文档库 最新最全的文档下载
当前位置:文档库 › 交流示波极谱滴定法测定废电镀液中的银

交流示波极谱滴定法测定废电镀液中的银

交流示波极谱滴定法测定废电镀液中的银
交流示波极谱滴定法测定废电镀液中的银

硝酸银滴定液配制标准操作规程

目的:规范硝酸银滴定液的配制操作。 适用范围:硝酸银滴定液。 责任者:配制者、复核者。 =169.87 AgNO 3 1.试药及试剂 硝酸银(分析纯)氯化钠(基准物) 糊精溶液(1→50)碳酸钙 荧光黄指示液:取荧光黄0.1g加乙醇 100ml溶解,即得。 2.配制 取硝酸银17.5g,加水适量使溶解成1000ml,摇匀。 3.标定 3.1 原理 荧光黄为具有颜色的阴离子弱酸,在中性溶液中可被带正电荷的物质吸附而显粉红色;硝酸银与氯化钠反应生成AgCL沉淀,微过量的银离子附于AgCL表面,吸附荧光黄阴离子而显红色。据此可指示终点并算出硝酸银浓度。反应式如下: Ag++Cl-→AgCl↓ (AgCl↓)Ag++FI-(黄色)→(AgCl↓)Ag+·FI-(粉红色) 3.2 步骤 取在 110℃干燥至恒重的基准氯化钠约0.2g,精密称定,加水50ml使溶解,再加糊精溶液(1→50)5ml、碳酸钙0.1g与荧光黄指示液8滴,用本液滴定至浑浊液由黄绿色变为微红色。每1ml的硝酸银滴定液(0.1mol/L)相当于 5.844mg的氯化钠。根据本液的消耗量与氯化钠的取用量,算出本液的浓度,即得。 如需用硝酸银滴定液(0.01mol/L)时,可取硝酸银滴定液(0.1mol/L)在临用前加水稀释制成。 3.3 计算公式 硝酸银滴定液的浓度C(mol/L)按下式计算:

C(mol/L)= m×0.1000V×5.844 式中:m为基准氯化钠的称取量(mg) V为本滴定液的消耗量(ml); 5.844 为每1ml的硝酸银液(0.1000mol/L)相当于氯化钠的毫克数。 4.贮藏 应置于具塞的棕色玻瓶中,密闭保存。 5.有关注释及注意事项 5.1 标定中采用以荧光黄为指示剂的吸附指示剂法,要求生成的氯化银呈胶体状态,以利于到达滴定终点时对指示剂阴离子的吸附而产生颜色的突变,因此在基准氯化钠加水溶解后要加入2%糊精溶液5ml,以形成保护胶体。 5.2 标定需要在中性或弱碱性(pH7~10)中进行,以利于荧光黄阴离子的形成,故需在溶液中加入碳酸钙0.1g,以维持溶液的微碱性。 5.3氯化银的胶体沉淀遇光极易分解析出黑色的金属银,因此在滴定过程中应避免强光直接照射。 5.4 本滴定液应避光保存,宜置于具塞的棕色玻瓶中,或用黑布包裹的玻瓶。

电镀废水处理方法

电镀废水处理方法 一电镀废水的来源 电镀废水主要包括电镀漂洗废水、钝化废水、镀件酸洗废水、刷洗地坪和极板的废水应急由于操作或管理不善引起的“跑、冒、滴、漏”产生的废水,另外还有废水处理过程中自用水以及化验室的排水等。 二电镀废水的性质和分类 1 电镀废水的性质 电镀废水中主要的污染物为各种金属离子,常见的有铬、铜、镍、铅、铝、金、银、镉、铁等;其次是酸类和碱类物质,如硫酸、盐酸、硝酸和氢氧化钠、碳酸钠等;有些镀液还是用了催化剂、添加剂和颜料等其他物质,这些物质大部分是有机物。另外在镀件基材的预处理过程中漂洗下来的油脂、油污。氧化皮、尘土等杂质也都被带入了电镀废水中,是电镀废水的成分复杂。其所造成的污染大致为:化学毒物的污染,有机需氧物质的污染,无机固体悬浮物的污染以及酸、碱、热等的污染和有色、泡沫、油类等污染。但只要的污染时重金属离子、酸、碱和部分有机物的污染。 2 电镀废水的分类 电镀废水一般按废水所含的主要污染物分类。如含氰废水,含铬废水,含镍、铜、锌、铬废水,含酸废水等。 当废水中含有一种以上的主要污染物时(如氰化镀镉,既有氰化物又有镉),一般仍按其中一种污染物分类;当同一镀种有几种工艺方法时,也有按不同镀种工艺再分成小类,如把含铜废水再分成焦磷酸镀铜废水,硫酸铜镀铜废水等。当几种不同镀种废水都含铜一种主要污染物时,如镀铬、钝化废水混合在一起时就统称为含铬废水。若分质监理系统时,则分别为镀铬废水、钝化废水,一般将不同镀种和不同主要污染物的废水混合在一起时的废水统称为电镀混合废水。 三电镀废水单元处理方法 1 化学沉淀法 向废水中投加某种化学物质,使之与废水中欲厂区的污染物发生直接的化学反应,生成难溶的固体物二分离除去的方法,称为化学沉淀法。它适用于处理含金属离子的电镀废水。 用于电镀废水处理的沉淀法主要由氢氧化物沉淀法、钡盐法、碳酸盐法、硫化物沉淀法、置换沉淀法及铁氧体沉淀法。 1)氢氧化物沉淀法:电镀废水中的许多中金属离子可以删除氢氧化物沉淀二得以去除。 2)钡盐沉淀法:主要用于处理含六价铬的废水,采用的沉淀剂有碳酸钡、硫化钡、硝酸钡、氢氧化钡等。 3)硫化物沉淀法:许多重金属能形成硫化物沉淀。大多数金属硫化物的溶解度比其氢氧化物的溶解度要小很多,因此采用硫化物可使中金属得到等完全地去除。 2 混凝沉淀法 混凝法即向废水中投加某种混凝剂,使水中难以沉淀的胶体悬浮颗粒或乳状污染物失去稳定后,在一定的水力反应条件下,好像碰撞凝聚,形成较大的颗粒或絮状物而沉淀分离。 3 化学氧化还原法 在化学法处理电镀废水中,广泛利用氧化还原把废水中某些有毒的污染物变成无毒害物,从而达到净化处理的目的,这种方法称为氧化还原法,这是一种最终处理有毒废水的主

氯化物的测定硝酸银滴定法

氯化物的测定硝酸银滴 定法 Last revised by LE LE in 2021

硝酸银滴定法 测 定 水 质 氯 化 物 实验操作说明

硝酸银滴定法测定水质氯化物 GB11896—89 1主题内容与适用范围 适用于天然水中氯化物的测定,也适用于经过适当稀释的高矿化度水如咸水、海水等,以及经过预处理除去干扰物的生活污水或工业废水。 本标准适用的浓度范围为10—500mg/L的氯化物。高于此范围的水样经稀释后可以扩大其测定范围。 溴化物、碘化物和氰化物能与氯化物一起被滴定。正磷酸盐及聚磷酸盐分 别超过250mg/L及25mg/L时有干扰。铁含量超过10mg/L时使终点不明显。 2原理 在中性至弱碱性范围内(pH6.5—10.5),以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银的溶解度,氯离子首先被完全沉淀 出来后,然后铬酸盐以铬酸银的形式被沉淀,产生砖红色,指示滴定终点到 达。该沉淀滴定的反应如下: Ag++Cl—→AgCl↓ 2Ag++CrO 4→Ag 2 CrO 4 ↓(砖红色) 3试剂 分析中仅使用分析纯试制及蒸馏水或去离子水。 3.1高锰酸钾,C(1/5KMnO 4 )=0.01mol/L。 3.2过氧化氢(H 2O 2 ),30%。 3.3乙醇(C 6H 5 OH),95%。 3.4硫酸溶液,C(1/2H 2SO 4 )=0.05mol/L。 3.5氢氧化钠溶液,C(NaOH)=0.05mol/L。 3.6氢氧化铝悬浮液:溶解125g硫酸铝钾[KAl(SO 4) 2 ·12H 2 O]于1L蒸馏水 中,加热至60℃,然后边搅拌边缓缓加入55mL浓氨水放置约1h后,移至大瓶中,用倾泻法反复洗涤沉淀物,直到洗出液不含氯离子为止。用水稀至约为300mL。

硝酸银滴定法测氯化物

硝酸银标准溶液的制备 一、实验目的: 1、掌握AgNO3溶液的配制和标定方法; 2、学会应用K2CrO4作指示剂判断滴定终点。 二、试剂: 1、固体AgNO3 2、K2CrO4溶液50g·L-1水溶液。 3、基准物质氯化钠。 三、实验内容: a、实验步骤 1、C(AgNO3)=0.1mol·L-1AgNO3标准液的配制:称取8.5g AgNO3溶于500ml 不含cl- 离子的蒸馏水中,贮存于带玻璃塞的棕色试剂瓶中,摇匀,置于暗处, 待标定。 2、AgNO3溶液的标定:准确称取基准试剂NaCl 0.12~0.15g,放入锥形瓶中,加 50ml水溶解,加K2CrO4指示剂1ml,在充分摇动下,用配好的AgNO3溶液滴 定直至溶液微呈砖红色即为终点,记下消耗的AgNO3溶液的体积。 b、实验记录: 四、浓度计算: C(AgNO3)=m(NaCl)÷【M(NaCl)×V(AgNO3)】C(AgNO3)---- AgNO3标准溶液浓度,mol·L-1; m ---- 基准物质NaCl的质量,g; M(NaCl)---- NaCl的摩尔质量,g·mol-1; V(AgNO3)---- 滴定时消耗AgNO3标准溶液体积,L。

水中氯含量的测定 一、实验目的: 1、掌握莫尔法测定水中氯含量的原理和方法。 2、学会正确判断滴定终点。 二、试剂: 1、AgNO3标准溶液C(AgNO3)= 0.1mol·L-1,或者C(AgNO3)= 0.05mol·L-1。 2、K2CrO4指示剂50g·L-1。 3、水试样(自来水或者天然水)。 三、实验内容: 1、实验步骤:准确吸取水样50ml放入锥形瓶中,加K2CrO4溶液1ml,在充分摇 动下,以C(AgNO3)= 0.05mol·L-1 AgNO3标准溶液滴定至呈砖红色,即为终 点。记下AgNO3标准溶液体积。 2、实验记录: 3、结果计算 ——蒸馏水消耗硝酸银标准溶液量,ml; 式中:V 1 V ——试样消耗硝酸银标准溶液量,ml; 2 M——硝酸银标准溶液浓度,mol·L-1; V——试样体积,ml。

电镀废水一体化处理工艺

电镀废水一体化处理工艺 电镀废水一体化处理工艺 随着科技的进步和环保技术的快速发展,许多新技术开始应用于环保行业了,其中以铁/炭内电解反应器为核心的技术在环保工程中应用越来越广泛。这种一体化处理技术以其独特的优势在电镀废水处理工程中具有广泛的应用前景。 1、一体化技术处理混合电镀废水工艺机理 破CN-、氧化还原Cr6+为Cr3+等预处理措施是传统电镀废水处理工艺中必须的,因其投资大、技术参数控制程度高、操作复杂等弊端,在工程设计与应用中具有一定的局限性。相比起来,以为主体技术的工艺则避免了污水的分类收集、预处理等前期工序,废

水可直接混合并进入独立设置的调节池内,进行水量水质调节,然后通过水力提升至铸铁/焦炭内电解反应器内,在一定条件下反应后进入下步工序。由于此类技术不需要对污水进行分类预处理,而是直接混合处理,因此亦名一体化处理技术”,其典型的反应机理可表示如下:

阳极铸铁: Fe-2e f Ve2E°(Fe2+/Fe)=-0.44V (1) Cu2++Fe f F F+C U (2) 阴极焦炭: 2H++2e 2[H] fH f E o(H +/H 2)=0?00V ( 3) O2+2H2O+4e f 2OH-E0Q2/OH -)=0.41V ⑷ O2+4H ++4e f 2H2O E o(O2/H2O)=1.22V 不断生成的Fe2+在强氧化剂Cr6+作用下,生成具有良 好絮凝作用的Fe3+,同时将Cr6+转化

Cr3+,其反应为: 6Fe2++Cr 2O2-7+14H +—2C产+6Fe3++7H 2O (6) 同时,如果污水中还含有氰化物,则可发生: CN-+ 02—CNO 〔—N 2〕(7) 通过以上一系列无数的内电解反应,污水中的 重污染物物质得到了转化,继而在后续处理单元中得 到更进一步去除。 2、工艺流程及主要设施说明 2.1、工艺流程 采用此技术的工程工艺流程如图1所示。 图1工艺流程图 混合废水经厂区收集管道流至调节池,由耐腐蚀性一级污水泵提升至铸铁/焦炭反应器中,

水质氯化物的测定

水质 氯化物的测定 硝酸银滴定法方法确认报告 一、方法概述 本方法依据为GB 11896-1989。在中性至弱碱性范围内(~),以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银的溶解度,氯离子首先被完全沉淀出来后,然后铬酸盐以铬酸银的形式被沉淀,产生砖红色,指示滴定终点到达。。 本方法适用于天然水中氯化物的测定,也适用于经过适当稀释的高矿化度水如咸水、海水等,以及经过预处理除去干扰物的生活污水或工业废水。 二、仪器和试剂 1. 仪器及设备 250ml 锥形瓶 25ml 滴定管 2. 试剂 硫酸溶液,L 氢氧化钠溶液,L 氢氧化铝悬浮液 氯化钠标准溶液,L 硝酸银标准溶液,L 铬酸钾,50g/L 酚酞指示剂溶液 三、分析步骤 1. 试样的测定 用吸管吸取50ml 水样或经过预处理的水样,置于锥形瓶中。如水样pH 值在~范围时,可直接滴定,超出此范围的水样应以酚酞作指示剂,用稀硫酸或氢氧化钠的溶液调节至红色刚刚退去。加入1ml 铬酸钾溶液,用硝酸银标准溶液滴定至砖红色沉淀刚刚出现即为滴定终点。 四、数据处理及计算 试样中氯化物含量C (mg/L )按下式计算 式中:V 1——蒸馏水消耗硝酸银标准溶液量,ml V 2——试样消耗硝酸银标准溶液量,ml M ——硝酸银标准溶液浓度,mol/L V ——试样体积,ml 六、方法检出限 测定7次的空白溶液消耗硝酸银标准溶液量,其标准偏差的三倍即为检出限。具体计算结果 V 1000 ×35.45×M ×)(12V V C -=

见表1。 表1 硝酸银滴定法检出限计算表 由上表可看出因此本方法的检出限完全能满足评价标准的要求。 七、方法精密度 配制并测定浓度为μg/mL 的标准样品6次,方法精密度见表2。 表2 方法精密度计算表 八、方法准确度 测定实际样品加标回收率,在10mL 实际样品中加入甲醛标准溶液μg/mL ,测定6次,加标回收率见表4。 表4 实际样品加标回收率结果表 九、总结 采用本方法测定工业废气和环境空气中的甲醛的方法检出限满足相关评价标准的要求;实际样品中的加标回收率为%,能满足有关技术规范中质量控制的要求。

硝酸银滴定液配制与标定标准操作规程

标 准 操 作 规 程 STANDARD OPERATION PROCEDURE 1目的:建立硝酸银滴定液配制、标定操作规程,以使检验操作规范化。 2适用范围:适用于硝酸银滴定液配制、标定。 3责任:QC 人员对本SOP 实施负责。 4内容 4.1.名称 硝酸银滴定液 4.2.分子式、分子量 87 169.=AgNO 3 16.99g →1000ml 4.3.配制浓度:0.1mol/L 4.4 所用仪器 电子天平、电热恒温鼓风干燥箱、酸式滴定管(50ml )、容量瓶(1000ml )、烧杯(50、100ml )、量杯(50ml )、移液管、称量瓶、锥形瓶、试剂瓶 4.5试药 硝酸银、基准氯化钠 糊精 碳酸钙 荧光黄 4.6配制 取硝酸银17.5g 加水适量使溶解成1000ml ,摇匀。 4.7标定 4.4.1.操作过程

取在110℃干燥至恒重的基准氯化钠约0.2g,精密称定,加水50ml使溶解,再加糊精溶液(1→50)5ml、碳酸钙0.1g与荧光黄指示液8滴,用本液滴定至浑浊液由黄绿色变为微红色。每1ml硝酸银滴定液(0.1mol/L)相当于5.844mg的氯化钠。根据本液的消耗量与氯化 钠的取用量,算出本液的浓度,即得。 如需用硝酸银滴定液(0.01mol/L)时,可取硝酸银滴定液(0.1mol/L)在临用前加水稀释 制成。 4.4.2. 计算方法 m c(mol/L)= V×5.844 式中 m为基准氯化钠的称取量(mg); V为本液滴定的消耗量(ml); 5.844为每1ml硝酸银滴定液(0.1mol/L)相当的以毫克表示的氯化钠的质量。 4.5 允许误差 滴定液标定不得少于3份标定和复标的相对偏差均不得超过0.1%,标定的平均值和复标所得 的平均值,二者的相对偏差不得超过0.1%。 4.6 复标规定 滴定液经第一人标定后,必须由第二人进行复标。 其标定份数也不得少于3份。 4.7.注意事项 4.7.1. 标定中采用以荧光黄为指示剂的吸附指示剂法,要求生成的氯化银呈胶体状态,以 利于在到达滴定终点时对指示剂阴离子的吸附而产生颜色的突变,因此在加入的基准氯化钠 溶解后再加入糊精溶液(1→50)5ml,以形成保护胶体。 4.7.2.氯化银的胶体沉淀遇光极易分解析出黑色的金属银,因此在滴定过程中应避免强光直 接照射。 4.8.贮藏置玻璃塞的棕色玻瓶中,密闭保存。 5.附页:无 6.历史 版本号修订主要内容描述生效日期 0.0 新制定文件2015年12月1日

AD-3型示波极谱仪操作规程

AD-3型示波极谱仪操作规程 一、操作步骤 1、打开电源,打开极谱仪汞电极开关,打开电脑主机。 2、双击软件“AD-3.exe”标志,打开软件。 3、“MCP”功能选择1、模拟扫描法(ASP),参数设置按照默认设置或根据条件需要进行设置,点击确定键。 4、接下来依次把空白及标准溶液由低到高的顺序放上极谱仪工作台进行测定(注意:在测定标准溶液时应该先测验一下标准溶液最大浓度的曲线灵敏度)。每放置一杯溶液就点击一次“运行”键,屏幕上对应会出现一条曲线,再点击“寻峰”键,然后在曲线上捕捉与所测元素电位最接近的两点(即波峰和波谷),再点击鼠标右键,选择“工作曲线法”,再选择“元素一”即可保存。 5、空白及标准溶液测完后,再点击“曲线分析”,接着在“物质”选项中选择“元素一”(此时,先前所测的标准峰高就自动显示出来),然后在峰高前填上对应的标准溶液,最后,再点击“计算”键,屏幕上将显示标准溶液所得的直线。 6、接下来按“返回”键,然后按照测量标准的方法测定未知溶液,计算浓度,并保存,或打印结果。 7、按“退出”键退出系统界面,关闭极谱仪汞电极开关,关闭电脑,关闭电源。

8、清洁仪器和工作台,填写仪器使用记录。 二、仪器通电和断电时的注意事项 1、不能在电极插入电解池的情况下开机或关机,避免损害电极。 2、在样品测试完之后,应迅速用蒸馏水封住电极,避免汞液流出挥发。 3、电极注意事项 1)电解池插头和电极插头一次插好,拧紧。 2)铂电极和甘汞电极连接线头严禁与电极夹持杆以及机壳(地线)短路(相碰)。 3)电极、电板帽和固定电极的橡皮塞必须保持清洁,干燥,避免锈蚀和污染。 甘汞电极内饱和氯化钾溶液的液面必须与电极芯接触,不允许有气泡存在。如果溶液不饱和,或者太少,可加入适量的分析纯氯化钾晶体或饱和氯化钾溶液。 毛细管下端切口应整齐,如果下端洞孔被损害或者堵塞,可以截去一小段,获得新的洞孔继续使用。 4)仪器检查完毕后,把电极架电缆插头插入仪器后端板“电解池”插座,甘汞电极电缆线插头插入“参比电极”插座,铂电极电缆插头插入“辅助电极”插座。 5)电极夹头夹住毛细管电极上端、毛细管滴汞电极,甘汞电极和铂电极都固定在橡皮塞上,三支电极相互间不允许接触,插入电解池后,不能触及电解池底部和杯壁。 6)把电极下端的烧杯移开,放一块玻璃板在烧杯上,同时把盛有被测溶液的电解池套入电极,再把烧杯移到电解池底部电解池安放在玻璃板上,进行测试。 7)当仪器处于三电极工作状态时,不允许断掉铂电极和甘汞电极的连接线。 4、仪器接地线和防止干扰问题 1)仪器交流电源电缆线与仪器后端板上三足电源插座相连,无论插头或插座,其中标有接地符号“13”的一足均与仪器机壳连接,这个足只能接地线,不允许与其他两个足相通。如果

钼量的测定 示波极谱法(土壤)

钼量的测定示波极谱法 土壤中有效钼的测定 刘运航,杨敬旻,刘虹谷 (成都仪器厂,分析仪器部,028 ********,159********) 一范围 本部分适用于测定各类土壤中有效钼含量 二原理 样品经草酸-草酸铵溶液浸提,用硝酸-高氯酸破坏草酸盐、消除铁的干扰后,在硫酸-苯羟乙酸-饱和氯酸钾底液中,钼产生灵敏的催化波,原点电位为-96mv。 三仪器和设备 JP-2D型示波极谱仪(成都仪器厂制造) 三电极系统:滴汞电极、铂电极、饱和甘汞电极 电热板 振荡机 塑料瓶(200mL) 比色管(25mL) 四试剂(除注明外,均为优级纯) 高氯酸 硝酸 草酸-草酸铵浸提剂:称取24.9g草酸铵和12.6g草酸溶于水,定容至1L。酸度为pH3.3。 盐酸 苯羟乙酸(苦杏仁酸)【0.5mol/L,宜新配,勿久置】 硫酸【2.5mol/L】 饱和氯酸钾溶液 钼标准储备液:称取0.2522g钼酸钠溶于水,加入1mL浓盐酸,移入1L容量瓶中,用水定容,含钼100mg/L。 钼标准溶液:吸取钼标准储备液5.00mL于500mL 容量瓶中,用水定容。此标准液含钼1mg/L。 分别吸取含钼1mg/L的标准溶液0.00mL、0.40mL、0.80mL、1.20mL、1.60 mL、2.00 mL 于100 mL容量瓶中,用水定容,即为含钼0.000mg/L、0.004 mg/L、0.008 mg/L、0.012 mg/L、0.016 mg/L、0.020 mg/L的标准系列溶液,备用。 五分析步骤

样品处理 称取通过2mm孔径筛的风干试样5.00g于200mL塑料瓶中,加50mL草酸-草酸铵浸提剂,盖紧瓶塞,振荡0.5h后放置过夜,干过滤,同时做空白试验。吸取1.00mL滤液于25mL 烧杯中,在通风橱中于电热板上低温蒸发至干。取下烧杯,向蒸干的残渣中加入10滴浓硝酸,和2滴弄高氯酸,于电热板上,在较高温度下蒸发,使试液在1min~2min左右沸腾,蒸干且烟冒尽后,取下稍冷,再向蒸干的残渣中加入5滴盐酸溶液(1+1),在电热板上低温蒸发至湿盐状,取下冷去后,依次加入1mL硫酸溶液、1mL苯羟乙酸溶液、8mL饱和氯酸钾溶液,于极谱仪上测定,原点电位-96mv,作阴极化导数波。 标准曲线 分别吸取1.00mL含钼0.000mg/L、0.004 mg/L、0.008 mg/L、0.012 mg/L、0.016 mg/L、0.020 mg/L的标准系列溶液于6个预先盛有1.00mL浸提剂的25mL烧杯中,同时取1.00mL 水于另一25mL烧杯中,加1.00mL浸提剂,于电热板上低温蒸发至干,以下步骤同样品操作。于极谱仪上测定,原点电位-96mv,作阴极化导数波。

氯化物的测定硝酸银滴定法

氯化物的测定硝酸银滴定 法 Prepared on 22 November 2020

硝酸银滴定法 测 定 水 质 氯 化 物 实验操作说明

硝酸银滴定法测定水质氯化物 GB11896—89 1主题内容与适用范围 适用于天然水中氯化物的测定,也适用于经过适当稀释的高矿化度水如咸水、海水等,以及经过预处理除去干扰物的生活污水或工业废水。 本标准适用的浓度范围为10—500mg/L的氯化物。高于此范围的水样经稀释后可以扩大其测定范围。 溴化物、碘化物和氰化物能与氯化物一起被滴定。正磷酸盐及聚磷酸盐分别超过250mg/L及25mg/L时有干扰。铁含量超过10mg/L时使终点不明显。2原理 在中性至弱碱性范围内—,以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银的溶解度,氯离子首先被完全沉淀出来后,然后铬酸盐以铬酸银的形式被沉淀,产生砖红色,指示滴定终点到达。该沉淀滴定的反应如下: Ag++Cl—→AgCl↓ 2Ag++CrO4→Ag2CrO4↓(砖红色) 3试剂

分析中仅使用分析纯试制及蒸馏水或去离子水。 高锰酸钾,C(1/5KMnO4)=/L。 过氧化氢(H2O2),30%。 乙醇(C6H5OH),95%。 硫酸溶液,C(1/2H2SO4)=/L。 氢氧化钠溶液,C(NaOH)=/L。 氢氧化铝悬浮液:溶解125g硫酸铝钾[KAl(SO4)2·12H2O]于1L蒸馏水中,加热至60℃,然后边搅拌边缓缓加入55mL浓氨水放置约1h后,移至大瓶中,用倾泻法反复洗涤沉淀物,直到洗出液不含氯离子为止。用水稀至约为300mL。 氯化钠标准溶液,C(NaCl)=/L,相当于500mg/L氯化物含量:将氯化钠(NaCl)置于瓷坩埚内,在500—600℃下灼烧40—50min。在干燥器中冷却后称取8.2400g,溶于蒸馏水中,在容量瓶中稀释至1000mL。用吸管吸取,在容量瓶中准确稀释至100mL。 此标准溶液含氯化物(C1-)。 硝酸银标准溶液,C(AgNO3)=/L:称取2.3950g于105℃烘半小时的硝酸银(AgNO3),溶于蒸馏水中,在容量瓶中稀释至1000mL,贮于棕色瓶中。 用氯化钠标准溶液标定其浓度:

含铬电镀废水处理技术方案

含铬电镀废水处理技术方案 1. 项目概况 揭阳市广润五金实业有限公司位于揭东县埔田镇溪南山村月山顶工业区,主要从事五金类配件电镀、成品制作。 废水主要来源于镀锌、镀铬、钝化、粗化、还原后续清洗等 工序废水,废水中主要含Cr3+、Cr6+、总锌、酸、碱。由于在 生产过程中,将排放一定量的致癌、致畸废水,因此,必须 认真处理,以减少或消除其对环境的污染。为贯彻落实国家 环境保护方针政策,加强环境污染防治,严格执行“三同时” 的要求,该公司特委托我公司进行生产废水处理工程设计方 案的编制。 受业主委托,我公司经安排工程师、技术人员等现场踏勘并结合我公司在同类废水处理工程设计经验,编制本设计方案,供业主及有关部门领导决策。 2. 设计原则与标准 2.1 设计原则 ⑴按照国家有关环保治理的设计规范、标准、要求进行设计,确保各种污染物经治理设施处理后执行国家《电镀污染物排放标准》(GB21900-2008)。 ⑵贯彻执行国家现行的经济建设方针、政策,结合实际情况,充分利用现有的设施(设备)、水、电供应以及管理、技术、维修与

运输条件,合理选定方案,降低工程造价、减少建设投资,降低后期运行维护费用。 ⑶合理系统选用的设备运行安全可靠,管理、操作方便。 ⑷技术先进,工艺合理,适用性强,有较好的耐冲击性、可操作性。 ⑸治理系统自动化程度高,关键环节实行自动控制。 ⑹因地制宜提高土地利用率,总平面布置做到合理、紧凑与周围景观相协调。 ⑺处理效果稳定,有害物去除率高,处理后的废水稳定达到国家排放标准。 2.2 设计范围 本技术方案工作内容:工艺及非标设备设计、提供废水处理工艺设备、电气控制设备,并负责安装、调试及人员培训。工程范围从废水调节池入口至系统末级处理出水达标排放口之间的工艺、设备、电气自动控制的设计及设备制造、安装、调试。 2.3 主要规范、标准及依据 ⑴《电镀污染物排放标准》(GB21900-2008)。 ⑵《电镀废水治理规范》(GBJ136-90)。 ⑶厂方提供的一些基础数据。 ⑷废水处理产生的污泥执行《中华人民共和国固体废物污染环境防治法》中的有关规定。 3. 设计参数

电镀废水一体化处理工艺

电镀废水一体化处理工艺 摘要:广东省某电镀厂规模为 300 m3/d 的电镀混合废水主要含有 Cr6+、铜和镍等重金属污染物,采用以“铸铁/焦炭反应器”为主体的一体化处理技术,在进水 Cr6+、总铜、总镍和总锌分别为 0.34 mg/L、14.9 mg/L、15.7 mg/L 和3.1 mg/L 时,出水中 Cr6+、总铜、总镍和总锌等主要污染物分别为 0.002(Y)mg/L、0.24 mg/L、0.21 mg/L 和0.13 mg/L ,去除率分别达99.4 、98.4 、98.7 和95.8 ,部分出水回用。 关键词:铁/炭内电解反应器电镀混合废水一体化 随着科技的进步和环保技术的快速发展,许多新技术开始应用于环保行业了,其中以铁/炭内电解反应器为核心的技术在环保工程中应用越来越广泛。这种一体化处理 技术以其独特的优势在电镀废水处理工程中具有广泛的应用前景 1、一体化技术处理混合电镀废水工艺机 破CN-、氧化还原 Cr6+为Cr3+等预处理措施是传统电镀废水处理工艺中必须的,因其投资大、技术参数控制程度高、操作复杂等弊端,在工程设计与应用中具有一定的局限性 相比起来,以为主体技术的工艺则避免了污水的分类收集、预处理等前期工序,废水可直接混合并进入独立设置的调节池内,进行水量水质调节,然后通过水力提升至铸铁/ 焦炭内电解反应器内,在一定条件下反应后进入下步工序。由于此类技术不需要对污水进行分类预处理,而是直接混合处理,因此亦名“一体化处理技术”,其典型的反应机理可表示如下 阳极铸铁

Fe-2e→Fe2+E0(Fe2+/Fe)=-0.44V (1 Cu2++Fe→Fe2++Cu(2 阴极焦炭 2H++2e→2[H]→H2↑E0(H+/H2)=0.00V (3) O2+2H2O+4e→2OH- E0(O2/OH-)=0.41V (4) O2+4H++4e→2H2O E0(O2/H2O)=1.22V (5 不断生成的 Fe2+在强氧化剂 Cr6+作用下,生成具有良好絮凝作用的 Fe3+,同时将Cr6+转化 Cr3+,其反应为 6Fe2++Cr2O2-7+14H+→2Cr3++6Fe3++7H2O(6 同时,如果污水中还含有氰化物,则可发生 CN-+O2→CNO-〔→…→N2〕(7

水质氯化物的测定硝酸银滴定法

水质-氯化物的测定-硝酸银滴定法

水质氯化物的测定硝酸银滴定法 1.范围 本方法规定了水中氯化物浓度的硝酸银滴定法。 本方法适用于天然水中氯化物的测定,也适用于经过适当稀释的高矿化度 水如咸水、海水等,以及经过预处理除去干扰物的生活污水或工业废水。 本方法适用的浓度范围为10~500mg/L的氯化物。高于此范围的水样经稀释后可以扩大其测定范围。 溴化物、碘化物和氰化物能与氯化物一起被滴定。正磷酸盐及聚磷酸盐分 别超过250mg/L及25mg/L时有干扰。铁含量超过10mg/L时使终点不明显。2.原理 在中性至弱碱性范围内(pH6.5~10.5)。以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银的溶解度,氯离子首先被完全沉淀 出来后,然后铬酸盐以铬酸银的形式被沉淀,产生砖红色,指示滴定终点到达。 该沉淀滴定的反应如下: Ag++Cl-―AgCl 2Ag++CrO42-―Ag2CrO4 (砖红色) 3.试剂 分析中仅使用分析纯试剂及蒸馏水或去离子水。 3.1高锰酸钾,c(1/5KMnO4)=0.01mol/L。 3.2过氧化氢(H2O2),30%。 3.3乙醇(C2H5OH),95%。 3.4硫酸溶液,c(1/2H2SO4)=0.05mol/L。 3.5氢氧化钠溶液,c(NaOH)=0.05mol/L。 3.6氢氧化铝悬浮液:溶解125g硫酸铝钾[KAl(SO4)2·12H2O]于1L蒸馏水中, 加 热至60℃,然后边搅拌边缓缓加入55mL浓氨水放置约1h后, 移至大瓶中,用倾泻法反复洗涤沉淀物,直到洗出液不含氯离子为止。用水稀至约为300mL。 3.7氯化钠标准溶液,0.0141mol/L,相当于500mL/L氯化物含量:将氯化钠

水质 氯化物的测定 硝酸银滴定法

水质氯化物的测定硝酸银滴定法 1 主题内容与适用范围 本标准规定了水中氯化物浓度的硝酸银滴定法. 本标准适用于天然水中氯化物的测定,也适用于经过适当稀释的高矿化度水如咸水、海水等,以及经过预处理除去干扰物的生活污水或工业废水. 本标准适用的浓度范围为10 ~ 500 mg/L 的氯化物,高于此范围的水样经稀释后可以扩大其测定范围。 溴化物、碘化物和氰化物能与氯化物一起被滴定。正磷酸盐及聚磷酸盐分别超过250mg/L及25mg/L时有干扰.铁含量超过10mg/L 时使终点不明显。 2 原理 在中性至弱碱性范围内(pH6.5~ 10.5 )、以铬酸钾为指示剂.用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银的溶解度,氯离子首先被完全沉淀出来后,然后铬酸盐以铬酸银的形式被沉淀.产生砖红色,指示滴定终点到达。该沉淀滴定的反应如下: Ag++Cl-—→AgCl↓ 2Ag++CrO4—→AgCr04↓(砖红色) 3 试剂 分析中仅使用分析纯试制及蒸馏水或去离子水。 3.1 高锰酸钾,C(1/5KMnO4)=0.01 mol/L。 3.2 过氧化氢(H202) , 30%。 3.3 乙醉(C6H5OH) , 95%。 3.4 硫酸溶液,C(1/2H2SO4)=0.05mol/L 。 3.5 氢氧化钠溶液,C(NaOH)=0.05mol/L 。 3.6 氢氧化铝悬浮液:溶解125g 硫酸铝钾〔KAl(SO4)2· 12H2O〕于1L蒸馏水 中.加热至60℃,然后边搅拌边缓缓加入55 mL 浓氨水放置约lh 后,移至大瓶中,用倾泻法反复洗涤沉淀物,直到洗出液不含氧离子为止。用水稀至约为300 mL 。 3.7 氯化钠标准溶液,C( Nacl )=0.0l4lmol/L,相当于500 mg/L氯化物含量:将氯化纳(Nacl )置于瓷坩祸内.在500~600℃下灼烧40~50min 。在干燥器中冷却后称取8.2400g ,溶于蒸馏水中,在容量瓶中稀释至1000mL。用吸管吸取10.0mL,在容量瓶中准确稀释至100mL。

氯化物的测定硝酸银滴定法

氯化物的测定硝酸银滴 定法 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

硝酸银滴定法 测 定 水 质 氯 化 物 实验操作说明

硝酸银滴定法测定水质氯化物 GB11896—89 1主题内容与适用范围 适用于天然水中氯化物的测定,也适用于经过适当稀释的高矿化度水如咸水、海水等,以及经过预处理除去干扰物的生活污水或工业废水。 本标准适用的浓度范围为10—500mg/L的氯化物。高于此范围的水样经稀释后可以扩大其测定范围。 溴化物、碘化物和氰化物能与氯化物一起被滴定。正磷酸盐及聚磷酸盐分别超过250mg/L及25mg/L时有干扰。铁含量超过10mg/L时使终点不明显。2原理 在中性至弱碱性范围内—,以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银的溶解度,氯离子首先被完全沉淀出来后,然后铬酸盐以铬酸银的形式被沉淀,产生砖红色,指示滴定终点到达。该沉淀滴定的反应如下: Ag++Cl—→AgCl↓ 2Ag++CrO4→Ag2CrO4↓(砖红色) 3试剂

分析中仅使用分析纯试制及蒸馏水或去离子水。 高锰酸钾,C(1/5KMnO4)=/L。 过氧化氢(H2O2),30%。 乙醇(C6H5OH),95%。 硫酸溶液,C(1/2H2SO4)=/L。 氢氧化钠溶液,C(NaOH)=/L。 氢氧化铝悬浮液:溶解125g硫酸铝钾[KAl(SO4)2·12H2O]于1L蒸馏水中,加热至60℃,然后边搅拌边缓缓加入55mL浓氨水放置约1h后,移至大瓶中,用倾泻法反复洗涤沉淀物,直到洗出液不含氯离子为止。用水稀至约为300mL。 氯化钠标准溶液,C(NaCl)=/L,相当于500mg/L氯化物含量:将氯化钠(NaCl)置于瓷坩埚内,在500—600℃下灼烧40—50min。在干燥器中冷却后称取8.2400g,溶于蒸馏水中,在容量瓶中稀释至1000mL。用吸管吸取,在容量瓶中准确稀释至100mL。 此标准溶液含氯化物(C1-)。 硝酸银标准溶液,C(AgNO3)=/L:称取2.3950g于105℃烘半小时的硝酸银(AgNO3),溶于蒸馏水中,在容量瓶中稀释至1000mL,贮于棕色瓶中。 用氯化钠标准溶液标定其浓度:

实验3 单扫描示波极谱法测定水样中微量铅

实验3 单扫描示波极谱法测定水样中微量铅 一、实验目的 1.熟悉单扫描示波极谱法的基本原理和特点; 2.掌握示波极谱仪的使用方法; 3.学习用极谱法测定铅的方法。 二、方法原理 单扫描示波极谱法是为克服经典极谱法的不足而发展起来的快速电分析测量技术之一,具有测量灵敏度高、操作方便、简单等特点。 单扫描示波极谱法与经典极谱法的主要不同之处是:扫描速度不同,经典极谱法扫描比较慢,约为0.2V?min-1,而单扫描示波极谱法比较快,一般大于0.2V?s-1;施加极化电压的方式和记录谱图方法不同,经典极谱法极化电压加在连续滴落的多滴汞上才完成一个极谱图,而单扫描示波极谱法仅施加在一滴汞的生长后期1~2s瞬间内完成一个极谱图,前者采用笔录式记录法,而后者采用阴极射线示波管法;定量分析依据的电流方程也不同,经典极谱服从尤考维奇(Ilkovich)方程,而示波极谱法则服从Randles-Sevcik方程。 在0.88mol?L-1 KBr - 0.72mol?L-1 HCl底液中,铅的浓度在0~5μg?mL-1范围内峰高和浓度成正比。加入铁粉和抗坏血酸还原可去除复杂水样中铁、锌、镁等元素的干扰。 三、仪器设备与试剂材料 1.JP-1A型或JP-2型示波极谱仪。 2.铅标准贮备液:1mg?mL-1;铅标准工作液:50μg?mL-1;盐酸;铁粉;10%抗坏血酸;4mol?L-1 KBr溶液。 四、实验步骤 1.标准系列的配制:准确移取50μg?mL-1的铅标准工作液0.00,1.00,2.00,3.00,4.00,5.00mL 于50mL容量瓶中,加入1:1盐酸6mL,加10%抗坏血酸3mL,加入4mol?L-1 KBr溶液10mL,定容,所得铅标准系列浓度为0.00,1.00,2.00,3.00,4.00,5.00μg?mL-1。 2.水样处理:准确移取水样5mL于50mL的容量瓶中,以下处理同标准系列配制。 3.将标准系列溶液及水样分别倒于小电解杯中,依次置于仪器电极下,使电极浸入溶液中(注意电极不能碰到杯壁),在-0.25V左右观测峰高。在测定不同样品时注意更换样品中间要清洗电极。 4.测试完成后清理测定后产生的废汞(回收)。

电镀污水处理工艺流程及行业介绍

电镀污水处理工艺流程及行业介绍 电镀废水处理特点:电镀是利用化学和电化学方法在金属或在其它材料表面镀上各种金属。电镀技术广泛应用于机器制造、轻工、电子等行业。 1、污水特点 电镀是利用化学和电化学方法在金属或在其它材料表面镀上各种金属。电镀技术广泛应用于机器制造、轻工、电子等行业。电镀废水的成分非常复杂,除含氰(CN-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(Ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(Au)废水、含银(Ag)废水等。电镀废水的治理在国内外普遍受到重视,研制出多种治理技术,通过将有毒治理为无毒、有害转化为无害、回收贵重金属、水循环使用等措施消除和减少重金属的排放量。随着电镀工业的快速发展和环保要求的日益提高,目前,电镀废水治理已开始进入清洁生产工艺、总量控制和循环经济整合阶段,资源回收利用和闭路循环是发展的主流方向。 2 工艺选择 根据电镀废水水质水量的特点和排放要求,结合目前国内外生活污水处理的应用现状和我司在电镀污水处理工程中的成功经验,综合处理效果、投资费用、运行管理、运行费用、平面布置等各方面的因素,在此选择以化学法为主的组合处理工艺。

3 工艺流程及说明 电镀废水经过收集之后,自流入本处理系统,经过处理之后直接排放。 工艺流程如下所示: 含铬废水→含铬废水集水池→耐酸碱泵→还原反应池→混合废水调解池 含氰含碱废水→含氰含碱废水集水池→耐酸碱泵→一级氧化反应池→二级氧化反应池→混合废水调解池 混合废水调解池→耐酸碱泵→混合反应池→沉淀池→中和池→达标排放 4 工艺流程说明: 含Cr6+废水从Cr6+集水池用耐酸碱泵提升至还原反应池,根据铬的浓度及废水处理量,通过pH和ORP自控仪控制H2SO4和Na2S2O5的投加量;还原反应完毕后自流进入混合废水调节池同其它废水一起进行进一步处理。含氰含碱污水自车间流入氰系调节池,后用耐酸碱泵提升至一级氧化反应池,根据含氰浓度及废水处理量,通过pH、ORP自控NaOH和NaClO的投加量,搅拌反应一级破氰后进入二级氧化反应池,再通过pH、ORP自控制仪分别控制H2SO4和NaClO的投加量,搅拌反应破氰完毕后自流进入混合废水调节池同其它废水一起进行进一步处理。 混合污水调节池废水用泵提升至快混反应池,加NaOH、PAC 药剂,并用pH自控仪控制pH10~11,将金属离子转化成氢氧化

氯化物的测定硝酸银滴定法

硝酸银滴定法 测 定 水 质 氯 化 物 实验操作说明

硝酸银滴定法测定水质氯化物 GB11896—89 1主题内容与适用范围 适用于天然水中氯化物的测定,也适用于经过适当稀释的高矿化度水如咸水、海水等,以及经过预处理除去干扰物的生活污水或工业废水。 本标准适用的浓度范围为10—500mg/L的氯化物。高于此范围的水样经稀释后可以扩大其测定范围。 溴化物、碘化物和氰化物能与氯化物一起被滴定。正磷酸盐及聚磷酸盐分别超过250mg/L及25mg/L时有干扰。铁含量超过10mg/L时使终点不明显。 2原理 在中性至弱碱性范围内—,以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银的溶解度,氯离子首先被完全沉淀出来后,然后铬酸盐以铬酸银的形式被沉淀,产生砖红色,指示滴定终点到达。该沉淀滴定的反应如下: Ag++Cl—→AgCl↓ 2Ag++CrO 4→Ag 2 CrO 4 ↓(砖红色) 3试剂 分析中仅使用分析纯试制及蒸馏水或去离子水。 高锰酸钾,C(1/5KMnO 4 )=/L。 过氧化氢(H 2O 2 ),30%。 乙醇(C 6H 5 OH),95%。 硫酸溶液,C(1/2H 2SO 4 )=/L。 氢氧化钠溶液,C(NaOH)=/L。 氢氧化铝悬浮液:溶解125g硫酸铝钾[KAl(SO 4) 2 ·12H 2 O]于1L蒸馏水中, 加热至60℃,然后边搅拌边缓缓加入55mL浓氨水放置约1h后,移至大瓶中,用倾泻法反复洗涤沉淀物,直到洗出液不含氯离子为止。用水稀至约为300mL。

氯化钠标准溶液,C(NaCl)=/L,相当于500mg/L氯化物含量:将氯化钠(NaCl)置于瓷坩埚内,在500—600℃下灼烧40—50min。在干燥器中冷却后称取8.2400g,溶于蒸馏水中,在容量瓶中稀释至1000mL。用吸管吸取,在容量瓶中准确稀释至100mL。 此标准溶液含氯化物(C1-)。 )=/L:称取2.3950g于105℃烘半小时的硝酸银硝酸银标准溶液,C(AgNO 3 ),溶于蒸馏水中,在容量瓶中稀释至1000mL,贮于棕色瓶中。 (AgNO 3 用氯化钠标准溶液标定其浓度: 用吸管准确吸取氯化钠标准溶液于250mL锥形瓶中,加蒸馏水25mL。另取一锥形瓶,量取蒸馏水50mL作空白。各加入1mL铬酸钾溶液,在不断的摇动下用硝酸银标准溶液滴定至砖红色沉淀刚刚出现为终点。计算每毫升硝酸银溶液所相当的氯化物量,然后校正其浓度,再作最后标定。 此标准溶液相当于氯化物(C1—)。 铬酸钾溶液,50g/L:称取58铬酸钾(K2CrO4)溶于少量蒸馏水中,滴加硝酸银溶液至有红色沉淀生成。摇匀,静置12h,然后过滤并用蒸馏水将滤液稀释至100mL。 酌酞指示剂溶液:称取酚酞溶于50mL95%乙醇中。加入50mL蒸馏水,再滴加/L氢氧化钠溶液使呈微红色。 4仪器 锥形瓶,250mL。 滴定管,25mL,棕色。 吸管,50mL,25mL。 5样品 采集代表性水样,放在干净且化学性质稳定的玻璃瓶或聚乙烯瓶内。保存时不必加入特别的防腐剂。 6分析步骤 干扰的排除 若无以下各种干扰,此节可省去。

电镀废水处理方案

电镀废水治理工程 方 案 设 计 2015年7月 目录 1总论1

1.1工程概况1 1.2废水特征(由建设方提供)2 1.2.1废水水量2 1.2.2废水水质2 1.2.3治理要求2 1.2.4设计范围2 1.2.5设计依据3 1.2.6设计原则3 1.2.7参考资料4 2工艺流程设计4 2.1原水水质分析4 2.2污染物的危险性及水质分类的重要性5 2.2.1锌系废水的危险性5 2.2.2铬系废水的危险性5 2.2.3水质分类的重要性6 2.3污染物去除原理6 2.3.1锌化物的去除原理6 2.3.2六价铬的去除原理6 2.3.3重金属离子的去除原理7 2.3.4酸、碱污染物的去除原理8 2.3.5除油除蜡废水的的去除原理8 2.3.6COD的去除8 2.3.7后续保障系统去除重金属离子的原理9 2.4工艺流程设计9 2.5工艺流程说明10 2.6事故池的说明11 2.7规范排污口和在线监测的说明11 3处理构筑物及附属设备工艺设计12 3.1隔油调节池112 3.2调节池212 3.3反应池113 3.4反应池214 3.5中和反应池15 3.6絮凝反应池116

3.7沉淀池117 3.8调节池317 3.9反应池318 3.10反应池419 3.11絮凝反应池220 3.12沉淀池220 3.13中间池21 3.14清水池22 3.15污泥池23 3.16药品间23 3.17压滤机房24 3.18中央控制室24 3.19鼓风机房24 3.20亚硫酸氢钠槽24 3.21碱槽25 3.22石灰乳槽25 3.23PAC槽26 3.24PAM槽26 3.25酸罐27 3.26控制系统27 4处理构筑物及附属设备清单28 4.1土建构筑物清单28 4.2主要设备和材料清单30 5给排水、配电及防腐系统34 5.1给排水系统34 5.2配电系统34 5.3防腐系统34 6技术经济分析35 6.1占地面积35 6.2运行维护费用35 6.2.1运行电耗计算表35 6.2.2药剂费用计算特别说明35 6.2.3药剂费用计算36 6.2.4人工及维护费用36

相关文档