文档库 最新最全的文档下载
当前位置:文档库 › 高中数学课时提升作业十一2.1.2.2椭圆方程及性质的应用含解析新人教A版选修1_

高中数学课时提升作业十一2.1.2.2椭圆方程及性质的应用含解析新人教A版选修1_

高中数学课时提升作业十一2.1.2.2椭圆方程及性质的应用含解析新人教A版选修1_
高中数学课时提升作业十一2.1.2.2椭圆方程及性质的应用含解析新人教A版选修1_

课时提升作业十一

椭圆方程及性质的应用

一、选择题(每小题5分,共25分)

1.(2016·聊城高二检测)过椭圆x2+2y2=4的左焦点F作倾斜角为的弦AB,则弦AB的长为( )

A. B. C. D.

【解析】选B.椭圆的方程可化为+=1,

所以F(-,0).

又因为直线AB的斜率为,

所以直线AB的方程为y=x+.

由得7x2+12x+8=0.

设A(x1,y1),B(x2,y2),则x1+x2=-,

x1·x2=,

所以|AB|==.

2.AB为过椭圆+=1(a>b>0)中心的弦,F(c,0)为椭圆的右焦点,则△AFB面积的最大值为( )

A.b2

B.ab

C.ac

D.bc

【解析】选D.由AB过椭圆中心,则y A+y B=0,

故S△AFB=(y A-y B)·c=|2y A|·c=|y A|·c≤bc,即当AB为y轴时面积最大.

3.(2016·济宁高二检测)如果椭圆+=1的弦被点(4,2)平分,则这条弦所在的直线方程是( )

A.x-2y=0

B.x+2y-4=0

C.2x+3y-12=0

D.x+2y-8=0

【解析】选D.设这条弦的两端点为A(x1,y1),B(x2,y2),斜率为k,则

两式相减再变形得+k=0.

又弦中点为(4,2),故k=-,

故这条弦所在的直线方程为y-2=-(x-4),

整理得x+2y-8=0.

4.(2016·衡水高二检测)如果AB是椭圆+=1(a>b>0)的任意一条与x轴不垂直的弦,O为椭圆的中心,e 为椭圆的离心率,M为AB的中点,则k AB·k OM的值

为( )

A.e-1

B.1-e

C.e2-1

D.1-e2

【解析】选C.设A(x1,y1),B(x2,y2),中点M(x0,y0),

由点差法,+=1,+=1,作差得

=,

所以k AB·k OM=·=-==e2-1.

【补偿训练】椭圆+=1中,以点M(-1,2)为中点的弦所在的直线斜率

为( )

A. B. C. D.-

【解析】选B.设弦的两个端点为A(x1,y1),B(x2,y2),

则①-②得

+=0,

又因为弦中点为M(-1,2),

所以x1+x2=-2,y1+y2=4,

所以+=0,

所以k==.

5.(2016·郑州高二检测)在区间[1,5]和[2,4]上分别取一个数,记为a,b,则方程+=1表示焦点在x轴上且离心率小于的椭圆的概率为( )

A. B. C. D.

【解析】选B.因为+=1表示焦点在x轴上且离心率小于的椭圆,

所以a>b>0,a<2b,

它对应的平面区域如图中阴影部分所示:

则方程+=1表示焦点在x轴上且离心率小于的椭圆的概率为

P===.

二、填空题(每小题5分,共15分)

6.(2016·南昌高二检测)在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么椭圆C的方程为.

【解析】根据椭圆焦点在x轴上,可设椭圆方程为+=1(a>b>0).因为e=,所以=.根据△ABF2的周长为16得4a=16,因此a=4,b=2,

所以椭圆方程为+=1.

答案:+=1

7.(2016·沈阳高二检测)椭圆+=1上有n个不同的点P1,P2,P3,…,P n,椭圆的右焦点为F,数列{|P n F|}是公差大于的等差数列,则n的最大值为.

【解题指南】|P1F|=|a-c|=1,|P n F|=a+c=3,|P n F|=|P1F|+(n-1)d,再由数列{|P n F|}是公差大于的等差数列,可求出n的最大值.

【解析】|P1F|=|a-c|=1,|P n F|=a+c=3,

|P n F|=|P1F|+(n-1)d.

若d=,n=201,d>,n<201.

答案:200

8.(2016·长春高二检测)已知椭圆C:+=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,

连接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为.

【解题指南】由余弦定理解三角形,结合椭圆的几何性质(对称性)求出点A(或B)到右焦点的距离,进而求得a,c.

【解析】在△ABF中,由余弦定理得|AF|2=|AB|2+|BF|2-2|AB||BF|cos∠ABF,

又|AB|=10,|BF|=8,cos∠ABF=,

解得|AF|=6.在△ABF中,|AB|2=102=82+62=|BF|2+|AF|2,故△ABF为直角三角形.设椭圆的右焦点为F′,连接AF′,BF′,根据椭圆的对称性,四边形AFBF′为矩形,

则其对角线|FF′|=|AB|=10,且|BF|=|AF′|=8,

即焦距2c=10,

又据椭圆的定义,得|AF|+|AF′|=2a,

所以2a=|AF|+|AF′|=6+8=14.

故离心率e===.

答案:

三、解答题(每小题10分,共20分)

9.在平面直角坐标系xOy中,点P到两点(0,-),(0,)的距离之和等于4,设点P的轨迹为C.

(1)求C的方程.

(2)设直线y=kx+1与C交于A,B两点,k为何值时⊥?此时|AB|的值是多少.

【解析】(1)设P(x,y),由椭圆的定义知,点P的轨迹C是以(0,-),(0,)为焦点,长半轴长为2的椭圆,它的短半轴长b==1.故曲线C的方程为+x2=1.

(2)设A(x1,y1),B(x2,y2),其坐标满足

消去y,并整理,得(k2+4)x2+2kx-3=0.

由根与系数的关系得x1+x2=-,x1x2=-.

若⊥,则x1x2+y1y2=0.

因为y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1,

所以x1x2+y1y2=---+1=-=0,

所以k=±.

当k=±时,x1+x2=?,x1x2=-.

所以|AB|=

=.

而(x1-x2)2=(x1+x2)2-4x1x2=+4×=,

所以|AB|==.

10.(2016·烟台高二检测)设椭圆+=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直

线被椭圆截得的线段长为.

(1)求椭圆的方程.

(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若·+·=8,求k的值.

【解析】(1)设F(-c,0),由=,知a= c.

过点F且与x轴垂直的直线为x=-c,代入椭圆方程有+=1,解得y=±,于是=,解得b=,

又a2-c2=b2,从而a=,c=1,

所以椭圆方程为+=1.

(2)设点C(x1,y1),D(x2,y2),

由F(-1,0)得直线CD的方程为y=k(x+1),

由方程组消去y,整理得(2+3k2)x2+6k2x+3k2-6=0.

所以x1+x2=-,x1x2=.

因为A(-,0),B(,0),

所以·+·=(x1+,y1)·(-x2,-y2)+(x2+,y2)·(-x1,-y1)

=6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1)

=6-(2+2k2)x1x2-2k2(x1+x2)-2k2

=6+.

由已知得6+=8,解得k=±.

一、选择题(每小题5分,共10分)

1.(2016·济南高二检测)若直线ax+by+4=0和圆x2+y2=4没有公共点,则过点(a,b)的直线与椭圆+=1的公共点个数为( )

A.0

B.1

C.2

D.需根据a,b的取值来确定

【解题指南】根据直线ax+by+4=0和圆x2+y2=4没有公共点,可推断点(a,b)是以原点为圆心,2为半径的圆内的点,根据圆的方程和椭圆方程可知圆x2+y2=4内切于椭圆,进而可知点P是椭圆内的点,进而判断可得答案.

【解析】选C.因为直线ax+by+4=0和圆x2+y2=4没有公共点,

所以原点到直线ax+by+4=0的距离d=>2,所以a2+b2<4,所以点P(a,b)是在以原点为圆心,2为半径的圆内的点,

因为椭圆的长半轴为3,短半轴为2,

所以圆x2+y2=4内切于椭圆,

所以点P是椭圆内的点,

所以过点P(a,b)的一条直线与椭圆的公共点数为2.

2.椭圆ax2+by2=1与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为,则的值为( )

A. B. C. D.

【解析】选A.把y=1-x代入椭圆ax2+by2=1,

得ax2+b(1-x)2=1,

整理得(a+b)x2-2bx+b-1=0,

设A(x1,y1),B(x2,y2),

则x1+x2=,y1+y2=2-,

所以线段AB的中点坐标为,

所以过原点与线段AB中点的直线的斜率k===,即=.

二、填空题(每小题5分,共10分)

3.(2016·石家庄高二检测)过椭圆+=1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则△OAB的面积为.

【解析】右焦点为(1,0),故直线为y=2(x-1).

由消去y,得3x2-5x=0,

所以x=0或x=,

从而A(0,-2),B.

所以|AB|===.

又O到AB的距离d==,

所以S△AOB=·|AB|·d=××=.

答案:

4.(2016·青岛高二检测)已知椭圆+=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在

点P使=成立,则该椭圆的离心率的取值范围为.

【解析】由正弦定理及=,得

==.

在△PF1F2中,设|PF2|=x,则|PF1|=2a-x.

则上式为=,即cx+ax=2a2,x=.

又a-c

由a-c<,得a2>-c2,显然恒成立.

c2+2ac-a2>0,即e2+2e-1>0,

解得e>-1+或e<-1-(舍).

又0

所以e的取值范围为(-1,1).

答案:(-1,1)

三、解答题(每小题10分,共20分)

5.(2016·北京高二检测)已知椭圆G:+y2=1,过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点.

(1)求椭圆G的焦点坐标和离心率.

(2)将|AB|表示为m的函数,并求|AB|的最大值.

【解析】(1)由已知得a=2,b=1,

所以c==.

所以椭圆G的焦点坐标为(-,0),(,0),

离心率为e==.

(2)由题意知,|m|≥1.

当m=1时,切线l的方程为x=1,点A,B的坐标分别为(1,),(1,-),此时|AB|=. 当m=-1时,同理可得|AB|=.

当|m|>1时,设切线l的方程为y=k(x-m).

由得(1+4k2)x2-8k2mx+4k2m2-4=0.

设A,B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=,x1x2=.

由l与圆x2+y2=1相切,得=1,

即m2k2=k2+1.

所以|AB|=

=

=

=.

当m=±1时,|AB|=,

所以|AB|=,m∈(-∞,-1]∪[1,+∞).

因为|AB|==≤2,且当m=±时,|AB|=2,

所以|AB|的最大值为2.

6.(2016·四川高考)已知椭圆E:+=1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,

点P在椭圆E上.

(1)求椭圆E的方程.

(2)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E 交于C,D,证明:|MA|·|MB|=|MC|·|MD|.

【解题指南】(1)利用点在椭圆上,列出方程,解出b的值,从而得到椭圆的标准方程.(2)利用椭圆的几何性质,数形结合,利用根与系数的关系,进行计算.

【解析】(1)由已知,a=2b,又椭圆+=1过点P,故+=1,解得b2=1,所以

椭圆的方程为+y2=1.

(2)设直线l的方程为y=x+m,A,B,

由方程组得x2+2mx+2m2-2=0,①

方程①的判别式为Δ=4,由Δ>0,即2-m2>0,解得-

由①得x1+x2=-2m,x1x2=2m2-2,所以M点坐标为,直线OM的方程为y=-x,

由得C,D, 所以·

=·=, 所以·=

=[+]

==

=(2-m2),

所以·=·.

椭圆的标准方程与性质

椭圆的标准方程与性质 教学目标: 1了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用; 2 掌握椭圆的定义、几何图形、标准方程及简单几何性质. 高考相关点: 在高考中所占分数:13分 考查出题方式:解答题的形式,而且考查方式很固定,涉及到的知识点有:求曲线方程,弦长,面积,对称关系,范围问题,存在性问题。 涉及到的基础知识 1.引入椭圆的定义 在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|=2c)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数: 有以下3种情况 (1)若a>c,则集合P为椭圆; (2)若a=c,则集合P为线段; (3)若a

标准方程x2 a2 +\f(y2,b2)=1 (a>b>0) \f(y2,a2)+错误!=1 (a>b>0) 图形 性质范围 -a≤x≤a -b≤y≤b -b≤x≤b -a≤y≤a 对称性对称轴:坐标轴;对称中心:原点 顶点 A1(-a,0),A2(a,0) B1(0,-b),B2(0,b) A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b 焦距|F1F2|=2c 离心率e=错误!∈(0,1) a,b,c的关系c2=a2-b2题型总结

类型一椭圆的定义及其应用 例1:如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( ) A.椭圆? B.双曲线 C.抛物线 D.圆 【解析】根据CD是线段MF的垂直平分线.可推断出,进而可以知道 结果为定值,进而根据椭圆的定义推断出点P的轨迹【答案】根据题意知,CD是线段MF的垂直平分线.,(定值),又显然,根 据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.所以A选项是正确的 练习1:已知F1,F2是椭圆C: 22 22 1 x y a b +=(a>b>0)的两个焦点,P为椭圆C 上的一点,且 错误! 1⊥2 PF,若△PF1F2的面积为9,则b=________. 【解析】由题意的面积∴故答案为: 【答案】3 练习2:已知F1,F2是椭圆错误!+错误!=1的两焦点,过点F2的直线交椭圆于A,B两点,在△AF1B中,若有两边之和是10,则第三边的长度为() A.6?B.5 C.4 D.3

椭圆方程的一个性质和应用

椭圆方程的一个性质和应用 于志洪金建荣 学习椭圆方程时,大家会发现这样一类椭圆,它们有一个共同特征,即离心率相同。 F 面将共离心率的椭圆方程的一个性质及其应用介绍给同学们,供大家学习时参考。 -.性质 X 2 和椭圆— a 2 y 2 1(a b b 2 0) 有相同离心率的椭 圆方程都具有 2 X -2 a (0)的特征。 2 X -2 a 程。 2 y 产 b 2 . 2 X a 2 .a y 2 2 1和椭圆 b 2 \ a 2 b 2 a. y 2 2 1和椭圆 b 2 X 2 设椭圆 1的离心率分别为e 和e',则 a 2 b 2 a e' .a 2 b 2 e',故椭圆 0)有相同的离心 率。 也就是说,和椭圆飞 a b 0)有相同的离心率的椭圆方程都具有 0)的特 征。 应用 X 2 2 y 2 1有相同离心率,且与直线 3X 例.求和椭圆 4 (2003年全国重点名校高考模拟题) 2、7y 16 0相切的椭圆方 解法1 :由以上性质,可设所求椭圆方程为 2小 16 0相切,故由方程组x 2 4y 2 得16y 2 16-. 7y 64 9 0。其判别式 2 2 4,故所求椭圆方程为 X y 1 16 4 3x 迂 4 ,3X 16、、7)2 y 2 ( 2, 7y 16 4 16 解法2 :设所求椭圆方程为 X 2 4y 2 0)。因其与直线 0联立消去X ,整理 (64 9 )0,解得 因它与直线 3X 27y 16 0相切,则设切点为( 27 4 X 1, 表示为同一直线,所以 X 1 4y 1 X 1 y 1),故切线方程为 3 4 y 1 X 1X 4y 』 4 。两直线 ¥。将 X 1和y 1同时代入椭圆方 程,得(? )2 4(乂 4 8 2 故所求椭圆方程为 — 16 )2 化简整理得 0,解得 4或 0 (舍去)。 2 y_ 4 X 2 2 a 2 ?. , bi 。设切点为 (2 cos 解法3 :设所求椭圆方程为 2 即— 4 r~ . 、sin 则 a 2 4 , b 2 , ),则椭圆的切线方程为

椭圆定义及应用

一、椭圆第一个定义的应用 1.1 椭圆的第一个定义平面内有两个定点F1、F2,和一个定长2a。若动点P到两个定点距离之和等于定长2a,且两个定点距离|F1F2|<2a.则动点轨迹是椭圆。两个定点F1、F2称为椭圆的焦点。 由此定义得出非常重要的等式,其中P为椭圆上一个点。此等式既表明作为椭圆这个点的轨迹的来源,也说明椭圆上每一个具有的共同性质。即椭圆上每一个点到两个焦点距离之和等于定长2a .在有关椭圆的问题中,若题设中含有有关椭圆上一点到两个焦点距离的信息,首先考虑的就是能否用上这个关系式。 1.2 应用举例 例1.已知点 1(3,0) F-,2(3,0) F,有 126 PF PF +=,则P点的轨迹是 . 例2.求证以椭圆 (a>b>0) 上任意一点P的 焦半径为直径画圆,这个圆必与圆相切. 解评:此题若用一般方法解或用椭圆参数方程解答,计算量都很大,解题过程冗长,属于中档题。我们若抓住PF2为一个圆直径,PF1为另一个圆半径的2倍,用公式,很容易得出正确解答。

例3. F 1、F 2是椭圆的两个焦点,P 是椭圆上一点, 求的面积.24 解评:题设中有椭圆上一点到两个焦点间距离的信息,即可试探是否能用 解决 例4.P 是椭圆2 2 145 20 x y + =上位于第一象限内的点, F 1、F 2是椭圆的左、右焦点, 若 则12PF PF -的值为( ) A. D. 3 例5. 在圆C:22(1)25x y ++=内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线线段CQ 的交点为M,求M 点的轨迹方程. 练:一动圆与圆⊙o 1:x 2+y 2+6x+5=0外切,同时与⊙o 2 : x 2+y 2_ 6x _ 91=0 内切, 求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

高中数学椭圆经典例题(学生+老 师)

(教师版)椭圆标准方程典型例题 例1已知椭圆的一个焦点为(0,2)求的值. 分析:把椭圆的方程化为标准方程,由,根据关系可求出的值. 解:方程变形为.因为焦点在轴上,所以,解得. 又,所以,适合.故. 例2已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设 条件,运用待定系数法, 求出参数和(或和)的值,即可求得椭圆的标准方程.解:当焦点在轴上时,设其方程为. 由椭圆过点,知.又,代入得,,故椭圆的方程为. 当焦点在轴上时,设其方程为. 由椭圆过点,知.又,联立解得,,故椭圆的方程为. 例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹. 分析:(1)由已知可得,再利用椭圆定义求解. (2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程. 解:(1)以所在的直线为轴,中点为原点建立直角坐标系.设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点.因,, 有, 故其方程为. (2)设,,则.① 由题意有代入①,得的轨迹方程为,其轨迹是椭圆(除去轴上两点). 例4已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方 程. 解:设两焦点为、,且,.从椭圆定义知.即. 从知垂直焦点所在的对称轴,所以在中,, 可求出,,从而. ∴所求椭圆方程为或.

例5已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示). 分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积.解:如图,设,由椭圆的对称性,不妨设在第一象限. 由余弦定理知:·.① 由椭圆定义知:②,则得. 故. 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程. 分析:关键是根据题意,列出点P满足的关系式. 解:如图所示,设动圆和定圆内切于点.动点到两定点, 即定点和定圆圆心距离之和恰好等于定圆半径, 即.∴点的轨迹是以,为两焦点, 半长轴为4,半短轴长为的椭圆的方程:. 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标

椭圆的标准方程及其几何性质(供参考)

椭圆的标准方程及其几何性质 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在; 当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x 的位置关系: 当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+b y a x 时,点P 在椭圆上; 4.直线与椭圆的位置关系 直线与椭圆相交0>??;直线与椭圆相切0=??;直线与椭圆相离0

高中数学:椭圆知识点归纳总结及经典例题

椭 圆 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c). 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2 +ny 2 =1(m>0,n>0)不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M(x, y),点P(x 0 , y 0 ), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得x 2 +(2y)2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.范围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b)、B 2(0, b)是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a,0)、A 2(a,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2 . a A 1y O F 1F 2 x B 2 B 1 A 2c b y O F 1F 2x M c c x F 2 F 1 O y M c c y x P O P ' M

椭圆标准方程及其性质知识点大全

【专题七】椭圆标准方程及其性质知识点大全 (一)椭圆的定义及椭圆的标准方程: ●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 )2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦 点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121 F F PF PF <+,则动点P 的轨迹无图形 (二)椭圆的简单几何性: ●标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。 标准方程 122 22=+b y a x )0(>>b a 12 2 22=+b x a y )0(>>b a 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 c F F 221= c F F 221= 范围 a x ≤, b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2

离心率 ①(01)c e e a = << ,②21()b e a =-③2 22b a c -= (离心率越大,椭圆越扁) 1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中 a 最大且a 2= b 2+ c 2. 2.方程22 Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A ≠ B 。A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。 (三)焦点三角形的面积公式:122tan 2 PF F S b θ ?=如图: ●椭圆标准方程为:122 22=+b y a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点, 12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan 2 PF F S b θ ?=。 (四)通径 :如图:通径长 2 2b MN a = ●椭圆标准方程:122 22=+b y a x )0(>>b a , (五)点与椭圆的位置关系: (1)点00(,)P x y 在椭圆外?22 00 221x y a b +>;(2)点00(,)P x y 在椭圆上?220220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< (六)直线与椭圆的位置关系: ●设直线l 的方程为:Ax+By+C=0,椭圆122 22=+b y a x (a ﹥b ﹥0),联立组成方程 组,消去y(或x)利用判别式△的符号来确定: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; M N F x y

椭圆方程及性质的应用-课时作业

学习资料[文档副标题] [日期] 世纪金榜 [公司地址]

椭圆方程及性质的应用 (45分钟 100分) 一、选择题(每小题6分,共30分) 1.(2013·重庆高二检测)已知直线l过点(3,-1),且椭圆C:+=1,则直线l与椭圆C的公共点的个数为( ) A.1 B.1或2 C.2 D.0 2.若AB为过椭圆+=1的中心的弦,F1为椭圆的左焦点,则△F1AB面积的最大值为( ) A.6 B.12 C.24 D.36 3.椭圆+=1上的点到直线x+2y-=0的最大距离为( ) A.3 B. C. D.2 4.直线y=1-x交椭圆mx2+ny2=1于M,N两点,MN的中点为P,若k OP=(O为原点),则等于( ) A. B. C.- D.- 5.(2013·南昌高二检测)已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为( ) A. B. C. D. 二、填空题(每小题8分,共24分) 6.(2013·绵阳高二检测)短轴长为,离心率e=的椭圆的两焦点为F1,F2,过F1作直线交椭圆于A,B两点,则△ABF2的周长为. 7.(2013·宜春高二检测)椭圆+=1(a>b>0)的离心率为,若直线y=kx与其一

个交点的横坐标为b,则k的值为. 8.过椭圆+=1内的一点P(2,-1)的弦AB,满足=(+),则这条弦所在的直线方程是. 三、解答题(9题,10题14分,11题18分) 9.(2013·合肥高二检测)已知椭圆C的焦点F1(-2,0)和F2(2,0),长轴长为6,设直线l交椭圆C于A,B两点,且线段AB的中点坐标是P(-,),求直线l的方程. 10.(2013·安阳高二检测)已知椭圆的两焦点为F1(-,0),F2(,0),离心率e=. (1)求此椭圆的方程. (2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值. 11.(能力挑战题)已知大西北某荒漠上A,B两点相距2km,现准备在荒漠上开垦出一片以AB为一条对角线的平行四边形区域建成农艺园,按照规划,围墙总长为8km. (1)试求四边形另两个顶点C,D的轨迹方程. (2)农艺园的最大面积能达到多少? (3)该荒漠上有一条直线型小溪l刚好通过点A,且l与AB成30°角,现要对整条小溪进行加固改造,但考虑到今后农艺园的小溪要重新设计改造,因此,对小溪可能被农艺园围进的部分暂不加固,则暂不加固的部分有多长?

椭圆方程及性质的应用

椭圆方程及性质的应用 教学目标 1.掌握直线与椭圆的位置关系.(重点) 2.通过一元二次方程根与系数关系的应用,解决有关椭圆的简单综合问题.(重点) 3.能利用椭圆的有关性质解决实际问题.(难点) 教材整理1 点与椭圆的位置关系 设点P(x0,y0),椭圆x2 a2+ y2 b2=1(a>b>0). (1)点P在椭圆上?x20 a2+ y20 b2=1;(2)点P在椭圆内? x20 a2+ y20 b2<1; (3)点P在椭圆外?x20 a2+ y20 b2>1. 课堂练习 已知点(2,3)在椭圆x2 m2+ y2 n2=1上,则下列说法正确的是________ ①点(-2,3)在椭圆外②点(3,2)在椭圆上 ③点(-2,-3)在椭圆内④点(2,-3)在椭圆上【解析】由椭圆的对称性知点(2,-3)也在椭圆上.【答案】④ 教材整理2 直线与椭圆的位置关系 1.直线与椭圆的位置关系及判定 直线y=kx+m与椭圆x2 a2+ y2 b2=1(a>b>0)联立 ?? ? ?? y=kx+m, x2 a2+ y2 b2=1, 消去y得一个 一元二次方程.

2.弦长公式 设直线y =kx +b 与椭圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|= 1+1 k 2·|y 1-y 2|. 判断(正确的打“√”,错误的打“×”) (1)点P (2,1)在椭圆x 24+y 2 9=1的内部.( ) (2)过椭圆外一点一定能作两条直线与已知椭圆相切.( ) (3)过点A (0,1)的直线一定与椭圆x 2 +y 2 2=1相交.( ) (4)长轴是椭圆中最长的弦.( ) 【答案】 (1)× (2)√ (3)√ (4)√ 例题分析 (1)若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 2 4=1的交点个数为( ) A.2个 B.至多一个 C.1个 D.0个 (2)已知椭圆4x 2+y 2=1及直线y =x +m ,问m 为何值时,直线与椭圆相切、相交? 【精彩点拨】 利用几何法判断直线与椭圆的位置关系. 【自主解答】 (1)若直线与圆没有交点,则d = 4m 2 +n 2 >2, ∴m 2+n 2<4,即m 2+n 24<1.∴m 29+n 24<1,∴点(m ,n )在椭圆的内部,故直 线与椭圆有2个交点. 【答案】 A (2)将y =x +m 代入4x 2+y 2=1, 消去y 整理得5x 2+2mx +m 2-1=0. Δ=4m 2-20(m 2-1)=20-16m 2.

椭圆及其标准方程教案

椭圆及其标准方程 一、教学目标 (一)知识目标 1、使学生理解椭圆的定义,掌握椭圆的标准方程及推导; 2、掌握焦点、焦点位置与方程关系、焦距; (二)能力目标 通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力; (三)学科渗透目标 通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力 二、教材分析 1.重点:椭圆的定义和椭圆的标准方程. (解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.) 2.难点:椭圆的标准方程的推导. (解决办法:推导分4步完成,每步讲解,关键步骤加以补充说明.) 3.疑点:椭圆的定义中常数加以限制的原因. (解决办法:分三种情况说明动点的轨迹.) 三、教学过程 (一)创设情境,引入概念 1、动画演示,描绘出椭圆轨迹图形。 2、实验演示。 思考:椭圆是满足什么条件的点的轨迹呢? (二)实验探究,形成概念 1、动手实验:学生分组动手画出椭圆。 实验探究: 保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化? 思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹? 2、概括椭圆定义 引导学生概括椭圆定义 椭圆定义:平面内与两个定点21,F F 距离的和等于常数(大于21F F )的点的轨迹叫椭圆。 教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。 思考:焦点为21,F F 的椭圆上任一点M ,有什么性质? 令椭圆上任一点M ,则有)22(22121F F c a a MF MF =>=+ (三)研讨探究,推导方程 1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么? M 2 F 1F

高中数学椭圆练习题

椭圆标准方程典型例题 例1 已知椭圆0632 2=-+m y mx 的一个焦点为(0,2)求m 的值. 例2 已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和3 52,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 例5 已知椭圆方程()0122 22>>=+b a b y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内 切,求动圆圆心P 的轨迹方程 例7 已知椭圆1222=+y x ,(1)求过点?? ? ??2121,P 且被P 平分的弦所在直线的方程;

(2)求斜率为2的平行弦的中点轨迹方程; (3)过()12, A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=?OQ OP k k , 求线段PQ 中点M 的轨迹方程. 例8 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为 5 102,求直线的方程. 例9 以椭圆13 122 2=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程. 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范 例10 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.

椭圆几何性质及应用(基础题)

椭圆的简单几何性质 1.若焦点在x轴上的椭圆x2 2+ y2 m=1的离心率为 1 2,则m等于() A.3 B.3 2C. 8 3D. 2 3 2.若椭圆经过原点,且焦点为F1(1,0),F2(3,0),则其离心率e是() A.3 4B. 2 3C. 1 2D. 1 4 3.椭圆(m+1)x2+my2=1的长轴长是() A.2m-1 m-1 B. -2-m m C.2m m D.- 21-m m-1 4.椭圆的两个焦点和它在短轴上的两个顶点连成一个正方形,则此椭圆的离心率为() A.1 2B. 2 2 C. 3 2D. 3 3 5.(2009·江西高考)过椭圆x2 a2+ y2 b2=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于 点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为() A. 2 2B. 3 3 C.1 2D. 1 3 6.若AB为过椭圆x2 25+ y2 16=1中心的线段,F1为椭圆的焦点,则△F1AB面积的 最大值为() A.6 B.12 C.24 D.48 1

7.椭圆的一个焦点将长轴分为3∶2的两段,则椭圆的离心率是________. 8.过椭圆x2 5+ y2 4=1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O 为坐标原点,则△OAB的面积为________. 9.若椭圆x2 k+2+ y2 4=1的离心率e= 1 3,则k的值等于________. 10.求适合下列条件的椭圆的标准方程: (1)长轴长是短轴长的3倍,且过点(3,-1); (2)椭圆过点(3,0),离心率e= 6 3. 11.已知椭圆4x2+y2=1及直线y=x+m, (1)当直线和椭圆有公共点,求实数m的取值范围. (2)求被椭圆截得的最长线段所在的直线方程. 2

高中数学椭圆经典试题练习

椭圆练习题 一、选择题 1.椭圆2x m +2 4 y =1的焦距为2,则m 的值为( ) A .5 B .3 C .5或3 D .8 2.设椭圆)0( 122 22>>=+b a b y a x 的离心率为e=12,右焦点为F (c ,0),方程ax 2+bx -c =0的两 个实根分别为x 1和x 2,则点P (x 1,x 2)( ) A .必在圆x 2+y 2=2内 B .必在圆x 2+y 2=2上 C .必在圆x 2+y 2=2外 D .以上三种情形都有可能 3.在椭圆)0( 122 22>>=+b a b y a x 上取三点,其横坐标满足1322x x x +=,三点与某一焦 点的连线段长分别为123,,r r r ,则123,,r r r 满足( ) A .123,,r r r 成等差数列 B . 123 112 r r r += C .123,,r r r 成等比数列 D .以上结论全不对 4.椭圆22 1 4x y m +=的离心率e 满足方程2 2520x x -+=,则m 的所有可能值的积为 ( ) A .3 B . 316 C .16 D .-16 5.已知c 是椭圆)0(12222>>=+b a b y a x 的半焦距,则a c b +的取值范围是 ( ) A (1, +∞) B ),2(∞+ C )2, 1( D ]2,1( 6. 过椭圆左焦点F 且倾斜角为 60的直线交椭圆于A 、B 两点,若FB FA 2=,则椭圆的离心率为 ( ) A . 32 B. 22 C. 21 D. 3 2 7.过原点的直线l 与曲线C:13 22 =+y x 相交,若直线l 被曲线C 所截得的线段长不大于6,则直线l 的倾斜角α的取值范围是 ( ) A 656παπ≤≤ B 326παπ<< C 323παπ≤≤ D. 434παπ≤≤ 8.椭圆)10(,2 222<<=+a a y x a 上离顶点A(0,a )最远点为(0,)a -成立的充要条件为 ( )

椭圆定义、标准方程及性质(一)

椭圆的定义、标准方程及性质(一) 一、选择题(本大题共8小题,每小题5分,共40分.) 1、椭圆的焦距() A.2 B. C. D. 2、是定点,,动点M满足,则点M的轨迹是() A.椭圆 B.圆 C.线段 D.直线 3、若椭圆的两个焦点分别为,且椭圆过点则椭圆的方程为()A. B. C. D. 4、方程表示焦点在y轴上的椭圆,则k的取值范围是() A. B. C. D.(0,1) 5、过椭圆的一个焦点的直线与椭圆交于A、B两点,则A、B与椭圆的另一焦点构成的周长是() A. B.2 C. D.1 6、已知椭圆的对称轴是坐标轴,离心率为,长轴长为12,则椭圆方程为() A.或 B. C.或 D. 7、已知,则曲线有() A.相同的短轴 B.相同的焦点 C.相同的离心率 D.相同的长轴 8、椭圆的焦点,P为椭圆上的一点,已知,则的面积为() A.9 B.12 C.10 D.8 二、填空题(本大题共4小题,每小题5分,共20分.) 9、椭圆的离心率为,则= . 10、设是椭圆上的一点,是椭圆的两个焦点,则*的最大值为 . 11、椭圆的焦点分别是,点在椭圆上.如果线段的中点在轴上,那么是倍. 12、已知圆及点,为圆上一点,的垂直平分线交于于,则点的轨迹方程为 . 三、解答题(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤) 13、如果点在运动的过程中,总满足关系式,点的轨迹是什么曲线?写出它的方程.

14、点到定点的距离和它到定直线的距离的比是,求点的轨迹方程,并指出轨迹是什么图形. 15、已知点是椭圆上的一点,且以点及焦点为顶点的三角形的面积等于1,求点的坐标.

【课时作业 必修1】椭圆方程及性质的应用+参考答案

椭圆方程及性质的应用 (45分钟100分)一、选择题(每小题6分,共30分) 1.(2013·重庆高二检测)已知直线l过点(3,-1),且椭圆C:x2 25+y2 36 =1,则直线l与椭圆 C的公共点的个数为( ) A.1 B.1或2 C.2 D.0 2.若AB为过椭圆x2 25+y2 16 =1的中心的弦,F1为椭圆的左焦点,则△F1AB面积的最大 值为( ) A.6 B.12 C.24 D.36 3.椭圆x2 16+y2 4 =1上的点到直线x+2y-√2=0的最大距离为( ) A.3 B.√11 C.√10 D.2√2 4.直线y=1-x交椭圆mx2+ny2=1于M,N两点,MN的中点为P,若k OP=√2 2 (O为原点),则m等于( ) A.√2 2B.√2 C.-√2 2 D.-√2 5.(2013·南昌高二检测)已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为( ) A.√5 3B.2 3 C.√2 2 D.5 9 - 1 -

二、填空题(每小题8分,共24分) 6.(2013·绵阳高二检测)短轴长为√5,离心率e=2 3 的椭圆的两焦点为F1,F2,过F1作直线交椭圆于A,B两点,则△ABF2的周长为. 7.(2013·宜春高二检测)椭圆x2 a2+y2 b2 =1(a>b>0)的离心率为√2 2 ,若直线y=kx与其一 个交点的横坐标为b,则k的值为. 8.过椭圆x2 6+y2 5 =1内的一点P(2,-1)的弦AB,满足OP→=1 2 (OA→+OB→),则这条弦所在 的直线方程是. 三、解答题(9题,10题14分,11题18分) 9.(2013·合肥高二检测)已知椭圆C的焦点F1(-2√2,0)和F2(2√2,0),长轴长为6, 设直线l交椭圆C于A,B两点,且线段AB的中点坐标是P(-9 10,1 10 ),求直线l的方 程. 10.(2013·安阳高二检测)已知椭圆的两焦点为F1(-√3,0),F2(√3,0),离心率e=√3. (1)求此椭圆的方程. (2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值. 11.(能力挑战题)已知大西北某荒漠上A,B两点相距2km,现准备在荒漠上开垦出一片以AB为一条对角线的平行四边形区域建成农艺园,按照规划,围墙总长为8km. - 1 -

高中数学-椭圆经典练习题-配答案

椭圆练习题 一.选择题: 1.已知椭圆 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D ) A .2 B .3 C .5 D .7 2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C ) A. B. C. D. 3.与椭圆9x 2 +4y 2 =36有相同焦点,且短轴长为4的椭圆方程是( B ) A 4.椭圆的一个焦点是,那么等于( A ) A. B. C. D. 5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B ) A. B. C. D. 6.椭圆两焦点为 , ,P 在椭圆上,若 △的面积的最大值为12,则椭圆方程为( B ) A. B . C . D . 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2| 的等差中项,则该椭圆方程是( C )。 A +=1 B +=1 C +=1 D +=1 8.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C ) (A)450 (B)600 (C)900 (D)120 9.椭圆 上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A ) A. 4 B . 2 C. 8 D . 116 252 2=+y x 22143x y +=22134x y +=2214x y +=22 14 y x +=5185 8014520125201 20 252222222 2=+=+=+=+y x D y x C y x B y x 2 2 55x ky -=(0,2)k 1-1512 21(4,0)F -2(4,0)F 12PF F 221169x y +=221259x y +=2212516x y +=22 1254 x y +=16x 29y 216x 212y 24x 23y 23x 24 y 222 1259 x y +=2 3

椭圆的基本性质

课题:12.4椭圆的基本性质(二课时) 教学目标: 1、掌握椭圆的对称性,顶点,范围等几何性质. 2、能根据椭圆的几何性质对椭圆方程进行讨论,在此基础上会画椭圆的图形. 3、学会判断直线与椭圆的位置,能够解决直线与椭圆相交时的弦长问题,中点问题等. 4、在对椭圆几何性质的讨论中,注意数与形的结合与转化,学会分类讨论、数形结合等数学思想和探究能力的培养;培养探究新事物的欲望,获得成功的体验,树立学好数学的信心. 教学重点:椭圆的几何性质及初步运用 教学难点:直线与椭圆相交时的弦长问题和中点问题 教学过程: 一.课前准备: 1、 知识回忆 (1) 椭圆和圆的概念 (2) 椭圆的标准方程 2、课前练习 1) 圆的定义: 到一定点的距离等于______的图形的轨迹。 椭圆的定义: _______________________________的图形的轨迹。 2) 椭圆的标准方程: 1。焦点在x 轴上____________( ) 2。焦点在y 轴上____________( ) 若125 162 2=+y x ,则椭圆的长轴长________短半轴长__________,焦点为____________,顶点坐标为__________,焦距为______________ 二.教学过程设计 一、引入课题 “曲线与方程”是解析几何中最重要最基本的内容其中有两类基本问题:一是由曲线求方程,二是由方程画曲线.前面由椭圆定义推导出椭圆的标准方程属于第一类问题,本节课将研究第二类问题,由椭圆方程画椭圆图形,为使列表描点更准确,避免盲目性,有必要先对椭圆的范围、对称性、顶点进行讨论. 二、讲授新课 (一) 对称性 问题1:观察椭圆标准方程的特点,利用方程研究椭圆曲线的对称性? x -代x 后方程不变,说明椭圆关于y 轴对称; y -代y 后方程不变,说明椭圆曲线关于x 轴对称; x -、y -代x ,y 后方程不变,说明椭圆曲线关于原点对称; 问题2:从对称性的本质上入手,如何探究曲线的对称性? 以把x 换成-x 为例,如图在曲线的方程中,把x 换

唐春香椭圆及其性质的应用

2.2.2 椭圆形至及其应用 1.一个顶点的坐标为(0,2),焦距的一半为3的椭圆的标准方程为( ) A.x 24+y 29=1 B.x 29+y 24=1 C.x 24+y 2 13=1 D.x 213+y 24 =1 2.椭圆x 225+y 2 9 =1上的点P 到椭圆左焦点的最大距离和最小距离分别是( ) A .8,2 B .5,4 C .9,1 D .5,1 3.已知F 1、F 2为椭圆x 2a 2+y 2 b 2=1(a >b >0)的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆离心率e =32 ,则椭圆的方程是( ) A.x 24+y 23=1 B.x 216+y 2 4 =1 C.x 216+y 212 =1 D.x 216+y 2 3=1 4.若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为( ) A.12 B.32 C.34 D.64 5.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 32 ,且G 上一点到两个焦点的距离之和为12,则椭圆G 的方程为______________. 6.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________. 7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63.过点A (0,-b )和B (a,0)的直线与原点的距离为32 ,求椭圆的标准方程. 8.如图所示,F 1,F 2分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标 等于短半轴长的23 ,求椭圆的离心率. 9.设P (x ,y )是椭圆x 225+y 2 16 =1上的点且P 的纵坐标y ≠0,点A (-5,0)、B (5,0),试判断k P A ·k PB 是否为定值?若是定值,求出该定值;若不是定值,请说明理由.

椭圆经典例题(带答案-适用于基础性巩固)

椭圆标准方程典型例题(参考答案) 例1 已知椭圆0632 2 =-+m y mx 的一个焦点为(0,2)求m 的值. 解:方程变形为 1262 2=+m y x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2 262=-m ,5=m 适合.故5=m . 例2 已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 解:当焦点在x 轴上时,设其方程为()0122 22>>=+b a b y a x . 由椭圆过点()03, P ,知10922=+b a .又b a 3=,代入得12=b ,92 =a ,故椭圆的方程为1922=+y x . 当焦点在y 轴上时,设其方程为()0122 22>>=+b a b x a y . 由椭圆过点()03, P ,知10922=+b a .又 b a 3=,联立解得812=a ,92 =b ,故椭圆的方程为198122=+x y . 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b , 故其方程为 ()0136 1002 2≠=+y y x . (2)设()y x A ,,()y x G '',,则 ()0136 1002 2≠'='+'y y x . ① 由题意有??? ????='='33 y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点). 例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和3 5 2,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 解:设两焦点为1F 、2F ,且3541= PF ,3 5 22=PF .从椭圆定义知52221=+=PF PF a .即5=a . 从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F PF Rt ?中,2 1 sin 12 21==∠PF PF F PF ,

椭圆的性质及应用

第5讲 椭圆的性质及应用 一、知识梳理 1 x 2 y 2 y 2 x 2 2、椭圆的几何性质分为两类 (1)一类是与坐标系无关的椭圆本身故有的性质:长轴长、短轴长、焦距、离心率等. (2)一类是与坐标系有关的性质:顶点坐标、焦点坐标等. 在解题时要特别注意第二类性质,应根据椭圆方程的形式,首先判断椭圆的焦点在哪条坐标轴上,然后再进行求解. 问题 为什么椭圆的离心率决定椭圆的扁平程度? 提示:椭圆的离心率反映了焦点远离中心的程度,e 的大小决定了椭圆的形状,反映了椭圆的圆扁程度. 因为a 2=b 2+c 2,所以b a =1-e 2,因此,当e 越趋近于1时,b a 越接近于0,椭圆越扁;当e 越趋近于0时, b a 越接近于1,椭圆越接近于圆. 题型(一) 求椭圆的离心率 例1 (1)下列椭圆中最扁的一个是( ) A . B . C . D . 【解答】解:椭圆的离心率越小,椭圆越圆,越大,离心率越大,椭圆越扁,越小, A 中=,B 中=,C 中= ,D 中= , 故选:B . (2)若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为________. 解析: 依题意,△BF 1F 2是正三角形,

∵在Rt △OBF 2中,|OF 2|=c ,|BF 2|=a ,∠OF 2B =60°,∴a cos 60°=c ,∴c a =1 2 , 即椭圆的离心率e =12.,答案: 1 2 (3)如图,设椭圆的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆于C 点,若直线BF 平分线段AC 于M ,则椭圆的离心率是( ) A . B . C . D . 【解答】解:如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, ∴OM ∥AB ,于是△OF A ∽△AFB ,且==,即=,可得e ==. 故选:C . (4)《九章算术)是我国古代内容极为丰富的数学名著第九章“勾股”,讲述了“勾股定理及一些应用.直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“勾2 +股2 =弦2 ”.设F 是椭圆= 1(a >b >0)的左焦点,直线y =x 交椭圆于A 、B 两点,若|AF |,|BF |恰好是Rt △ABF 的”勾”“股”, 则此椭圆的离心率为( ) A . B . C . D . 【解答】解:∵|AF |,|BF |恰好是Rt △ABF 的”勾”“股”,∴AF 1⊥BF 1,∴OA =OB =OF 1=c . ∴A (, ),∴ ? , ,? ,e 2 =1﹣ =4﹣2,∴﹣1. 故选:A .

相关文档
相关文档 最新文档