品。 速度型压缩机——是回转式连续气流压缩机,在其中高速旋转的叶片使通过它的气体加速,从而将速度能转化为压力。这种转化部分发生在旋转叶片上,部分发生在固定的扩压器或回流器挡板上。 离心式压缩机——属速度型压缩机,在其中有一个或多个旋转叶轮(叶片通常在侧面)使气体加速。主气流是径向的。 轴流式压缩机——属速度型压缩机,在其中气体由装有叶片的转子加速。主气流是轴向的。 混合流式压缩机——也属速度型压缩机。其转子的形状结合了离心式和轴流式两者的一些特点。

各种空气压缩机分类介绍教学内容

各种空气压缩机分类介绍 随着国内经济的发展,我国的空压机设计制造技术也会有突飞猛进的发展,在某些方面的技术水平也已经达到国际先进水平。但在一些方面与国际先进水平还存在一定差距。希望空压机用户在选型上能够切合实际,结合企业需求,选择经济、可靠、高效、环保的空压机,避免因选型错误导致的机器维修、成本加大等问题,面对市场上各式各样不同功效的空压机,很多用户对空压机的选型上无法有一个确切的认识,有时候是因为对不同空压机的功效和性能不能完全了解,而导致无法合理选型,无法选择可靠、高效、节能的空压机型。现将常用的几种空压机型的优缺点和其适用范围做一个简单的介绍,希望能为用户在选择空压机的时候做一个参考。若按照空压机气体方式的不同,通常将空压机分为两大类,即容积式和动力式(又名速度式)空压机。容积式和动力式空压机由于其结构形式的不同,又做了以下分类: 一、移动式空压机是一种动力式空压机,在其中有一个或多个旋转叶轮(叶片通常在侧面)使气体加速,主气流是径向的。动力式空压机又分为喷射式和透平式空压机,离心式空压机就属于透平式空压机组。在离心式空压机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。 应用范围 近些年,化学工业和大型化工厂的陆续建立,使得离心式空压机成为了压缩和输送化工生产中各种气体的关键机器,占有及其重要的地位。随着气体动力学研究的成就使离心空压机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心空压机向高压力,宽流量范围发展的一系列问题,使离心式空压机的应用范围大为扩展,以致在很多场合可取代往复空压机,而大大地扩大了应用范围。 有些化工基础原料,如丙烯、乙烯、丁二烯、苯等可加工成塑料、纤维、橡胶等重要化工产品。在生产这种基础原料的石油化工厂中,离心式空压机也占有重要地位,是关键设备之一。除此之外,其他如石油精炼,制冷等行业中,离心式空压机也是极为关键的设备。 发展趋势 目前离心式空压机可用来压缩和输送化工生产中的各种气体,并且它的排气压力比早期有了很大的提高,其最小气量也有所降低,这就相应的扩大了离心式空压机的应用范围。 离心式空压机需要向大容量发展,以满足我国石化生产规模不断扩大的要求,同时随着新技术的发展、新型气体密封、磁力轴承和无润滑联轴器的出现,离心空压机的发展趋势主要表现为:不断开发高压和小流量产品;进一步研究三元流动理论,将其应用到叶轮和叶片扩压器等元件的设计中,以期达到高效机组;低噪

列车制动复习题

第一章绪论 1、何谓制动、缓解、制动机、基础制动装置、制动系统、常用制动、紧急制动、非常制动、备用制动? 2、何谓制动方式?制动方式是如何分类的?每一类各有哪些具体的制动方式,各有何优缺点? 3、何谓空气制动机、电空制动机、空电复合制动系统? 4、简述自动空气制动机的基本工作原理。 第二章制动理论基础知识 1、何谓制动机的缓解稳定性、制动灵敏度、常用安定性和紧急灵敏度? 2、何谓空气波、空气波速、列车管减压速度、制动波、制动波速? 3、空气波速、列车管减压速度、制动波速的高低对列车制动性能有何影响? 4、为什么说制动波速是综合评定制动机性能的重要指标? 5、何谓列车管局部减压、局部增压,其功能是什么?列车管局部减压有哪两种类型,各有何特点? 6、具有“减速充气缓解位”和“全充气缓解位”的三通阀或分配阀是如何形成上述两个位置的,各有何特点?其设计目的是什么? 7、何谓制动机二压力机构、三压力机构、二三压力混合机构,各有何性能特点? 8、何谓制动缸压强的直接控制与间接控制?其主要特点是什么? 9、何谓列车管压强的直接控制与间接控制?其主要特点是什么? 10、何谓列车管最小有效减压量?有何要求? 11、何谓列车管最大有效减压量?对于不同的列车管定压,其数值各为多少? 12、在制动研究中,将制动过程分成几个阶段?各阶段是如何划分的,有何特点?哪几个阶段是危险阶段? 13、列车制动时产生纵向动力作用的主要原因是什么?减小列车制动、缓解时纵向动力作用的措施主要有哪些? 第三章客货车辆空气制动机 (一)104、103型制动机 1、104型分配阀有哪些功能?各功能是由分配阀的哪个部分(或哪几个部分配合)实现的? 2、简述104型分配阀的总体组成。 3、104型分配阀各部分由哪些主要零件组成? 4、104型分配阀作用部有哪几种作用状态?简述各种状态的作用原理。 5、104型分配阀均衡部有哪几种作用状态?简述各种状态的作用原理。 6、简述104型分配阀充气部、局减阀、紧急增压阀和紧急阀的功能及作用特点。 7、试述下列情况104型分配阀的整体作用原理: (1)列车管由制动后保压?充气至定压 (2)列车管由定压?常用制动减压?保压 (3)列车管由定压?急减压为零 8、指出103阀与104阀的不同点,各不同点有何功能? (二)120型制动机 1、120型控制阀有哪些功能?各功能是由控制阀的哪个部分(或哪几个部分配合)实现的? 2、简述120型控制阀的总体组成。 3、120型控制阀各部分由哪些主要零件组成?

对比DK-1型电空制动机电空位操纵与空气位操纵的区别资料

对比DK-1型电空制动机电空位操纵与空气 位操纵的区别 学生姓名: 学号: 专业班级: 指导教师:

摘要 为了满足铁路运输的需要,必须对机车制动性能提出一定的要求。例如:能产生足够大的制动力;能方便地控制制动力的大小;能与机车其他系统协调;具备先进的经济技术指标等。国产SS(韶山)系列电力机车才用DK-1型电空制动机作为机车制动机。因此,对机车制动性能的要求,实质上就是对DK-1型电空制动机性能的要求。 DK-1型电空制动机作用时主要有“电空位操纵”和“空气位操纵”,其中“空气操纵位”是为了确保行车安全而设置。空气操纵位只是作为DK-1型电空制动机电气线路部分故障后的一部应急补救操作措施,以避免在区间造成“途停”而影像线路的正常通过。因此,空气位操纵时,不具备“电空位”操纵时那样齐全的性能,而只保证控制列车制动和缓解的基本功能。 空气位操纵,就是将电空制动机转换成空气制动机,并且由空气制动阀来操纵全列车制动系统的制动、缓解与保压。 本文通过详细的解析DK-1型电空制动机电空位与空气位,从而对比其中的区别与异同。 关键词:DK-1型电空制动机;电空位;空气位;异同

目录 摘要 (1) 引言 (3) 1 第一章概述 (4) 第一节概述 (4) 第二节DK-1型电空制动机的组成 (5) 第三节DK-1型电空制动机的性能参数 (7) 第四节DK-1型电空制动机的控制关系 (8) 第二章DK-1型电空制动机的作用原理 (9) 第一节“电空位”操纵 (9) 第二节“空气位”操纵 (24) 第三章DK-1型机车电空制动机电空位操纵与空气为操纵的区别 (28) 结论 (29) 致谢 (31) 参考文献 (32)

空压机种类有哪些及优缺点之欧阳家百创编

空压机种类有哪些及优缺点 欧阳家百(2021.03.07) 空压机作为一种动力能源的消耗产品,其应用的范围及行业非常广泛,空压机作为工业产品类重要的能源,可称之为工业产品生产的“生命气源”。 空压机是一种压缩气体体积并提高气体压力和输送气体的机械设备,能将气体体积缩小、压力增高、具有一定的动能,可作为机械动力或其他用途。 空气压缩机电动机,涡轮等动力装置到动力以产生压缩空气,各行业里长使用也是不可缺少一部分。 空压机种类有哪些,按所压缩气体不同,压缩机可分为空气压缩机、氧气压缩机、氨压缩机、天然气压缩机等。 空压机种类有哪些,按安装工程类别划分为:活塞式压缩机、回转式螺杆压缩机、离心式压缩机(电动机驱动)等。 空压机种类有哪些,按照压缩机气体方式可分为:容积式压缩机和动力式压缩机两大类。按结构型式和工作原理,容积式压缩机可分为往复式(活塞式、膜式)压缩机和回转式(滑片式、螺杆式、转子式)压缩机;动力式压缩机可分为轴流式压缩机、离心式压缩机和混流式压缩机。

空压机种类有哪些,按压缩次数方式可分为:单级压缩机、两级压缩机、多级压缩机。 空压机种类有哪些,按气缸的布置方式可分为:立式压缩机、卧式压缩机、L型压缩机、V型压缩机、W型压缩机、扇形压缩机、M型压缩机、H型压缩机。 空压机种类有哪些:按气缸的排列方法可分为:串联式压缩机、并列式压缩机、复式压缩机、对称平衡式压缩机——气缸横卧排列在曲轴轴颈互成180°的曲轴两侧,布置成H型、D型、M型,其惯性力基本能平衡(大型压缩机都朝这个方向发展)。 空压机种类有哪些:按照压缩机的排气最终压力划分,可以分为:低压压缩机——排气压力在0.3~1.0MPa;中压压缩机——排气压力在1.0~10.0MPa;高压压缩机——排气压力在10.0~100.0MPa;超高压压缩机——排气压力在100.0MPa以上。 空压机种类有哪些:按照压缩机排气量的大小划分,可以分为:微型压缩机——输气量在1m3/min以下;小型压缩机——输气量在1~10m3/min;中型压缩机——输气量在10~100m3/min;大型压缩机——输气量在100m3/min以上; 空压机种类有哪些:按照润滑方式划分,可分为:无油润滑压缩机、有油润滑压缩机。 空压机种类有哪些:按冷却方式划分,可分为:水冷压缩机、风冷压缩机。

火车司机考试通用知识试题

通用知识试 题 (一)填空题 1 .三相感应电动机的转子绕组分(鼠笼式)和绕线式两种。 2 .卡钳有内卡钳和(外卡钳)两种。 3 .常用的机械图有零件图和(装配图)两种。 4 .一般电阻的阻值与(导体长度)成正比,与导体截面成反比。 5 .两个导体相接触,在它们之间产生的电阻称为(接触电阻)。 6 .电机的效率为(输出功率)和输入功率之比。 7 .通过某一平面面积为S 的磁力线总根数叫(磁通量) 。 8 .机车电器按其执行机构的不同可分为有触点电器和(无触点电器) 9 .直流发电机的磁极分为主磁极和(换向磁极)两种,它的功用是产生磁场。10.直流发电机转子的功用是产生(感应电势),电磁转矩,从而使能量转换。11.直流发电机的刷架、刷盒的功用是便固定的电刷与旋转的换向器保持(滑动接触) ,使外电路与电枢连接起来。 12.直流他励发电机的励磁绕组与电枢绕组(不相连) ,励磁电流由另一个独立的电源供给。 13.直流并励发电机的励磁绕组与电枢绕组(并联),用负载分路电流励磁。14.直流串励发电机的励磁 绕组与电枢绕组串联,用 (本身负载)电流励磁。 15.每相绕组的首端与尾端 之间的电压称为(相电压)。 16.各相绕组的首端与尾端 之间的电压称为(线电压)。 17.牵引电动机的励磁电流 和(电枢电流)之比,称为 磁场削弱系数。 18.直流电机电枢绕组最基 本的两种形式是(单迭绕 组)和单波绕组。 19.变压器是根据(互感)原 理制成的一种能把交流电 从一个电压值转换为另一 个不同电压值的静止电器 20 .目前常用的交流发电 机有旋转电枢式和(旋转磁 场式)两种。 21 .电器线圈的吸合要求 吸合电流大些,而线圈得电 动作以后的(保持吸合)电 流可以小些。22 .过电压 会使电器触头产生电弧而 烧损,使直流电机的绕组线 圈引起(绝缘击穿)等事故。 23 .旋转电枢式交流电机 它的磁场是(固定不动)的, 电枢绕组是旋转部分,交流 电流是经滑环及电刷输出 的。 24 .旋转磁场式交流发电 机是将电枢绕组固定下来, 而使磁场旋转,转子是磁 极,定子是电枢,它的(励 磁电流)是由电刷和滑环供 给的。 25 .正弦交变电流或电所, 按正弦波完成一个正负变 化所需的时间叫(周期)。 26 .由(两个对角形)4 个 桥臂和析组成的电路叫电 桥电路。 27 .电容器充电结束后, 将电容器的两端与一个闭 合的外电路接通时,电容器 开始放电,当电容器两端的 电压(等于零)这个过程叫 电容器的放电。 28 .在三相异步电动机的 每相定子绕组中,流过正弦 交流电流时,每相定子绕组 都产生(脉冲磁场)。 29 .为防止晶闸管因过电 流而损坏,故采用快速动作 的保护电器,常用的有(快 速熔断器)。30 .内燃机车 上的启动发电机在柴油机 启动过程中,作为电动机运 行,柴油机启动后,又由柴 油机带动其运转,作为(发 电机)运行。 31 .内燃及电力机车上的 牵引电动机,在机车电阻制 动时作为(发电机)运行. 32.机车运转方式有:半肩回 式、肩回式、循环式、(半 循环式)和环形式5 种。 33 .机车出乘到达折返段 (站)后不换班,立即原班 原机车返回的乘务方式叫 做(立即折返式) 34.一班乘务员出乘到达外 (折返)段后驻班休息,机 车交与另一班乘务员继续 担当任务的乘务方式叫做 (外(折返)端驻班式) 35 当第一班乘务员到达驻 班站后,由在站驻的另一班 乘务员继续运行的乘务方 式叫做(中途站换班式) 36 . 坏形运转方式适用于 小运转列车,环城、(城际) 列车,通勤列车和动车组 等。37 .机车乘务制度是 机车乘务员使用机车的制 度,分为包乘制、轮乘制和

[整理]DK-1型电空制动机原理图.

模块八制动机与其他系统的配合 项目一制动机的重联作用 随着铁路运量的快速增长,迫切要求提高机车牵引功率和采用双机或多机重联牵引。为适应双机或多机重联牵引的需要,SS4改进型电力机车的DK-1型电空制动机中增设了重联阀。 重联阀不仅可以使同型号机车制动机重联,也能与其它类型机车重联使用,以便实现多机牵引。重联阀可使重联机车制动机的制动、缓解作用与本务机车协调一致。在重联运行中,一旦发生机车分离,重联阀将自动保持制动缸压力,并使重联机车制动机恢复到本务机车制动机的工作状态,以便于操纵列车,起到分离后的保护作用。 一、重联阀的构造 重联阀主要由本一补转换阀部、重联阀部、制动缸遮断阀部及阀体、管座等组成,其连接管路包括作用管、平均管、总风联管及制动缸管,如图8—1所示。 图8-1 重联阀结构原理图(本机位) (一)本一补转换阀部 本一补转换阀为一手动操纵阀,主要由转换按钮、偏心杆、弹簧、阀套、柱塞、O形圈、标示牌和弹性挡圈、挡盖、定位销等组成,如图8—2所示。 本一补转换阀部设“本机位”和“补机位”两个工作位置。转换按钮在弹簧和定位销的作用下,保持在某一固定位置上,若需转换位置,须先将转换按钮向里推,然后再转动180°至所需的位置,然后松开。转换按钮带动偏心杆转动,从而带动柱塞在阀套内上下移动,以连通或切断相应气路。其中,本机位切断总风联管与重联阀活塞下侧之间的气路,而连通重联阀活塞下侧与大气之间的气路;补机位连通总风联管与重联阀活塞下侧之间的气路。

图8-2 本—补转换饭结构图(补机位) 1–弹性挡圈;2–挡盖;3–阀套;4–O形圈;5–柱塞;6–偏心杆;7–转换按钮;8–定位销;9–弹簧;10–标示牌。 (二)重联阀部 重联阀部主要由重联阀活塞、活塞杆、重联阀弹簧、阀套、O形圈及止回阀、止回阀弹簧等组成,如图8—3所示。 重联阀部的工作受转换阀部控制。当本一补转换阀部的转换按钮置于不同位置时,根据重联阀活塞上下两侧的作用力之差带动活塞杆上下移动,关闭或顶开止回阀,并由活塞杆连通或切断相应气路。 (三)制动缸遮断阀部 制动缸遮断阀部主要由制动缸遮断阀活塞、活塞杆、遮断阀弹簧、阀套、O形圈 及止回阀、止回阀弹簧等组成,如图8—4所示。

空气压缩机的分类

空气压缩机的分类 空气机分为:1、速度式;2、容积式;容积式又分为回转式和往复式;回转式:(1)转子式;(2)螺杆式;(3)滑片式。往复式:(1)活塞式;(2)膜式。 空气压缩机按工作原理可分为速度式和容积式两大类。 速度式:是靠气体在高速旋转叶轮的作用,得到较大的动能,随后在扩压装置中急剧降速,使气体的动能转变成势能,从而提高气体压力。速度式主要有离心式和轴流式两种基本型式。 容积式:是通过直接压缩气体,使气体容积缩小而达到提高气体压力的目的、容积式根据气缸测活塞的特点又分为回转式和往复式两类。氧舱配制的空压机多数采用容积式。 回转式:活塞作旋转运动,活塞又称为转干,转子数量不等,气缸形状不一。回转式包括有转子式、螺杆式、滑片式等。 往复式:活塞做往复运动,气缸呈圆筒形。往复式包括有活塞式和膜式两种,其中活塞式是目前应用最广泛的一种类型。 医用空气压缩机的用途 医用空气压缩机主要是为需要气源的医疗保健设备提供充足,洁净的气源。适用于呼吸机设备、医药设备等 空气压缩机的组成 空气压缩机的工作原理 螺杆式空压机工作原理可以从以下来阐述,其中包含吸气、封闭及输送、压缩及喷油、排气四个过程。各个步骤介绍如下: 1、吸气过程: 螺杆式的进气侧吸气口,必须设计得使压缩室可以充分吸气,而螺杆式空压机并无进气与排气阀组,进气只靠一调节阀的开启、关闭调节,当转子转动时,主副转子的齿沟空间在转至进气端壁开口时,其空间最大,此时转子的齿沟空间与进气口之自由空气相通,因在排气时齿沟之空气被全数排出,排气结束时,齿沟乃处于真空状态,当转到进气口时,外界空气即被吸入,沿轴向流入主副转子的齿沟内。螺杆式空压机维修提醒当空气充满整个齿沟时,转子之进气侧端面转离了机壳之进气口,在齿沟间的空气即被封闭。 2、封闭及输送过程: 主副两转子在吸气结束时,其主副转子齿峰会与机壳闭封,此时空气在齿沟内闭封不再外流,即[封闭过程]。两转子继续转动,其齿峰与齿沟在吸气端吻合,吻合面逐渐向排气端移动。螺杆式空压机维修过程三。 3、压缩及喷油过程: 在输送过程中,啮合面逐渐向排气端移动,亦即啮合面与排气口间的齿沟间渐渐减小,齿沟内之气体逐渐被压缩,压力提高,此即[压缩过程]。而压缩同时润滑油亦因压力差的作用而喷入压缩室内与室气混合。 4、排气过程: 当螺杆空压机维修中转子的啮合端面转到与机壳排气相通时,(此时压缩气体之

城轨电空联合制动概要

第5章电空联合制动(克诺尔电空制动机) 我国城轨车辆大多采用了德国克诺尔制动机公司生产的模拟式电空制动装置,它通过列车总线贯通整个列车,形成连续回路。该模拟制动装置的操作是采用电控制空气、空气再控制空气的方式。制动的电指令是利用脉冲宽度调制,能进行无极控制。 空气制动装置主要由风源及管路系统、控制部分和执行部分三个主要部分组成。控制部分是制动装置的核心,由带有防滑控制的制动微机控制单元ECU、制动控制单元BCU、空气控制屏等组成。 5.1制动控制单元BCU 5.1.1制动控制单元的组成与控制关系 制动控制单元BCU是空气制动的核心,主要由模拟转换阀、紧急电磁阀、称重阀、均衡阀(中继阀)、载荷压力传感器(将载荷压力转换成相应的电信号传输给ECU)、压力开关等元件组成。制动控制单元由模块化设计,所有的元件都安装在一个铝合金集成板上。这样设计的主要目的是集成板便于从车上拆卸和更换,维修检查或大修时不会影响车辆的运行。图5-1所示为制动控制单元气路简图。图5-2所示是制动控制单元示意图。 图5-1制动控制单元气路简图 a—模拟转换阀;e—紧急电磁阀;c—称重阀;d—均衡阀;f—载荷压力传感器;h—压力开关;j、k、i、m、n—压力测试接口

图5-2 制动控制单元原理示意图 制动控制单元的工作原理如下:当压力空气从制动储风缸B04进入制动控制单元B06后,一路进入紧急电磁阀e、一路进入模拟转换阀a、另一路进入均衡阀d。 5.1.2模拟转换阀 模拟转换阀的组成(如图5-3)由稳压气室、电磁进气阀、电磁排气阀、气电转换器组成。 图5-3模拟转换阀 1—稳压气室 2—电磁进气阀 3—电磁排气阀 4—气电转换器作用原理:当微处理机发出制动指令时,进气阀的励磁线圈得电励磁,顶杠克服进气阀弹簧力,压开阀芯,打开进气阀,使制动贮风缸的压力空气通过进气阀进入模拟转化阀输出口,作为预防控制压力C v1输出。C v1一路送向紧急阀e,同时C v1也送向气电转换器和排气阀口,气电转换器将该压力信号转换成相对应的电信号,并馈送回微处理机,微处理机将此信号与制动指令对应的参考值比较。当小于参考值时,则继续开放进气阀口,预防控制压力C v1继续增高;而当大于

104型空气制动机

104型制动机的结构及原理 104型分配阀的作用由充气缓解位、常用制动位、制动保压位、紧急制动位来实现。 (一)充气缓解位 制动管充气增压时,压力空气进入中间体后—路经滤尘器进人主阀,另—路经滤尘网进人紧急阀。 1.主阀作用 制动管压力空气充入主活塞的上腔,主活塞上侧压力增大,主活塞在两侧压力差的作用下带动节制阀、滑阀下移,到达下方的极端位臵,即为充气缓解位。 (1)工作风缸充气:制动管压力空气经滑阀座上的制动管充气孔、滑阀上的充气孔,向工作风缸充气,同时到达充气部充气活塞的下方,顶起充气活塞,通过充气活塞顶杆将充气阀“顶开”。 (2)副风缸充气:制动管压力空气经“吹开”的充气止回阀、“顶开”的充气阀向副风缸充气。工作风缸的充气通过充气部间接地控制实现了副风缸的充气。当副风缸压力与工作风缸压力接近平衡时,在充气阀弹簧作用下,充气阀下移关闭,也就停止了向副风缸充气。增压阀套径向孔与副风缸相通,作好了紧急增压作用的准备。 (3)容积室排气:容积室压力空气经滑阀座容积室孔、滑阀缓解联络槽及滑阀座缓解孔排向大气,容积室压力下降到零容积室排气:容积室压力空气经滑阀座容积室孔、滑阀缓解联络槽及滑阀座缓解孔排向大气,容积室压力下降到零。 (4)制动缸排气:容积室排气引起均衡活塞下方的压力下降。均衡活塞上下侧压力差推均衡活塞下移,使均衡活塞杆上端口脱离均衡阀,制动缸压力空气→均衡活塞杆轴向孔→径向孔→均衡部排气口→大气,制动缸开始缓解,可见容积室缓解控制制动缸的缓解。 初充气时,上述缓解气路存在,但因各容器无压力空气,故排气口均无排气现象。由于104分配阀为二压力机构,所以只要制动管增压,主活塞均下移至充气缓解位,容积室压力空气就会排完,制动缸压力空气也随着排完。所以104分配阀只能一次缓解(直接缓解),而无阶段缓解。 2.紧急阀作用 在安定弹簧和制动管压力空气共同作用下,紧急活塞被压到上方极限位,使活塞杆顶部密封圈与紧急阀上盖密贴,制动管压力空气只能经紧急活塞杆轴向孔缩孔Ⅲ、径向孔缩孔IV向紧急室充气。缩孔Ⅳ限制了向紧急室的充气速度,防止了紧急室的过充气。制动管的压力空气同时进入放风阀弹簧室,抵消安定弹簧室压力空气作用在放风阀上方的压力,则放风阀依靠放风阀弹簧作用与放风阀座密贴关闭。 (二)常用制动位 当制动管常用制动减压时,主活塞在两侧压力差作用下分阶段带动节制阀、滑阀上移,最后到达上极限位臵,形成制动作用。在主活塞上移过程中,先后产生两阶段局减作用。第一段局减作用是制动管压力空气经滑阀、节制阀充入中

最新DK-1型电空制动机原理图汇总

D K-1型电空制动机原 理图

模块八制动机与其他系统的配合 项目一制动机的重联作用 随着铁路运量的快速增长,迫切要求提高机车牵引功率和采用双机或多机重联牵引。为适应双机或多机重联牵引的需要,SS4改进型电力机车的DK-1型电空制动机中增设了重联阀。 重联阀不仅可以使同型号机车制动机重联,也能与其它类型机车重联使用,以便实现多机牵引。重联阀可使重联机车制动机的制动、缓解作用与本务机车协调一致。在重联运行中,一旦发生机车分离,重联阀将自动保持制动缸压力,并使重联机车制动机恢复到本务机车制动机的工作状态,以便于操纵列车,起到分离后的保护作用。 一、重联阀的构造 重联阀主要由本一补转换阀部、重联阀部、制动缸遮断阀部及阀体、管座等组成,其连接管路包括作用管、平均管、总风联管及制动缸管,如图8—1所示。 图8-1 重联阀结构原理图(本机位) (一)本一补转换阀部 本一补转换阀为一手动操纵阀,主要由转换按钮、偏心杆、弹簧、阀套、柱塞、O形圈、标示牌和弹性挡圈、挡盖、定位销等组成,如图8—2所示。 本一补转换阀部设“本机位”和“补机位”两个工作位置。转换按钮在弹簧和定位销的作用下,保持在某一固定位置上,若需转换位置,须先将转换按钮向里推,然后再转动180°至所需的位置,然后松开。转换按钮带动偏心杆转动,从而带动柱塞在阀套内上下移动,以连通或切断相应气路。其中,本机位切断总风联管与重联阀活塞下侧之间的气路,而连通重联阀活塞下侧与大气之间的气路;补机位连通总风联管与重联阀活塞下侧之间的气路。

图8-2 本—补转换饭结构图(补机位) 1–弹性挡圈;2–挡盖;3–阀套;4–O形圈;5–柱塞;6–偏心杆; 7–转换按钮;8–定位销;9–弹簧;10–标示牌。 (二)重联阀部 重联阀部主要由重联阀活塞、活塞杆、重联阀弹簧、阀套、O形圈及止回阀、止回阀弹簧等组成,如图8—3所示。 重联阀部的工作受转换阀部控制。当本一补转换阀部的转换按钮置于不同位置时,根据重联阀活塞上下两侧的作用力之差带动活塞杆上下移动,关闭或顶开止回阀,并由活塞杆连通或切断相应气路。 (三)制动缸遮断阀部 制动缸遮断阀部主要由制动缸遮断阀活塞、活塞杆、遮断阀弹簧、阀套、O形圈及止回阀、止回阀弹簧等组成,如图8—4所示。

相关文档