文档库 最新最全的文档下载
当前位置:文档库 › ISL6237 芯片引脚定义

ISL6237 芯片引脚定义

ISL6237 芯片引脚定义
ISL6237 芯片引脚定义

ISL6237 芯片引脚定义

ISL6237 (系统供电芯片)TPS51427,ISL6236,ISL6237可以代换通用

引脚定义:

VIN 6PIN 主供电

EN LDO 4PIN LDO线性电压开启

LDO 7PIN 线性电压

VDD 19PIN 芯片自身内部比较器供电

BOOT1 17PIN 内部激放电路

BOOT2 24PIN 内部激放电路

REF 1PIN 参考电压

EN1 14PIN 3V单元控制信号

EN2 27PIN 5V单元控制信号

FB 11PIN 电压输出反馈

ILIM1 12PIN 3V电流门限调节(注意:相连200K电阻,损坏或掉件则引起不输出)

ILIM2 31PIN 5V电流门限调节

PGOOD1 13PIN PG信号输出

PGOOD2 28PIN PG信号输出

电源芯片引脚定义

电源管理芯片引脚定义 1、VCC 电源管理芯片供电 2、VDD 门驱动器供电电压输入或初级控制信号供电源 3、VID-4 CPU与CPU供电管理芯片VID信号连接引脚,主要指示芯片的输出信号,使两个场管输出正确的工作电压。 4.RUN SD SHDN EN 不同芯片的开始工作引脚。 5、PGOOD PG cpu内核供电电路正常工作信号输出。 6、VTTGOOD cpu外核供电正常信号输出。 7、UGATE 高端场管的控制信号。 8、LGATE 低端场管的控制信号。 9、PHASE 相电压引脚连接过压保护端。 10、VSEN 电压检测引脚。 11、FB 电流反馈输入即检测电流输出的大小。 12、COMP 电流补偿控制引脚。 13、DRIVE cpu外核场管驱动信号输出。 14、OCSET 12v供电电路过流保护输入端。 15、BOOT 次级驱动信号器过流保护输入端。

16、VIN cpu外核供电转换电路供电来源芯片连接引脚。 17、VOUT cpu外核供电电路输出端与芯片连接。 18、SS 芯片启动延时控制端,一般接电容。 19、AGND GND PGND 模拟地,地线,电源地 20、FAULT 过耗指示器输出,为其损耗功率:如温度超过135度时高电平转到低电平指示该芯片过耗。 21、SET 调整电流限制输入。 22、SKIP 静音控制,接地为低噪声。 23、TON 计时选择控制输入。 24、REF 基准电压输出。 25、OVP 过压保护控制输入脚,接地为正常操作和具有过压保护功能,连VCC丧失过压保护功能。 26、FBS 电压输出远端反馈感应输入。 27、STEER 逻辑控制第二反馈输入。 28、TIME/ON 5 双重用途时电容和开或关控制输入 29、RESET 复位输出V1-0v跳变,低电平时复位。 30、SEQ 选择PWM电源电平轮换器的次序:SEQ接地时5v输出在之前。 SEQ接REF上,5v各自独立。SEQ接v1上时输出在5v之前。

LED显示屏各芯片管脚定义汇总

一、1.2 LED板的芯片功能 74HC245的作用:信号功率放大。 第1脚DIR,为输入输出转换端口,当DIR=“1”高电平(接VCC)时信号由“A” 端输入“B”端输出,DIR=“0”低电平(接GND)时信号由“B”端输入“A”端输出。 第19脚G,使能端,若该脚为“1”A/B端的信号将不导通,只有为“0”时A/B 端才被启用,该脚也就是起到开关的作用. 第2~9脚“A”信号输入\输出端,A1=B1、、、、、、A8=B8,A1与B1是一组,如果DIR=“1”G=“0”则A1输入B1输出,其它类同。如果DIR=“0”G=“0”则B1输入A1输出,其它类同。 第11~18脚“B”信号输入\输出端,功能与“A”端一样。 第10脚GND,电源地。 第20脚VCC,电源正极。 74HC595的作用:LED驱动芯片,8位移位锁存器。 第8脚GND,电源地。 第16脚VCC,电源正极 第14脚DATA,串行数据输入口,显示数据由此进入,必须有时钟信号的配合才能移入。 QA~QH的输出由输入的数据控制。

第12脚STB,锁存端,当输入的数据在传入寄存器后,只有供给一个锁存信号才能将移入的数据送QA~QH口输出。 第11脚CLK,时钟端,每一个时钟信号将移入一位数据到寄存器。 第10脚SCLR,复位端,只要有复位信号,寄存器内移入的数据将清空,显示屏不用该脚,一般接VCC。 第9脚DOUT,串行数据输出端,将数据传到下一个。 第15、1~7脚,并行输出端也就是驱动输出端,驱动LED。 HC16126\TB62726的作用:LED驱动芯片,16位移位锁存器。 备注:HC16126驱动芯片定义和5020,5024,2016等芯片一样 第1脚GND,电源地。 第24脚VCC,电源正极 第2脚DATA,串行数据输入 第3脚CLK,时钟输入 第4脚STB,锁存输入 第23脚输出电流调整端,接电阻调整 第22脚DOUT,串行数据输出 第21脚EN,使能输入 其它功能与74HC595相似,只是TB62726是16位移位锁存器,并带输出电流调整功能,但在并行输出口上不会出现高电平,只有高阻状态和低电平状态。74HC595并行输出口有高电平和低电平输出。TB62726与5026的引脚功能一样,结构相似。

精选5芯片引脚图及引脚描述

555芯片引脚图及引脚描述 555的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。 1脚为地。2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。 当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平; 2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。 4脚是复位端,当4脚电位小于时,不管2、6脚状态如何,输出端3脚都输出低电平。 5脚是控制端。 7脚称放电端,与3脚输出同步,输出电平一致,但7脚并不输出电流,所以3脚称为实高(或低)、7脚称为虚高。 555集成电路管脚,工作原理,特点及典型应用电路介绍. 1 555集成电路的框图及工作原理 555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。 2. 555芯片管脚介绍 555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。 图2 555集成电路封装图 我们也可以把555电路等效成一个带放电开关的R-S触发器,如图3(A)所示,这个特殊的触发器有两个输入端:阈值端(TH)可看成是置零端R,要求高电平,触发端(TR)可看成是置位端S,要求低电平,有一个输出端Vo,Vo可等效成触发器的Q端,放电端(DIS)可看成是由内部放电开关控制的一个接点,由触发器的Q端控制:Q=1时DIS端接地,Q=0时DIS 端悬空。另外还有复位端MR,控制电压端Vc,电源端VDD和 地端GND。这个特殊的触发器有两个特点: (1)两个输入端的触发电平要求一高一低,置零端R即阈值端(TH)要求高电平,而置位端s 即触发端(TR)则要求低电乎; (2)两个输入端的触发电平使输出发生翻转的阈值电压值也不同,当V c端不接控制电压时,对TH(R)端来讲,>2/3VDD是高电平1,<2/3VDD是低电平0:而对TR(S)端来讲,>1/3VDD是高电平1,<1/3VDD是低电平0。如果在控制端(Vc)上控制电压Vc时,这时上触发电平就变

常用运放芯片实物和引脚功能图_TL081-082-084运放引脚功能及贴片封装形式

常用运放芯片实物和引脚功能图_TL081/082/084运放引 脚功能及贴片封装形式 (1)运放芯片的3种型号序列(部分器件有此序列) 如TL081、TL082、TL084,分别为8引脚单运放;8引脚双运放;14引脚四运放集成器件。封装型式一般为塑封双列直插和贴片双列,环列封装形式比较少见。 图1 TL081/082/084运放引脚功能及贴片封装形式 而常见常用,仅为下述两种器件。 世界上有几个人?有两个人,男人和女人,不失为一个智慧的回答。常用运放芯片有几片,只有两片,8脚和14脚的双运放和四运放集成器件(8脚封装单运放器件和环列式封装器件应用较少),把此两种芯片引脚功能记住,检修中就不需要随时去查资料了。

图2 常用运放芯片实物和引脚功能图 如上图。其封装一般为塑封双列直插DIP8/DIP14和塑封贴片工艺封装SO8/SO14两种形式,随着电子线路板小型化精密化要求的提高,贴片元件的应用占据主流,直插式器件逐渐淡出人们的视野。但无论何种封装模式,其引脚功能、次序都是一样的,所以仅需记准8脚(双运放)和14脚(四运放)两种运放的引脚功能就够了。 (2)运放芯片的3种温度序列 任何一种集成IC器件,按应用温度范围不同,都可细分为3种器件,如LM358,实际上有LM158、LM258、LM358三种型号的产品,其引脚功能、内部结构、工作原理、供电电压等等都无差别,仅仅是应用温度范围差异甚大。 LM158 适应工作温度-50℃~125℃,军工用品(1类); LM258 适应工作温度-25℃~85℃,工业用品(2类); LM358 适应工作温度0℃~70℃,农用品(3类)。 单看参数,似乎LM258适用于山东地区,若用于东北地区,其参数有些不足。而LM358仅能适用于江南地区。而事实上并非如此,如低于2类品规格参数被淘汰到3类品的器件,可能是-24℃~84℃温度范围

Jtag的各种引脚定义

Jtag的各种引脚定义 使用过ARM芯片的人肯定都听过一个仿真器————JLINK,为什么ARM芯片现在能够这么流行?其中恐怕就有一个原因就是很多的ARM芯片都支持使用Jlink进行调试和仿真。所以你只要有一个Jlink,不管是ARM7、ARM9、ARM11还是最新的ARM Cortex 系统都能下载和调试了。 以前的嵌入式开发者,可能使用什么公司的芯片就得买一个对应芯片的下载和仿真器,这样如果你只使用一种芯片,可能还好,不过恐怕没有那种芯片能够一直引领市场。 Jlink使用的是一种叫做JTAG的协议,JTAG原本是用于芯片内部测试的,现在大多用于芯片的程序下载和调试仿真。由于现在Jlink用的比较多,所以有些人可能把Jlink就等同于JTAG了,实际上,JTAG是一种协议,只要满足这种协议的就可以叫做JTAG,比如H—JTAG、OpenJTAG、OSJTAG等等。正版的Jlink是卖的很贵的。大概是1000到2000RMB吧。不过,中国的山寨能力是很强的,而且你硬件卖给别人了,你也没办法控制别人说你不许拆开我的东西看里面的电路是怎么样的。所以Jlink就被破解了,破解之后的Jlink很便宜,网上五六十块钱就能买到一个能用的Jlink。 除了商业版的Jlink和H—JTAG,网上还有一些电子爱好者,他们参照开源软件的模式,设计了开源硬件,比如arduino。还有人制作了开源版本的JTAG仿真器——OpenJTAG。而一些芯片的开发商不像那些软件厂商,会给软件做很多的限制,他们对于开源硬件还是比较开明的,所以他们也支持了一些开源硬件。比如TI公司的MSP430 LaunchPad、ST公司的STM Discovery 等等板子。还有飞思卡尔公司的USBDM和OSJTAG。他们把这些硬件的原理图、PCB还有固件都放在了网络上供人自由下载和制作,你也可以根据他的资料进行改进。这样能使大家对于他们家的芯片有更多的了解,所以,他们也乐于开源一些评估板。 今天我要说的是几种JTAG仿真器的引脚定义,首先我看看比较常见的JTAG 20-Pin的引脚接口如下:

电源芯片引脚定义

电源芯片引脚定义 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

电源管理芯片引脚定义 1、VCC 电源管理芯片供电 2、VDD 门驱动器供电电压输入或初级控制信号供电源 3、VID-4 CPU与CPU供电管理芯片VID信号连接引脚,主要指示芯片的输出信号,使两个场管输出正确的工作电压。 4.RUN SD SHDN EN 不同芯片的开始工作引脚。 5、PGOOD PG cpu内核供电电路正常工作信号输出。 6、VTTGOOD cpu外核供电正常信号输出。 7、UGATE 高端场管的控制信号。 8、LGATE 低端场管的控制信号。 9、PHASE 相电压引脚连接过压保护端。 10、VSEN 电压检测引脚。 11、FB 电流反馈输入即检测电流输出的大小。 12、COMP 电流补偿控制引脚。 13、DRIVE cpu外核场管驱动信号输出。 14、OCSET 12v供电电路过流保护输入端。 15、BOOT 次级驱动信号器过流保护输入端。 16、VIN cpu外核供电转换电路供电来源芯片连接引脚。 17、VOUT cpu外核供电电路输出端与芯片连接。 18、SS 芯片启动延时控制端,一般接电容。 19、AGND GND PGND 模拟地,地线,电源地

20、FAULT 过耗指示器输出,为其损耗功率:如温度超过135度时高电平转到低电平指示该芯片过耗。 21、SET 调整电流限制输入。 22、SKIP 静音控制,接地为低噪声。 23、TON 计时选择控制输入。 24、REF 基准电压输出。 25、OVP 过压保护控制输入脚,接地为正常操作和具有过压保护功能,连VCC丧失过压保护功能。 26、FBS 电压输出远端反馈感应输入。 27、STEER 逻辑控制第二反馈输入。 28、TIME/ON 5 双重用途时电容和开或关控制输入 29、RESET 复位输出V1-0v跳变,低电平时复位。 30、SEQ 选择PWM电源电平轮换器的次序:SEQ接地时5v输出在之前。 SEQ接REF上, 5v各自独立。SEQ接v1上时输出在5v之前。 31、RT 定时电阻。 32、CT 定时电容。 33、ILIM 电流限制门限调整。 34、SYNC 振荡器同步和频率选择,150Khz操作时,sync连接到GND, 300Khz时连接到RE上,用0-5v驱使sync 使频率在340-195Khz. 35、VIN 电压输入 36、VREFEN 参考电压 37、VOUT 电压输出

最新最全的IC手册,包括绝大部分芯片的引脚定义与功能介

全新IC手册 珍藏版 汇佳技术咨询部

目录 AN5071……………………………………AN5195B ………………………………… AN5199……………………………………AN5265……………………………… AN5274……………………………… AN5277……………………………… AN5521……………………………… AN5534……………………………… AN5539……………………………… AN5891……………………………… AT24C04…………………………… AT24C08…………………………… CCFZ3005…………………………… CTV222S …………………………… DBL2044…………………………… DDP3310B …………………………… DPTV-3D …………………………… DPTV-DX …………………………… DPTV-IX …………………………… GAL16V8C …………………………… HEF4052…………………………… HL4066……………………………… IS42G32256-8PQ …………………… KA2107……………………………… KA2500……………………………… KA5Q1265RF ………………………… KA5Q1565RF ………………………… KA7631……………………………… KS88C8424/32/P8432…………… … L78MR05…………………………… LA4285……………………………… LA75665…………………………… LA76810…………………………… LA76832…………………………… LA7830……………………………… LA7838……………………………… LA7840……………………………… LA7846……………………………… LA7910……………………………… LA7954………………………………… LA86C3348A ………………………… … LM1269………………………………… LM324………………………………… LV1116……………………………………M3400N4…………………………… … M37225ECSP ………………………… … M37274………………………………… M37280………………………………… M37281………………………………… M54797………………………………… MCU(3S28) …………………………… MCU(Z233) …………………………… MN152810…………………………… … MN181768…………………………… … MN18P73284DP ……………………… … MN3102……………………………… … MN3207……………………………… … MN3868……………………………… … MSM518222………………………… … MSM541222………………………… … MSP3310……………………………… MTV880……………………………… … NJM2192……………………………… NJM2700……………………………… NN5199………………………………… NV320P ………………………………… OM8361……………………………… … OM8838……………………………… … OM8839……………………………… … P87C766……………………………… PCA84C440…………………………… PCF8594……………………………… PT2213………………………………… Q83652………………………………… SAA4951………………………………

74系列芯片引脚图

74系列芯片引脚图、功能、名称、资料大全(含74LS、74HC等),特别推荐 为了方便大家,我收集了下列74系列芯片的引脚图资料。 说明:本资料分3部分:(一)、TXT文档,(二)、图片,(三)、功能、名称、资料。 (一)、TXT文档 反相器驱动器LS04 LS05 LS06 LS07 LS125 LS240 LS244 LS245 与门与非门LS00 LS08 LS10 LS11 LS20 LS21 LS27 LS30 LS38 或门或非门与或非门 LS02 LS32 LS51 LS64 LS65 异或门比较器LS86 译码器LS138 LS139 寄存器LS74 LS175 LS373 反相器: Vcc 6A 6Y 5A 5Y 4A 4Y 六非门 74LS04 ┌┴—┴—┴—┴—┴—┴—┴┐六非门(OC门) 74LS05 _ │14 13 12 11 10 9 8│六非门(OC高压输出) 74LS06 Y = A )│ │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND 驱动器: Vcc 6A 6Y 5A 5Y 4A 4Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = A )│六驱动器(OC高压输出) 74LS07

│ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND Vcc -4C 4A 4Y -3C 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ _ │14 13 12 11 10 9 8│ Y =A+C )│四总线三态门 74LS125 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ -1C 1A 1Y -2C 2A 2Y GND Vcc -G B1 B2 B3 B4 B8 B6 B7 B8 ┌┴—┴—┴—┴—┴—┴—┴—┴—┴—┴┐ 8位总线驱动器 74LS245 │20 19 18 17 16 15 14 13 12 11│ )│ DIR=1 A=>B │ 1 2 3 4 5 6 7 8 9 10│ DIR=0 B=>A └┬—┬—┬—┬—┬—┬—┬—┬—┬—┬┘ DIR A1 A2 A3 A4 A5 A6 A7 A8 GND 页首非门,驱动器与门,与非门或门,或非门异或门,比较器译码器寄存器正逻辑与门,与非门: Vcc 4B 4A 4Y 3B 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = AB )│ 2输入四正与门 74LS08 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1B 1Y 2A 2B 2Y GND Vcc 4B 4A 4Y 3B 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ __ │14 13 12 11 10 9 8│ Y = AB )│ 2输入四正与非门 74LS00 │ 1 2 3 4 5 6 7│

芯片引脚说明

CD4017引脚图: CD4017 是5 位Johnson 计数器,具有10 个译码输出端,14(CL)、15(CR)、13(INH 或EN)输入端。时钟输入端的斯密特触发器具有脉冲整形功能,对输入时钟脉冲上升和下降时间无限制。INH 为低电平时,计数器在时钟上升沿计数;反之,计数功能无效。CR 为高电平时,计数器清零。Johnson 计数器,提供了快速操作、2 输入译码选通和无毛刺译码输出。防锁选通,保证了正确的计数顺序。译码输出一般为低电平,只有在对应时钟周期内保持高电平。在每10 个时钟输入周期CO 信号完成一次进位,并用作多级计数链的下级脉动时钟。 引出端功能符号:CO(12):进位脉冲输渊;CL:时钟输入端;(RESEST)CR:清除端;INH(EN):禁止端;Q0-Q9 计数脉冲输出端;VDD:正电源;VSS:地。 CD40110的引脚:

Ya~Yg:七段码,高电平有效; CPD(CP-):第七脚,减一、脉冲上升沿有效; CPU(CP+):第九脚,加一、脉冲上升沿有效; LE:第六脚,高电平有效,锁存数据; CT(TE):第四脚,高电平有效,禁止计数; CR(R):第五脚,高电平有效,清除计数显示。 数字式频率计 LM317:输出电压连续可调的集成稳压电源,输出电压在1.25-37V之间连续可调,输出最大电流可达1.5A。

工作原理: 电路原理图见图1。LM317输出电流为1.5A,输出电压可在1.25-37V之间连续调节,其输出电压由两只外接电阻R1、RP1决定,输出端和调整端之间的电压差为1.25V,这个电压将产生几毫安的电流,经R1、RP1到地,在RP1上分得的电压加到调整端,通过改变RP1就能改变输出电压。注意,为了得到稳定的输出电压,流经R1的电流小于3.5mA。LM317在不加散热器时最大功耗为2W,加上 200×200×4mm3散热板时其最大功耗可达15W。VD1为保护二极管,防止稳压器输出端短路而损坏IC,VD2用于防止输入短路而损坏集成电路。 (a)图是红外发射电路.NE555电路产生40kHz的脉冲经过VT放大后由红外发射管SE303向外发射. 红外遥控延时灯开关电路:该电路由红外接收器,单稳态延时电路和可控硅组成。

4953芯片脚位定义

标签:ic4953脚位定义led资 分类:电子电路知识料it APM4953K CEM4953A GSS4953BDY SI4953ADY SPP4953A LED上所用的4953管脚定义都是相同的,只是生产厂商不一样 LED电子显示屏的维修资料(芯片)

来源:LED电子屏发布时间:2009-08-27 查看次数:5535 LED电子显示屏的维修资料(芯片) 一、 LED电子显示屏的维修芯片资料 74HC04的作用:6位反相器。 第7脚GND,电源地。第14脚VCC,电源正极。信号由A端输入Y端反相输出,A1与Y1为一组,其它类推。例:A1=“1”则Y1=“0”、A1=“0”则Y1=“1”,其它组功能一样。74HC138的作用:八位二进制译十进制译码器。 第8脚GND,电源地。第15脚VCC,电源正极第1~3脚A、B、C,二进制输入脚。第4~6脚片选信号控制,只有在4、5脚为“0”6脚为“1”时,才会被选通,输出受A、B、C信号控制。其它任何组合方式将不被选通,且Y0~Y7输出全为“1”。 通过控制选通脚来级联,使之扩展到十六位。 例:G2A=0,G2B=0,G1=1,A=1,B=0,C=0,则Y0为“0”Y1~Y7为“1”。 74HC595的作用:LED驱动芯片,8位移位锁存器。 第8脚GND,电源地。第16脚VCC,电源正极第14脚DATA,串行数据输入口,显示数据由此进入,必须有时钟信号的配合才能移入。第13脚EN,使能口,当该引脚上为“1”时QA~QH口全部为“1”,为“0”时QA~QH的输出由输入的数据控制。第12脚STB,锁存口,当输入的数据在传入寄存器后,只有供给一个锁存信号才能将移入的数据送QA~QH口输出。第11脚CLK,时钟口,每一个时钟信号将移入一位数据到寄存器。第10脚SCLR,复位口,只要有复位信号,寄存器内移入的数据将清空,显示屏不用该脚,一般接VCC。第9脚DO UT,串行数据输出端,将数据传到下一个。第15、1~7脚,并行输出口也就是驱动输出口,驱动LED。 4953的作用:行驱动管,功率管。 其内部是两个CMOS管,1、3脚VCC,2、4脚控制脚,2脚控制7、8脚的输出,4脚控制5、6脚的输出,只有当2、4脚为“0”时,7、8、5、6才会输出,否则输出为高阻状态。TB 62726的作用:LED驱动芯片,16位移位锁存器。

电源芯片引脚定义

电源芯片引脚定义 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

电源管理芯片引脚定义 1、VCC 电源管理芯片供电 2、VDD 门驱动器供电电压输入或初级控制信号供电源 3、VID-4 CPU与CPU供电管理芯片VID信号连接引脚,主要指示芯片的输出信号,使两个场管输出正确的工作电压。 4.RUN SD SHDN EN 不同芯片的开始工作引脚。 5、PGOOD PG cpu内核供电电路正常工作信号输出。 6、VTTGOOD cpu外核供电正常信号输出。 7、UGATE 高端场管的控制信号。 8、LGATE 低端场管的控制信号。 9、PHASE 相电压引脚连接过压保护端。 10、VSEN 电压检测引脚。 11、FB 电流反馈输入即检测电流输出的大小。 12、COMP 电流补偿控制引脚。 13、DRIVE cpu外核场管驱动信号输出。 14、OCSET 12v供电电路过流保护输入端。 15、BOOT 次级驱动信号器过流保护输入端。 16、VIN cpu外核供电转换电路供电来源芯片连接引脚。 17、VOUT cpu外核供电电路输出端与芯片连接。 18、SS 芯片启动延时控制端,一般接电容。 19、AGND GND PGND 模拟地,地线,电源地

20、FAULT 过耗指示器输出,为其损耗功率:如温度超过135度时高电平转到低电平指示该芯片过耗。 21、SET 调整电流限制输入。 22、SKIP 静音控制,接地为低噪声。 23、TON 计时选择控制输入。 24、REF 基准电压输出。 25、OVP 过压保护控制输入脚,接地为正常操作和具有过压保护功能,连VCC丧失过压保护功能。 26、FBS 电压输出远端反馈感应输入。 27、STEER 逻辑控制第二反馈输入。 28、TIME/ON 5 双重用途时电容和开或关控制输入 29、RESET 复位输出V1-0v跳变,低电平时复位。 30、SEQ 选择PWM电源电平轮换器的次序:SEQ接地时5v输出在之前。 SEQ接REF上, 5v各自独立。SEQ接v1上时输出在5v之前。 31、RT 定时电阻。 32、CT 定时电容。 33、ILIM 电流限制门限调整。 34、SYNC 振荡器同步和频率选择,150Khz操作时,sync连接到GND, 300Khz时连接到RE上,用0-5v驱使sync 使频率在340-195Khz. 35、VIN 电压输入 36、VREFEN 参考电压 37、VOUT 电压输出

MCU芯片管脚定义基本常识

MCU芯片管脚定义基本常识 1、输入口(Input) 输入口其实可以理解为一个对地电阻和对VDD电阻均为无穷大的端口,它的状态完全由外部电路决定。此脚不用时不能悬空,视工作情况要么接地要么到VDD。 2、输出口(Output) 输出口可由程序设定为输出高或输出低,在负载范围内,输出高时的电压约等于VDD,输出低时的电压约等于VSS。此脚不用时可悬空。 3、有内部上拉的输入口(Pull-high) 有内部上拉的输入口相当于该输入口在芯片内部接了一个150K左右的电阻到VDD。因此,与普通输入口相比,有内部上拉的输入口在外围悬空的情况下测量的电压近似于VDD(不用时可悬空),而普通输入口在外围悬空的情况下测量的电压是不确定的,在VSS~VDD之间变化,实际运用时是不能悬空的。 4、开漏输出(Open-dnain) 开漏输出的输出口特性如下:输出低时对VSS阻抗极低,在负载范围内近似于VSS;输出高时对VSS和VDD阻抗视为无穷大,输出电压取决于外部电路提供的电压(最大为芯片极限存受电压)。 5、I/O口 顾名思义同一脚即是输入口又是输出口,在不同的时候是不同的状态,视工作情况考虑外部电路;此脚有输入状态,所以不用时不能悬空,也不能直接接地或接VDD,需通过47K以上的电阻上拉到VDD或下拉到地。 6、如何准确判断输入/输出状态 下面通过一个电阻就可以准确判断出I/O的输入/输出状态。请参考下表:悬空10K电阻上拉到VDD 10K电阻下拉到VSS 测试结果 待测I/O电压高高高输出高 低低低输出低 不定高低普通输入 高高低内部上拉 7、I/O的内部保护 I/O一般都有内部保护电路,均采用二极管钳位保护,保证I/O的电压不超过VDD+0.7V且不低于VSS-0.7V,确保I/O不因外部一定的电压而受到损伤。 8、应用注意事项

芯片引脚定义

电源管理芯片引脚定义 1、AGND GND PGND 模拟地地线电源地 2、BOOT 次级驱动信号器过流保护输入端。 3、COMP 电流补偿控制引脚。 4、CT 定时电容。 5、DRIVE cpu外核场管驱动信号输出。 6、FAULT 过耗指示器输出,为其损耗功率:如温度超过135度时高电平转到低电平指示该芯片过耗。 7、FB 电流反馈输入即检测电流输出的大小。 8、FBS 电压输出远端反馈感应输入。 9、ILIM 电流限制门限调整。 10、LGATE 低端场管的控制信号。 11、OCSET 12v供电电路过流保护输入端。 12、OVP 过压保护控制输入脚,接地为正常操作和具有过压保护功能,连VCC 丧失过压保护功能。 13、PGOOD PG cpu内核供电电路正常工作信号输出。 14、PHASE 相电压引脚连接过压保护端。 15、REF 基准电压输出。 16、RESET 复位输出V1-0v跳变,低电平时复位。 17、RT 定时电阻。 18、RUN SD SHDN EN 不同芯片的开始工作引脚。 19、SET 调整电流限制输入。 20、SS 芯片启动延时控制端,一般接电容。 21、SEQ 选择PWM电源电平轮换器的次序:SEQ接地时 5v输出在3.3v之前。 SEQ 接REF22、SKIP 静音控制,接地为低噪声。 22、STEER 逻辑控制第二反馈输入。 上,3.3v 5v各自独立。SEQ接v1上时 3.3v输出在5v之前。 23、SYNC 振荡器同步和频率选择,150Khz操作时,sync连接到GND, 300Khz 时连接到REF上,用0-5v驱使sync 使频率在340-195Khz. 24、TIME/ON 5 双重用途时电容和开或关控制输入 25、TON 计时选择控制输入。 26、UGATE 高端场管的控制信号。 27、VCC 电源管理芯片供电 28、VCNTL 供电 29、VDD 门驱动器供电电压输入或初级控制信号供电源 30、VID-4 CPU与CPU供电管理芯片VID信号连接引脚,主要指示芯片的输出信号,使两个场管输出正确的工作电压。 31、VIN 电压输入 32、VIN cpu外核供电转换电路供电来源芯片连接引脚。 33、VOUT 电压输出 34、VOUT cpu外核供电电路输出端与芯片连接。 35、VREFEN 参考电压 36、VSEN 电压检测引脚。

常用芯片引脚图

您的数字ID是:463099 您的密码是:1.8667 附录三 常用芯片引脚图 一、单片机类 1、MCS-51 芯片介绍:MCS-51系列单片机是美国Intel公司开发的8位单片机,又可以分为多个子系列。 MCS-51系列单片机共有40条引脚,包括32 条I/O接口引脚、4条控制引脚、2条电源引 脚、2条时钟引脚。 引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为 通用I/O接口,第二功能作为存储器扩展时 的地址/数据复用口。 P1.0~P1.7:P1口8位口线,通用I/O接口 无第二功能。 P2.0~P2.7:P2口8位口线,第一功能作为 通用I/O接口,第二功能作为存储器扩展时 传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为 通用I/O接口,第二功能作为为单片机的控 制信号。 ALE/ PROG:地址锁存允许/编程脉冲输入信号线(输出信号) PSEN:片外程序存储器开发信号引脚(输出信号) EA/Vpp:片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD:复位/备用电源引脚 2、MCS-96 芯片介绍:MCS-96系列单片机是美国Intel公司继MCS-51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件 资源,适用于要求较高的实时控制场合。 它分为48引脚和68引脚两种,以48引 脚居多。 引脚说明: RXD/P2.1 TXD/P2.0:串行数据传出分发 送和接受引脚,同时也作为P2口的两条 口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有 两个和HS1共用) Vcc:主电源引脚(+5V) Vss:数字电路地引脚(0V) Vpd:内部RAM备用电源引脚(+5V) V REF:A/D转换器基准电源引脚(+5V) AGND:A/D转换器参考地引脚 XTAL1、XTAL2:内部振荡器反相器输P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 RST INT0/P3.2 INT1/P3.3 WR/P3.6 RD/P3.7 XTAL2 XTAL1 V SS

常用IC芯片管脚的定义中引文翻译

常用IC芯片管脚的定义中引文翻译 1、VOL—Voltage Output Low 低电平输出电压;VIH(Voltage Input High)高 电平输入电压。 2、CLKO(Clock Output) 时钟输出;Vss 数字地。DP:USB端D+信号。 3、VDD—数字电源;Vssp:I/O驱动缓冲数字地。 DM:USB端D-信号。 4、CE:Chip enable input 片使能输出;OE:Output enable input 输出使能输 入。 5、WP:Write protect 写入保护;FWR:Flash write enable input闪存写入 使能信号。 6、VA: analog power 模拟电源输入;LVDS:Low voltage differential signal 低电平微分信号。 7、FB:Output voltage feedback 输出电压返回输入;SW:Power switch input 电源开关输入。 8、SHON:Shutdown control input 关闭信号输入;COMP:comp voltage. 9、TS:Temperature-sense input温度感应信号输入RC:Timer-program input 定时程序信号输入 10. SNS:Current-sense input 电流感应信号输入;CE:使能信号(enable signal). 11 .WE:写入启动信号;RST: reset 复位信号;CLK:时钟控制信号;CKE:时钟控制信号。 12. Vcc:电源信号;CS:片选信号;SCLK:串行时钟输入;RF: 信号输出;FCOM:公共信号端。 :晶振信号输出;XTALI:晶振信号输入。OPOLS:VCOM 信号输出。 :ASCO 时钟、数据输出;RXD:ASCO 数据输入或输出。 :同步脉冲输入; RCT: 振荡器时间常数电路;DC: 占空比控制。 :5V基准电压;VFB: 误差放大器倒相输入;COMP:误差放大器输出。

芯片引脚说明

MX232 主要作用: MAX232是一种双组驱动器/接收器,片内含有一个电容性电压发生器以便在单5V 电源供电时提供EIA/TIA-232-E电平。 当用单片机和PC机通过串口进行通信,尽管单片机有串行通信的功能,但单片机提供的信号电平和RS232的标准不一样,因此要通过max232这种类似的芯片进行电平转换。 引脚介绍: 第一部分是电荷泵电路。由1、2、3、4、5、6脚和4只电容构成。功能是产生+12v和-12v两个电源,提供给RS-232串口电平的需要。 第二部分是数据转换通道。由7、8、9、10、11、12、13、14脚构成两个数据通道。 其中13脚(R1IN)、12脚(R1OUT)、11脚(T1IN)、14脚(T1OUT)为第一数据通道。 8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。TTL/CMOS数据从11引脚(T1IN)、10引脚(T2IN)输入转换成RS-232数据从14脚(T1OUT)、7脚(T2OUT)送到电脑DB9插头;DB9插头的RS-232数据从13引脚(R1IN)、8引脚(R2IN)输入转换成TTL/CMOS数据后从12引脚

(R1OUT)、9引脚(R2OUT)输出。 第三部分是供电。15脚GND、16脚VCC(+5v)。 JTAG14 1,13接电源 2,4,6,8,10,14 GND接地 3mode 模式选择 5mosi主输出从输入 7mrst 主复位 9sck 同步时钟 11miso 主出入从输出 Atmegal16

VCC 电源正 GND 电源地 端口A(PA7..PA0) 端口A 做为A/D 转换器的模拟输入端。端口A 为8 位双向I/O 口,具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,端口被外部电路拉低时将输出电流。在复位过程中,即使系统时钟还未起振,端口A 处于高阻状态。 端口B(PB7..PB0) 端口B 为8 位双向I/O 口,具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,端口被外部电路拉低时将输出电流。在复位过程中,即使系统时钟还未起振,端口B 处于高阻状态。 端口B 也可以用做其他不同的特殊功能. 端口C(PC7..PC0) 端口C 为8 位双向I/O 口,具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,端口被外部电路拉低时将输出电流。在复位过程中,即使系统时钟还未起振,端口C 处于高阻状态。如果JTAG接口使能,即使复位出现引脚 PC5(TDI)、 PC3(TMS)与 PC2(TCK)的上拉电阻被激活。端口C 也可以用做其他不同的特殊功能. 端口D(PD7..PD0) 端口D 为8 位双向I/O 口,具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,则端口被外部电路拉低时将输出电流。在复位过程中,即使系统时钟还未起振,端口D 处于高阻状态。端口D 也可以用做其他不同的特殊功能. RESET 复位输入引脚。持续时间超过最小门限时间的低电平将引起系统复位。门限时间见P36Table 15。持续时间小于门限间的脉冲不能保证可靠复位。XTAL1 反向振荡放大器与片内时钟操作电路的输入端。 XTAL2 反向振荡放大器的输出端。 AVCC AVCC是端口A与A/D转换器的电源。不使用ADC时,该引脚应直接与VCC 连接。使用ADC时应通过一个低通滤波器与VCC 连接。 AREF A/D 的模拟基准输入引脚。

4017芯片引脚功能剖析

4017芯片引脚功能 、用一个CD4017制成的彩灯电路 1.用一个CD4017制作的彩灯电路如图1 所示。

2.电路工作原理 CD4017输出高电平的顺序分别是③、②、④、⑦、⑩、①、⑤、⑥、⑨脚,故③、②、④、⑦、⑩、①脚的高电平使6串彩灯向右顺序发光,⑤、⑥、③脚的高电平使6串彩灯由中心向两边散开发光。各种发光方式可按自己的需要进行具体的组合,若要改变彩灯的闪光速度,可改变电容C1的大小。 二、用三个CD4O17彩灯电路图 CD4017的级连,如图2所示。 2.CD4017级连后可以顺序输出24个高电平,同上理可组合出各种不同的发光方式,见图3,可使6串彩灯向右流水发光,再向左流水发光,中心向两边散开后再向中心靠拢发光,1、3、5、2、4、6串间隔发光等等 CD4017 结构原理 作者:佚名文章来源:https://www.wendangku.net/doc/272079473.html,/点击数:6113 更新时间:2008-4-6

CMOS集成电路CD4017C采用标准的双列直插式脚塑封,它的引脚排列如图1所示。CC4017 是国标型号,它与国外同类产品CD4017 在逻辑功能、引出端和电参数等方面完全相同,可以直接互换。其引脚功能如1: ①脚(Y5),第5输出端; ②脚(Y1),第1输出端; ③脚(Y0),第0输出端,电路清零时,该端为高电平; ④脚(Y2),第2输出端; ⑤脚(Y6).第6输出端; ⑥脚(y7),第7输出端; ⑦脚(Y3),第3输出端; ⑧脚(vss).电源负端; ⑨脚(Y8),第8输出端; ⑩脚(Y4).第4输出端; 脚(Y9).第9输出端; 脚(Qco),级联进位输出端,每输入10 个时钟脉冲,就可得一个进位输出脉冲,因此进位输出信号可作为下一级计数器的时钟信号。 脚(EN),时钟输入端,脉冲下降沿有效; 脚(CP),时钟输入端.脉冲上升沿有效; 脚(R),清零输入端,在“R”端加高电平或正脉冲时,CD40171C 计数器中各计数单元输出低电平“0”,在译码器中只有对应“0”状态的输出端Y0 为高电平; 脚(VDD),电源正端.3~18V 直流电压。 CD40171C 内部逻辑电原理图如图1-2 所示。它是由十进制计数器电路和时序译码电路两部分组成。其中的D 触发器Fl~F5 构成了十进制约翰逊计数器,门电路5~14构成了时序译码电路。约翰逊汁数器的结构比较简单.它实质上是一种串行移位寄存器。除了第3 个触发器是通过门电路15、16 构成的组合逻辑电路作用于F3 的D3 端以外,其余各级均是将前一级触发器的输出端连接到后一级触发器的输入端D 的,计数器最后—级的Q5 端连接到第一级的D1 端。这种计数器具有编码可靠,工作速度快、译码简单,只需由二输入瑞的与门即可译码,且译码输出无过渡脉冲干扰等特点。通常只有译码选中的那个输出端为高电平,其余输出端均为低电平。约翰逊计数器状态如表1-1所示。

相关文档