文档库 最新最全的文档下载
当前位置:文档库 › 电力电子器件一般都工作在开关状态

电力电子器件一般都工作在开关状态

电力电子器件一般都工作在开关状态
电力电子器件一般都工作在开关状态

电力电子器件一般都工作在开关状态

通态损耗是器件功率损耗的主要成因。

器件开关频率较高时,开关损耗可能成为器件功率损耗的主要因素

1.2.3 电力二极管的主要参数

额定电流——在指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波电流的

平均值。

I

是按照电流的发热效应来定义的,使用时应按有效值相等的原则来选取电流定额,F(A V)

并应留有一定的裕量。

1.3.3晶闸管的主要参数

3)反向重复峰值电压U RRM

对电力二极管所能重复施加的反向最高峰值电压。

使用时,应当留有两倍的裕量。

断态重复峰值电压U DRM

——在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。

反向重复峰值电压U RRM

——在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。

通态(峰值)电压U T

——晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。

通态平均电流I T(A V)

——在环境温度为40?C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。标称其额定电流的参数。

——使用时应按有效值相等的原则来选取晶闸管。

1.3.4 晶闸管的派生器件

(3)最大可关断阳极电流I ATO

——GTO额定电流

(4)电流关断增益βoff

——最大可关断阳极电流与门极负脉冲电流最大值I GM之比称为电流关断增益。

βoff一般很小,只有5左右,这是GTO的一个主要缺点。1000A的GTO关断时门极负脉冲电流峰值要200A

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一)实验目的 (1)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;(2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二)实验原理 图1.MATLAB电力电子器件模型 MATLAB电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构。 模型中的电阻Ron和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB电力电子器件模型中已经并联了简单的RC串联缓冲电路,在参数表中设置,名称分别为Rs和Cs。更复杂的缓冲电路则需要另外建立。对于MOSFET模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf和等效电阻Rd。对于GTO和IGBT需要设置电流下降时间Tf和电流拖尾时间Tt。 MATLAB的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

电力电子技术复习要点 --电力电子器件的分类:(各有哪些器件) (1)全

电力电子技术复习要点 --电力电子器件的分类:(各有哪些器件) (1)全控、半控; (2)电流驱动型、电压驱动型; (3)脉冲驱动型、电平驱动型; (4)单极性器件、双极性器件、复合型器件 --晶闸管的静态特性: (1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。 (3)晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。 (4)若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。 --过电压分为内因过电压(换相过电压、关断过电压),外因过电压(操作过电压和雷击过电压) --过电压、过电流保护措施; --缓冲电路又称为吸收电路,其作用是抑制电力电子器件的内因过电压、du/dt或者过电流和di/dt,减小器件的开关损耗。 --关断缓冲电路:又称为du/dt抑制电路,用于吸收器件的关断过电压和换相过电压,抑制du/dt,减小关断损耗。 --开通缓冲电路:又称为di/dt抑制电路,用于抑制器件开通时的电流过冲和di/dt,减小器件的开通损耗。 --复合缓冲电路:关断缓冲电路和开通缓冲电路结合在一起。

--通常将缓冲电路专指关断缓冲电路,而将开通缓冲电路区别叫做di/dt 抑制电路。 --晶闸管串联分压不均和并联分流不均的原因是什么?解决的措施是什么? --晶闸管触发电路应满足的要求。 --晶闸管串联使用是为了均压;并联使用是为了均流; --晶闸管额定电压,额定电流的概念(已知有效电流如何得到额定电流,) --不同整流电路触发脉冲的相位; --不同整流电路,在纯电阻负载和阻感性负载时,晶闸管所承受的最大正反向电压; --带平衡电抗器的双反星整流电路串联平衡电抗器的原因:使两个直流电源的电压瞬时值,平均值均相等,从而使并联的三相半波整流电路能够同时导通,给负载供电。 --带平衡电抗器的双反星整流电路与三相全控桥整流电路相对比的特点; --变压器漏感对整流电路影响的一些结论:(P63) --换相重叠角随其他参数变化的规律(P62) --电容滤波的不可控整流电路(单相不可控整流和三相不可控整流电路)主要数量关系。 --无功功率及谐波对公用电网的影响(P69) --三相电容不可控整流电路电流连续和断续的临界条件; --有源逆变与无源逆变的区别,有源逆变的两个条件; --什么是逆变失败?逆变失败的原因是什么?解决的措施有哪些?

第三章电力电子器件的原理与应用

第三章电力电子器件的原理与应用 在城市轨道交通车辆的电力牵引系统中,为了完成从直流到直流或直流到交流的电能变换与控制,大量应用着各种电力电子器件。 1947年,第一只晶体管的研制成功,开创了半导体固态电子学;1957年,美国通用电气公司发明了第一只晶闸管,从此电子技术朝两个分支发展.:一支是对信息处理的微电子技术,其发展的特点是集成度越来越高,集成规模越来越大;另一支是对电能进行转换与控制的电力电子技术,其发展的特点是晶闸管的派生器件越来越多:功率越来越大。近年来,微电子技术与电力电子技术又在各自发展的基础上相结合,产生了一批工作频率高,具有门极全控性能的功率集成器件,它们的品种越来越多,功率越来越大,性能越来越好,已经形成了庞大的电力电子器件家族“树”(图3-1)。 根据器件内部载流子参 与导电的种数不同,电力半导 体器件分为三大类。只有一种 载流子,即只有多数载流子参 与导电的电力半导体器件称 单极型器件,如电力场控晶体 管(电力MOSFET)、静电感 应晶体管(SIT)等。有空穴和电 子两种载流子参与导电的电 力半导体器件称双极型器件, 如GTO、GTR、SITH等。第 三种是单极型器件与双极型 器件的复合集成器件,如绝缘 栅双极晶体管(IGBT或简称 IGT)是用单极型的MOSFET 作为控制元件、以双极型的 GTR作为主导元件的复合管。 不同类型的电力电子器件具有不同的性能,双极型器件如SCR、GTO、GTR、SITH等,它们的通态压降较低,阻断电压高,电流容量大,适用于中大容量的变流设备。其电压和电流的定额都高达103级。在双极型器件中除静电感应晶闸管(SITH)为电压控制型器件外,其余的SCR及其家族和GTR等均为电流控制型器件,其控制性能不如单极型器件,功耗也比较大。 单极型器件的主要优点是:仅有多数载流子导电,无少数载流子存储效应,因而开关时间短,一般为纳秒数量级(典型值为20 ns);例如电压1000 V,电流200 A的电力MOSFET,开关时间仅13ns。输入阻抗很高,通常大于40MΩ,故又称电压控制型器件;电流具有负的温度系数,温度上升时电流下降,因而器件有良好的电流自动调节能力,不易产生局部热点,所以二次击穿的可能性极小,这一点与双极型器件根本不同。其不足之处是导通压降高、电压和电流定额都较双极型器件小。 复合型器件既有如GTR、SCR等双极型器件的电流密度高、导通压降低等优点,又有MOSFET等单极型器件输入阻抗高、响应速度快的优点。因此越来越引起高度重视。目前已开发的器件有:肖特基注入MOS门极晶体管(SINFET)、绝缘栅双极晶体管(IGBT)、MOS控制晶体管(MGT)、MOS控制晶闸管(MCT或MCTH)以及功率集成电路(PIC)和智能型功率集成电路(SPIC)、智能型功率模块(IPM)等。

电力电子器件大全及使用方法详解(DOC 42页)

第1章电力电子器件 主要内容:各种二极管、半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件:GTO、电力MOSFET、IGBT,功率集成电路和智能功率模块,电力电子器件的串并联、电力电子器件的保护,电力电子器件的驱动电路。 重点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件。 难点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数。 基本要求:掌握半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,熟练掌握器件的选取原则,掌握典型全控型器件,了解电力电子器件的串并联,了解电力电子器件的保护。 1 电力电子器件概述 (1)电力电子器件的概念和特征 主电路(main power circuit)--电气设备或电力系统中,直接承担电能的变换或控制任务的电路; 电力电子器件(power electronic device)--可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件; 广义上电力电子器件可分为电真空器件和半导体器件两类。 两类中,自20世纪50年代以来,真空管仅在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器(Mercury Arc Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。因此,电力电子器件目前也往往专指电力半导体器件。 电力半导体器件所采用的主要材料仍然是硅。 同处理信息的电子器件相比,电力电子器件的一般特征: a. 能处理电功率的大小,即承受电压和电流的能力,是最重要的参数;

第一章电力电子器件

电力电子技术试题(第一章) 一、填空题 1、普通晶闸管内部有 PN结,,外部有三个电极,分别是极极和极。 1、三个、阳极A、阴极K、门极G。 2、晶闸管在其阳极与阴极之间加上电压的同时,门极上加上电压,晶闸管就导通。 2、正向、触发。 3、、晶闸管的工作状态有正向状态,正向状态和反向状态。 3、阻断、导通、阻断。 4、某半导体器件的型号为KP50—7的,其中KP表示该器件的名称为,50表示,7表示。 4、普通晶闸管、额定电流50A、额定电压700V。 5、只有当阳极电流小于电流时,晶闸管才会由导通转为截止。 5、维持电流。 6、当增大晶闸管可控整流的控制角α,负载上得到的直流电压平均值会。 6、减小。 7、按负载的性质不同,晶闸管可控整流电路的负载分为性负载,性负载和负载三大类。 7、电阻、电感、反电动势。 8、当晶闸管可控整流的负载为大电感负载时,负载两端的直流电压平均值会,解决的办法就是在负载的两端接一个。 8、减小、并接、续流二极管。 9、工作于反电动势负载的晶闸管在每一个周期中的导通角、电流波形不连续、呈状、电流的平均值。要求管子的额定电流值要些。 9、小、脉冲、小、大。 10、单结晶体管的内部一共有个PN结,外部一共有3个电极,它们分别是极、极和极。 10、一个、发射极E、第一基极B1、第二基极B2。 11、当单结晶体管的发射极电压高于电压时就导通;低于电 压时就截止。 11、峰点、谷点。 12、触发电路送出的触发脉冲信号必须与晶闸管阳极电压,保证在管子阳极电压每个正半周内以相同的被触发,才能得到稳定的直流电压。 12、同步、时刻。 13、晶体管触发电路的同步电压一般有同步电压和电压。 13、正弦波、锯齿波。 14、正弦波触发电路的同步移相一般都是采用与一个或几个的叠加,利用改变的大小,来实现移相控制。 14、正弦波同步电压、控制电压、控制电压。 15、在晶闸管两端并联的RC回路是用来防止损坏晶闸管的。 15、关断过电压。 16、为了防止雷电对晶闸管的损坏,可在整流变压器的一次线圈两端并接一个或。 16、硒堆、压敏电阻。 16、用来保护晶闸管过电流的熔断器叫。 16、快速熔断器。 二、判断题对的用√表示、错的用×表示(每小题1分、共10分) 1、普通晶闸管内部有两个PN结。(×) 2、普通晶闸管外部有三个电极,分别是基极、发射极和集电极。(×) 3、型号为KP50—7的半导体器件,是一个额定电流为50A的普通晶闸管。() 4、只要让加在晶闸管两端的电压减小为零,晶闸管就会关断。(×) 5、只要给门极加上触发电压,晶闸管就导通。(×) 6、晶闸管加上阳极电压后,不给门极加触发电压,晶闸管也会导通。(√) 7、加在晶闸管门极上的触发电压,最高不得超过100V。(×) 8、单向半控桥可控整流电路中,两只晶闸管采用的是“共阳”接法。(×) 9、晶闸管采用“共阴”接法或“共阳”接法都一样。(×) 10、增大晶闸管整流装置的控制角α,输出直流电压的平均值会增大。(×) 11、在触发电路中采用脉冲变压器可保障人员和设备的安全。(√) 12、为防止“关断过电压”损坏晶闸管,可在管子两端并接压敏电阻。(×) 13、雷击过电压可以用RC吸收回路来抑制。(×) 14、硒堆发生过电压击穿后就不能再使用了。(×) 15、晶闸管串联使用须采取“均压措施”。(√)

电力电子器件在工作原理上的差别

电力电子器件(GTO 、GTR 、MOSFET 、IGBT 、IGCT 、MCT )在工作原理上有什么差别? 分析:电力电子器件(power electronic device )——可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。 1. 门极可关断晶闸管(Gate Turn Off Thyristor--GTO )。 晶闸管的一种派生器件,可以通过在门极施加负的脉冲电流使其关断,GTO 的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。 晶闸管的双晶体管模型及其工作原理 GTO 是由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流增益α1和α2。α1+α2=1是器件临界导通的条件。当α1+α2>1时,两个等效晶体管过饱和而使器件导通;当α1+α2<1时,不能维持饱和导通而关断。GTO 导通过程与普通晶闸管一样,只是导通时饱和程度较浅。GTO 关断过程:强烈正反馈——门极加负脉冲即从门极抽出电流,则I b2减小,使I K 和I c2减小,I c2的减小又使I A 和I c1减小,又进一步减小V2的基极电流。当I A 和的减小使 α1+α2<1时,器件退出饱和而关断。多元集成结构还使GTO 比普通晶闸管开通过程快,承受d i /d t 能力强 。 2. 电力晶体管(Giant Transistor ——GTR ) GTR 耐高电压、大电流的双极结型晶体管(Bipolar Junction Transistor ——BJT ),英文有时候也称为Power BJT 。在电力电子技术的范围内,GTR 与BJT 这两个名称等效。20世纪80年代以来,在中、小功率范围内取代晶闸管,但目前又大多被IGBT 和电力MOSFET 取代。 A P 1 A G K N 1P 2 P 2N 1 N 2a) b)

电力电子器件的概念

电力电子器件的概念: 直接承担电能的变换或控制的电路称为主电路。 可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件称为电力电子器件。 电力电子器件的特征: (1)、电力电子器件所能处理电功率的大小,所能承受的电压、电流的能力是其重要参数,一般都大于信息电子器件。 (2)、电力电子器件为减小自身损耗,提高效率,一般都工作在开关状态,通态阻搞接近于短路,电流由外电路决定;断态阻搞接近于断路,电流几乎为零,电压决定于外电路。 (3)、电力电子器件往往需要由信息电子电路来控制。 (4)、自由功率损耗远大于信息电子电路,需要良好的散热导热设计。 电力电子器件的系统组成: 一般由控制电路、驱动电路和以电力电子器件为核心的主电路组成。 电力电子器件的分类: 1、按能够被控制信号所控制的程度来分类: 全控型:既可控制其导通,又可控制其关断(绝缘栅

双极晶体管,电力MOSFET) 半控型:可以控制其导通,不能控制其关断(晶闸管、其大部分派生器件) 不可控型:导通与关断取决于所承受的电流、电压(电 力二极管) 2、按照驱动电路加在器件控制端的信号性质分类:电压 驱动型、电流驱动型 3、根据驱动电路加在器件控制端有效信号的波形分类: 脉冲触发型、电平控制型 4、按照器件内部电子的空穴参与导电的情况:单极型、 双极型、复合型 电力二极管 特征:能承受高电压和大电流(垂直导电结构、低掺杂N区)静态特征:伏安特征 动态特征:零偏、正偏、反偏时的过滤过程(图)

主要参数: 1、正向平均电流I F(AV),正向压降VF,反向重复峰值电 压V RRM,最高工作结温T JM,反向恢复时间,浪涌电流。 主要类型:普通二极管(整流二极管)、快恢复二极管、有特基二极管 电导调制效应:PN结通过大电流,大量空穴被注入基区,它们来不及和基区中的电子中和就到达负极,使基区电子浓度大幅增加。——使原始基片的电阻率下降。 晶闸管: 正常导通条件:晶闸管承受正向阳极电压,向门极施加触发电流。 关断条件:

电力电子技术器件的分类

1.1不可控器件电力二极管 功率二极管是开通与关断均不可控的半导体开关器件,其电压、电流定额较大,也称为半导体电力二极管。 1.2功率二极管的结构和工作原理 与普通二极管相比,工作原理和特性相似,具有单向导电性。在面积较大的PN 结上加装引线以及封装形成,主要有螺栓式和平板式。 1.3功率二极管的基本特征 1) 静态特性 主要指其伏安特性 1.门槛电压U TO,正向电流I F开始明显增加所对应的电压。 2.与I F对应的电力二极管两端的电压即为其正向电压降U F。 3.承受反向电压时,只有微小而数值恒定的反向漏电流。 2) 动态特性 功率二极管通态和断态之间转换过程的开关特性。 1.二极管正向偏置形成内部PN结的扩散电容。此时突加反向电压,二极管并不能立即关断。当结电容上的电荷复合掉以后,二极管才能恢复反向阻断能力,进入截止状态。 2.二极管处于反向偏置状态突加正向电压时,也需要一定的时间,才会有正向电流流过,称为正向恢复时间。 1.4功率二极管的主要参数 1.额定正向平均电流I F(AV)——在规定的管壳温度和散热条件下,功率二极管长期运行时允许流过的最大工频正弦半波电流的平均值。 2.反向重复峰值电压U RRM——功率二极管反向所能承受的重复施加的最高峰值电压。 3.正向管压降U F——功率二极管在规定的壳温和正向电流下工作对应的正向导通压降。 4.最高允许结温T jM——结温(T j)是管芯PN结的平均温度,最高允许结温(T jM)是PN结正常工作时所能承受的最高平均温度。 1.5功率二极管的主要类型

1) 普通二极管(General Purpose Diode ) 又称整流二极管(Rectifier Diode )多用于开关频率不高(1kHz 以下)的整流电路其反向恢复时间较长正向电流定额和反向电压定额可以达到很高 2) 快恢复二极管(Fast Recovery Diode ——FRD )简称快速二极管 快恢复外延二极管(Fast Recovery Epitaxial Diodes ——FRED ),其t rr 更短(可低于50ns ), U F 也很低(0.9V 左右),但其反向耐压多在1200V 以下。 从性能上可分为快速恢复和超快速恢复两个等级。前者t rr 为数百纳秒或更长,后者则在100ns 以下,甚至达到20~30ns 。 3. 肖特基二极管以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒二极管(Schottky Barrier Diode ——SBD )。反向恢复时间很短(10~40ns )多用于200V 以下。 2.1半控型器件晶闸管 普通晶闸管也称做硅可控整流器(Silicon Controlled Rectifer ,SCR )。它是一种半控型开关器件,工作频率较低,是目前电压、电流定额最大的电力电子开关器件。 2.2晶闸管的结构与工作原理 外形有螺栓型和平板型两种封装。有三个连接端。螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便。平板型晶闸管可由两个散热器将其夹在中间。 晶闸管导通的原理可用晶体管模型解释,由图得: 式中α1和α2分别是晶体管V 1和V 2的共基极电流增益;I CBO1和I CBO2分别是V 1和V 2的共基极漏电流。由以上式可得 : 在低发射极电流下α 是很小的,而当发射极电流建立起来之后,α 会迅速增大(形成强烈正反馈所致)。阻断状态:I G =0,(α1+α2)很小,I A ≈I C0,晶闸管处于正向阻断状态。开通状态:随I G 增加,晶体管的发射极电流增大,以致(α1+α2)趋近于1的话,阳极电流I A 将趋近于无穷大,实现饱和导通。I A 实际由外电路决定。 111CBO A c I I I +=α222CBO K c I I I +=α21c c A I I I +=G A K I I I +=)(121CBO2CBO1G 2A ααα+-++=I I I I

电力电子器件

电力电子器件 电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。主电路:在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。 电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。 ◆由信息电子电路来控制,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器。 电力电子器件的功率损耗 断态损耗 通态损耗:是电力电子器件功率损耗的主要成因。 开关损耗:当器件的开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。分为开通损耗和关断损耗。 电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。 电力电子器件的分类 按照能够被控制电路信号所控制的程度

◆半控型器件:指晶闸管(Thyristor)、快速晶闸管、逆导晶闸管、光控晶闸管、双向晶闸管。 ◆全控型器件:IGBT、GTO、GTR、MOSFET。 ◆不可控器件:电力二极管(Power Diode)、整流二极管。 按照驱动信号的性质 ◆电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。Thyrister,GTR,GTO。 ◆电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。电力MOSFET,IGBT,SIT。 按照驱动信号的波形(电力二极管除外) ◆脉冲触发型:通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。晶闸管,SCR,GTO。 ◆电平控制型:必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在通断状态。GTR,MOSFET,IGBT。 按照载流子参与导电的情况 ◆单极型器件:由一种载流子参与导电。MOSFET、SBD(肖特基势垒二极管)、SIT。 ◆双极型器件:由电子和空穴两种载流子参与导电。电力二极管,PN结整流管,SCR,GTR,GTO。 ◆复合型器件:由单极型器件和双极型器件集成混合而成,也称混合型器件。IGBT,MCT。 GTO:门极可关断晶闸管。SITH(SIT):静电感应晶体管。

电力电子器件分类与应用思考

电力电子器件分类与应用思考 电力电子技术是以电力电子器件为基础对电能进行控制、转换和传输的一门技术,是现代电子学的一个重要分支,包括电力电子器件、变流电路和控制电路三大部分,其中以电力电子器件的制造、应用技术为最基本的技术。 电力电子技术是以电力电子器件为基础对电能进行控制、转换和传输的一门技术,是现代电子学的一个重要分支,包括电力电子器件、变流电路和控制电路三大部分,其中以电力电子器件的制造、应用技术为最基本的技术。因此,了解电力电子器件的基本工作原理、结构和电气参数,正确安全使用电力电子器件是完成一部电力电子装置最关键的一步。电力电子器件种类繁多,各种器件具有自身的特点并对驱动、保护和缓冲电路有一定的要求。一个完善的驱动、保护和缓冲电路是器件安全、成功使用的关键,也是本讲座重点讲述的部分。电力电子变换电路常用的半导体电力器件有快速功率二极管、大功率双极型晶体管(GTR)、晶闸管(Thyristor或SCR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET)、绝缘栅双极晶体管(IGBT)以及功率集成电路PIC等。在这些器件中,二极管属于不控型器件,晶闸管属于半控型器件,其他均属于全控型器件。SCR、GTO及GTR属电流驱动型器件,功率MOSFET、 IGBT及PIC为电压驱动型器件。在直接用于处理电能的主电路中,实现电能变换和控制的电子器件称为电力电子器件。电力电子器件之所以和“电力”二字相连,是因为它主要应用于电气工程和电力系统,其作用是根据负载的特殊要求,对市电、强电进行各种形式的变换,使电气设备得到最佳的电能供给,从而使电气设备和电力系统实现高效、安全、经济的运行。目前的电力电子器件主要指的是电力半导体器件,与普通半导体器件一样,电力半导体器件所采用的主要材料仍然是硅。 1电力电子器件的一般特征 (1)处理电功率的能力大 (2)工作在开关状态 (3)需要由信息电子电路来控制 (4)需要安装散热器 2电力电子器件的分类 2.1按器件被控程度分类 按照器件控制信号的控制程度,电力电子器件可分为以下三类: (1)不可控器件。这类器件一般为两端器件,一端是阳极,另一端是阴极。与电子电路中的二极管一样,具有单向导电性。其开关操作仅取决于其在主电路中施加在阳、阴极间的电压和流过它的电流,正向电压使其导通,负向电压使其关断,流过它的电流是单方向的。不可控器件不能用控制信号来控制电流的通断,因此不需要驱动电路。这类器件就是功率二极管(PowerDiode)。 (2)半控型器件。这类器件是三端器件,除阳极和阴极外,还增加了一个控制门极。半控型器件也具有单向导电性,但开通不仅需在其阳、阴极间施加正向电压,而且还必须在门极和阴极间施加正向控制电压。门极和阴极间的控制电压仅控制其开通而不能控制其关断,器件的关断是由其在主电路中承受的电压和电流决定的。这类半控型器件是指晶闸管(Thyris-tor)及其大部分派生器件。

变频器常用电力电子器件

无锡市技工院校 教案首页 课题:变频器常用电力电子器件 教学目的要求:1. 了解变频器中常用电力电子器件的外形和符号2.了解相关电力电子器件的特性 教学重点、难点: 重点:1. 认识变频器中常用电力电子器件 2. 常用电力电气器件的符号及特性 难点:常用电力电气器件的特性 授课方法:讲授、分析、图示 教学参考及教具(含多媒体教学设备): 《变频器原理及应用》机械工业出版社王延才主编 授课执行情况及分析: 在授课中,主要从外形结构、符号、特性等几方面对变频器中常用的电力电子器件进行介绍。通过本次课的学习,大部分学生已对常用电力电子器件有了一定的认识,达到了预定的教学目标。

板书设计或授课提纲

电力二极管的内部也是一个PN 结,其面积较大,电力二极管引出了两个极,分别称为阳和阴极K 。电力二极管的功耗较大,它的外形有螺旋式和平板式两种。2.伏安特性:电力二极管的阳极和阴极间的电压和流过管子的电流之间的关系称为伏安特性。 如果对反向电压不加限制的话,二极管将被击穿而损坏。(1)正向特性:电压时,开始阳极电流很小,这一段特性 曲线很靠近横坐标。当正向电压大于时,正向阳极电流急剧上升,管子正向导 通。如果电路中不接限流元件,二极管将 被烧毁。

晶闸管的种类很多,从外形上看主要由螺栓形和平板形两种,螺栓式晶闸管容量一般为10~200A;平板式晶闸管用于200A3个引出端分别叫做阳极A、阴极 控制极。 结构 晶闸管是四层((P1N1P2N2)三端(A、K、G)器件。 晶闸管的导通和阻断控制 导通控制:在晶闸管的阳极A和阴极K间加正向电压,同时在它的门极 正向触发电压,且有足够的门极电流。 晶闸管一旦导通,门极即失去控制作用,因此门极所加的触发电压一般为脉冲电压。 管从阻断变为导通的过程称为触发导通。门极触发电流一般只有几十毫安到几百毫安, 管导通后,从阳极到阴极可以通过几百、几千安的电流。要使导通的晶闸管阻断,必须将阳极电流降低到一个称为维持电流的临界极限值以下。 三、门极可关断晶闸管(GTO) 门极可关断晶闸管,具有普通晶闸管的全部优点,如耐压高、电流大、控制功率大、使用方便和价格低;但它具有自关断能力,属于全控器件。在质量、效率及可靠性方面有着明显的优势,成为被广泛应用的自关断器件之一。 结构:与普通晶闸管相似,也为PNPN四层半导体结构、三端(阳极 )器件。 门极控制 GTO的触发导通过程与普通晶闸管相似,关断则完全不同,GTO 动电路从门极抽出P2基区的存储电荷,门极负电压越大,关断的越快。 四、电力晶体管(GTR) 电力晶体管通常又称双极型晶体管(BJT),是一种大功率高反压晶体管,具有自关断能力,并有开关时间短、饱和压降低和安全工作区宽等优点。它被广泛用于交直流电机调速、中频电源等电力变流装置中,属于全控型器件。 工作原理与普通中、小功率晶体管相似,但主要工作在开关状态, 承受的电压和电流数值较大。 五、电力MOS场效应晶体管(P-MOSFET) 电力MOS场效应晶体管是对功率小的电力MOSFET的工艺结构进行改进,在功率上有

典型全控型电力电子器件.docx

湖南省技工学校 理论教学教案 教师姓名: 注:教案首页,教案用纸由学校另行准备湖南省劳动厅编制

[复习导入] 门极可关断晶闸管——在晶闸管问世后不久出现。 全控型电力电子器件的典型代表——门极可关断晶闸管、电力 晶体管、电力场效应晶体 管、绝缘栅双极晶体管。 [讲授新课] 一、门极可关断晶闸管 晶闸管的一种派生器件。可以通过在门极施加负的脉冲电流使其关断。 GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上 的大功率场合仍 有较多的应用。 1)GTO的结构和工作原理 与普通晶闸管的相同点: PNPN四层半导体结构,外部引出阳极、阴极 和门极。和普通晶闸管的不同点:GTO是一种多元的功率集成器件。 工作原理:与普通晶闸管一样,可以用图所示的双晶体管模型来分析。 由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流 增益α1和α2 。 α1+α2=1是器件临界导通的条件。 GTO的关断过程与普通晶闸管不同。关断时,给门极加负脉冲,产生门 极电流-I G,此电流使得V1管的集电极电流I Cl被分流,V2管的基极电流 I B2减小,从而使I C2和I K减小,I C2的减小进一步引起I A和I C1减小, 又进一步使V2的基极电流减小,形成内部强烈的正反馈,最终导致GTO阳 极电流减小到维持电流以下,GTO由通态转入断态。 结论: ?GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。 ?GTO关断过程中有强烈正反馈使器件退出饱和而关断。 ?多元集成结构还使GTO比普通晶闸管开通过程快,承受d i/d t能力 强。 2)GTO的动态特性 益阳高级技工学校

常用电力电子器件

第5章 常用电力电子器件 在开关电源中,电力电子器件是完成电能转换以及主电路拓扑中最为关键的元件。为降低器件的功率损耗,提高效率,电力电子器件通常工作于开关状态,因此又常称为开关器件。电力电子器件种类很多,按照器件能够被控制电路信号所控制的程度,可以将电力电子器件分为①不可控器件,即二极管;②半控型器件,主要包括晶闸管(SCR)及其派生器件;③全控型器件,主要包括绝缘栅双极型晶体管(IGBT)、电力晶体管(GTR)、电力场效应晶体管(电力MOSFET)等。半控型及全控型器件按照驱动方式又可以分为电压驱动型、电流驱动型两类,上述分类见图5-1。 电力电子器件 不可控器件 二极管半控型器件 SCR 全控型器件 IGBT 电力MOSFET GTR GTO 晶闸管 电力电子器件 电压驱动型 电流驱动型 电力MOSFET IGBT SCR GTO 晶闸管GTR 图5-1电力电子器件的分类 随着半导体材料及技术的发展,新型电力电子器件不断推出,传统电力电子器件的性能也不断提高,这成为包括开关电源在内的各种电力电子装置的体积、效率等性能指标不断提高的重要因素。了解和掌握各种电力电子器件的特性和使用方法是正确设计开关电源的基础。 在开关电源中应用的电力电子器件主要为二极管、IGBT 和MOSFET 。SCR 在开关电源的输入整流电路及其软起动中有少量应用,GTR 由于驱动较为困难、开关频率较低,也逐渐被IGBT 和MOSFET 所取代。因此这里将主要介绍二极管、IGBT 和MOSFET 的工作原理,主要参数及驱动方法。 5. 1二极管 二极管是最为简单但又是十分重要的一种电力电子器件,在开关电源的输入整流电路、逆变电路、输出高频整流电路以及缓冲电路中均有使用。 1、二极管的基本结构及工作原理 开关电源中应用的二极管除电压、电流等参数与电子电路中的二极管有较大差别外,其基本结构和工作原理是相同的,都是由半导体PN 结构成,即P 型半导体与N 型半导体结合构成,其结构见图5-2。 P 型半导体是在半导体中添加三价元素,因此硅原子外层缺少一个电子形成稳定结构,即形成空穴。N 型半导体是在半导体中添加五价元素,因此它在形成稳定结构后,半导体晶体中能给出一个多余的电子。在纯净的半导体中,空穴和电子成对出现,数量极少,所以导电能力很差。而P 型或N 型半导体中的空穴或自由电子数量大大增加,导电能力大大增强。在P 型半导体中空穴数远远大于自由电子数,因此空穴称为多子,自由电子称为少子。在N 型半导体中则相反,空穴为少子,自由电子为多子。

1-1-电力电子器件特征与分类

电力电子器件特征与分类 ◆电力电子技术的概念:使用电力电子器件对电能进行变换和 电力电子技术的概念使用电力电子器件对电能进行变换和控制的技术。 ◆电力电子器件的地位:又称功率半导体器件,是电力电子电 电力电子器件的地位又称功率半导体器件是电力电子电路(变流技术)的基础。 ◆电力电子器件概念:可直接用于主电路中,实现电能的变换 电力电子件概念直接用主电路中实电能的变换或控制的电子器件。 问题:为什么要对电能进行变换和控制?

()特征半导体功率开关与普通半导体器件有何区别? (一)特征 问题:半导体功率开关与普通半导体器件有何区别?电力电子器件能处理电功率的能力,一般远大于处理信息的电子器件 的电子器件。?电力电子器件一般都工作在开关状态。 ?电力电子器件往往需要由信息电子电路来控制,需要驱动电路。 ?电力电子器件自身的功率损耗远大于信息电子器件,一般都要安装散热器。

i i ;(2)开关处于导通状态时能流过大电流端电压为零;(3)导通、关断切换时所需;(4)长期反复地开关也不损坏()。 )长期反复地开关也不损坏(寿命长 ◆电力电子开关的特点---近似理想开关

◆电力电子开关的主要损耗 ?通态损耗是器件功率损耗的主要成因。 器件开关频率较高时的可行性?器件开关频率较高时,开关损耗可能成为器件功率损耗的主要因素。 ◆在分析变换器电路时采用理想化器件模型的可行性:?由于能量转换的效率通常设计得很高,所以器件的通态电压与工作电压相比一定比较小所以在电路分析中可以电压与工作电压相比一定比较小,所以在电路分析中可以忽略。 ?器件的开关时间一定远小于电路的工作周期因此可近器件的开关时间定远小于电路的工作周期,因此可近似为瞬时通断。 采用理想化器件模型可大大简化变换器工作原理的分析,但是在设计实际变流装置时,必须考虑器件的具体特性。

电力电子元件简介

電力電子元件簡介
Introduction to Power Electronic Devices
C. M. Liaw Department of Electrical Engineering National Tsing Hua University Hsinchu, Taiwan, ROC.
兩段式電熱控制
(應用 Power diode)
AC source Power diode AC source
Load
無段式電熱控制 (應用 SCR)
SCR
P
Load
Firing circuit
Diode: Uncontrolled turn-on and turn-off
SCR: Controlled turn-on and uncontrolled turn-off
不可控制交流輸出電壓 故控制性能較差
可控制交流輸出電壓 故控制性能較佳
Page 1

常用功率半導體元件之額定(表二) Voltage/current ratings Switching frequency (speed) Switching time On-state resistance (or on-state voltage/current)
功率半導體元件 功率半導體元件
(A) 閘流體 (Thyristor) 或矽控整流器 (Silicon Controlled Rectifier, SCR) : Controlled turn-on, uncontrolled turn-off (B) 雙向閘流體 (Bidirectional Thyristor 或 TRIAC) (C) GTO (Gate Turn-off Thysistor) (D) 基體閘換向閘流體 (Integrated Gate-Commutated Thyristor, IGCT): It is introduced by ABB in 1997. It is a high-voltage, hard-driven, asymmetrical-blocking GTO with unity gain. The gate drive circuit is built-in on the device module. (E) 功率電晶體 (Power BJT) : Current control device (F) IGBT (Insulated Gate Bipolar Transistor): - Combines the conduction characteristic of BJT and the control characteristic of the MOSFET (G) MOS控制閘流體 (MOS -controlled Thyristor, MCT): - Combines the load characteristic of the thyristor and the control characteristic of the MOSFET - Low on-state voltage (H) 功率金氧半電晶體 (Power MOSFET) : Voltage control device (I) 其它
耐壓 耐流
操作 速度
Page 2

电力电子基础知识大作业要点

《电力电子技术》课程大作业电力电子技术器件、电路和技术综述 院(系)名称信息工程学院 专业名称电子信息工程技术 学生姓名XXX 学号xxx 指导教师王照平 2015年6月12日

基于电力电子技术器件、电路和技术综述的 1、概述 从广义来讲,电子技术应包含信息电子技术和电力电子技术两大分支,而通常所说的电子技术一般指信息电子技术。 电力电子技术也称为电力电子学,它真正成为一门独立的学科始于1957年第一只晶闸管的问世。在1970年国际电气和电子工程协会(IEEE)电力电子学会上对电力电子技术作了以下定义:“电力电子技术就是有效地使用电力电子器件,应用电路和设计理论及分析开发工具,实现对电能的高效能变换和控制的一门技术。它包括对电压、电流频率和波形的变换。”简言之,电力电子技术就是利用电力电子器件对电能形态进行变换和控制的一门技术。 电力电子技术是电力、电子控制三大电气工程技术领域之间的交叉学科,它们之间的关系可用倒三角图形描述,如图1-1所示。 图1-1 描述电力电子学的倒三角形 第一,电力电子技术是在电子技术的基础上发展起来的,它们都可可分为器件、电路和应用三个部分,且器件的材料和制造工艺基本相同,只有两者的应用目的有所不同,电

子技术应用于信息的处理(如放大等),电力电子技术应用于电力变换和控制,它所变换的功率可大到数百甚至数千兆瓦,也可以小到几瓦或毫瓦数量级。第二,电力电子技术广泛应用于电器工程,如高压直流输电、静止无功补偿、电力机车牵引、交直流电力传动、电解、励磁、电加热、高性能交直流电源等电力系统和电器工程中,它对电器工程的现代化起着重要推动作用。第三,电力电子技术可以看成是弱电控制强电的技术,是弱点和强电之间的接口。而控制理论是实现这种接口的一种强有力的纽带,是电力电子技术重要理论依据。所以,也可以认为:电力电子技术是运用控制理论将电子技术应用到电力领域的综合性技术。 2、电力电子常用器件 2.1、电力电子器件概念 可以直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。 2.2、电力电子器件分类 按照电力电子器件能够被控制所实现控制的程度分为下列三类: 不可控器件(Power Diode):不能用控制信号来控制其通断, 因此也就不需要驱动电路。 半控型器件(Thyristor):通过控制信号可以控制其导通而不能控制其关断 全控型器件(IGBT,MOSFET):通过控制信号既可控制其导通又可控制其关断,又称自关断器件。 按照驱动电路加在电力电子器件控制端和公共端之间的信号的性质,我们又可以将电力电子器件分为电流驱动型和电压驱动型两类: 电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。 电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。 2.3、不可控器件—电力二极管 2.3.1 电力二极管的工作原理 基本结构和工作原理与信息电子电路中的二极管是一样的。由一个面积较大的PN

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一) 实验目的 (1)掌握几种常用电力电子器件(SCR 、GTO 、MOSFET 、IGBT )的工作特性; (2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二) 实验原理 A + K ak V _ f _ 图1.MATLAB 电力电子器件模型 MATLAB 电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB 电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构 。 模型中的电阻Ron 和直流电压源Vf 分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB 电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB 电力电子器件模型中已经并联了简单的RC 串联缓冲电路,在参数表中设置,名称分别为Rs 和Cs 。更复杂的缓冲电路则需要另外建立。对于MOSFET 模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf 和等效电阻Rd 。对于GTO 和IGBT 需要设置电流下降时间Tf 和电流拖尾时间Tt 。 MATLAB 的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB 的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

相关文档