文档库 最新最全的文档下载
当前位置:文档库 › MATLAB下人脸图像的PCA重构matlab代码

MATLAB下人脸图像的PCA重构matlab代码

MATLAB下人脸图像的PCA重构matlab代码
MATLAB下人脸图像的PCA重构matlab代码

MATLAB下人脸图像的PCA重构matlab代码

主函数

clc;

clear all;

newimage=double(zeros(112*6,92*5));

[M,sort_V,avg_face] = averageface( );%返回去均值的矩阵和协方差,以及排列好的特征向量

k=1;

new_sort_V =sort_V(1:10304,1:30);%取特征向量的前30个,并进行显示for i=1:112:5*112+1

for j=1:92:4*92+1

newimage(i:i+111,j:j+91)=reshape(new_sort_V(:,k),112,92);

k=k+1;

end

end

minum=min(min(newimage));%对特征向量进行标定

maxum=max(max(newimage));

d=maxum-minum;

newimage(:,:)=newimage(:,:)-minum;

newimage(:,:)=newimage(:,:)/d;

newimage(:,:)=newimage(:,:)*255;

newimage=uint8(newimage);

subplot(1,3,1);

title('特征向量图');

imshow(newimage);%显示前30个特征向量

avg_face=uint8(avg_face);

subplot(1,3,2)

title('平均脸');

imshow(avg_face);

subplot(1,3,3)

[ tyxs,re_newimage] = touyingxishu( sort_V ,avg_face);

imshow(re_newimage);

子函数

function []=img2txt()

maindir = 'D:\Image';

subdir = dir( maindir ); % 先确定子文件夹

m=1;

k=1;

for i = 1 : length( subdir )

if( isequal( subdir( i ).name, '.') || isequal( subdir( i ).name, '..') || ~subdir( i ).isdir ) % 如果不是目录跳过

continue;

end

subdirpath = fullfile( maindir, subdir( i ).name, '*.pgm' );

images = dir( subdirpath ); % 在这个子文件夹下找后缀为pgm的文件

% 遍历每张图片

for j = 1 : length( images )

imagepath = fullfile( maindir, subdir( i ).name,

images( j ).name );

imgdata = imread( imagepath ); % 这里进行你的读取操作

[row, col]=size(imgdata); %将数据写入txt中

fid = fopen(['C:\Users\Administrator\Desktop\编程实验材料\att_faces','\s',int2str(m),'\',int2str(k),'.txt'],'w'); %新建

txt文件存储图像的坐标和灰度值

for I=1:row

for J=1:col

fprintf(fid,'%03d\t',imgdata(I,J));

end

fprintf(fid,'\n') ;

end

fclose(fid);

k=k+1;

end

m=m+1;

k=1;

end

function [M,sort_V,avg_face] = averageface()

big_array=double(zeros(10304,400));

new_big_array=double(zeros(10304,400));

avg_face=double(zeros(112,92));

i=1;

for m=1:40;

for k=1:10

FileName = ['C:\Users\Administrator\Desktop\编程实验材料

\att_faces','\s',int2str(m),'\',int2str(k),'.txt'];

p = load (FileName);

big_array(:,i)=reshape(p,10304,1); %将400张脸转换成10304*400的大矩阵

new_p=reshape(p,112,92);

avg_face(:,:)=avg_face(:,:)+new_p(:,:)/400; %求平均脸

i=i+1;

end

end

M=mean(big_array); %对矩阵的每一列求均值

for i=1:400

new_big_array(:,i)=big_array(:,i)-M(i);%去均值后的矩阵

end

%用SVD求特征向量

C0=new_big_array'*new_big_array;%求低维度的协方差

[V0,~]=eig(C0);

k=0;

V=new_big_array*V0;%特征向量

for i=1:400 %将特征向量进行归一化10304*400

for j=1:10304

k=k+V(j,i)^2;

end

k=k^(0.5);

V(1:10304,i)= V(1:10304,i)/k;

k=0;

end

sort_V=double(zeros(10304,400));

k=400;

for i=1:400 %将特征向量的列按特征值从大到小排列好

sort_V(1:10304,i)=V(1:10304,k);

k=k-1;

end

function [ tyxs,re_newimage] = touyingxishu( sort_V ,avg_face)

FileName = ['C:\Users\Administrator\Desktop\编程实验材料

\att_faces','\s',int2str(1),'\',int2str(1),'.txt'];

p = load (FileName);

avg_face=double(avg_face);

big_array=reshape(p,1,10304);

a_big_array=double(reshape(big_array,112,92));

big_array=a_big_array(:,:)-avg_face(:,:);

big_array=reshape(big_array,1,10304);

tyxs=big_array*sort_V;

re_newimage=double(zeros(10304,1));

for i=1:400

re_newimage(:,:)= re_newimage(:,:)+tyxs(i)*sort_V(1:10304,i);

end

re_newimage= reshape(re_newimage,112,92);

re_newimage=re_newimage(:,:)+avg_face(:,:);

minum=min(min(re_newimage));%对特征向量进行标定

maxum=max(max(re_newimage));

d=maxum-minum;

re_newimage(:,:)=re_newimage(:,:)-minum;

re_newimage(:,:)=re_newimage(:,:)/d;

re_newimage(:,:)=re_newimage(:,:)*255;

re_newimage=uint8(re_newimage);

end

matlab相关图形实现代码

根据数据点绘制饼图和针状图: x=[1 2 3 4 5 6]; >> subplot(2,2,1);pie(x); >> subplot(2,2,2);pie3(x); >> subplot(2,2,3);stem(x); >>subplot(2,2,4);stem3(x); 5% 10% 14% 19% 24% 29% 24% 29% 19% 5%14% 10%0 2 4 6 2 4 6 5 10 01 2 05 10

根据数据点绘制向量场图、羽状图和罗盘图: x=[1 2 3 4 5 6];y=[1 2 3 4 5 6]; u=[1 2 3 4 5 6];v=[1 2 3 4 5 6]; subplot(2,2,1);quiver(x,y,u,v); subplot(2,2,2);quiver(x,y,u,v,'r'); subplot(2,2,3);feather(u,v); subplot(2,2,4);compass(u,v); 024680 246 802468 246 80 5 10 15 2 4 6 5 10 30 210 60240 90270 120 300 150330 180

rand(m,n)产生m ×n 均匀分布的随机矩阵,元素取值在0.0~1.0。 randn 函数:产生标准正态分布的随机数或矩阵的函数。 Y = randn(m,n) 或 Y = randn([m n])返回一个m*n 的随机项矩阵。 > theta=10*rand(1,50); %确定50个随机数theta >> Z=peaks; %确定Z 为峰值函数peaks >> x=0:0.01:2*pi;y=sin(x); %确定正弦函数数据点x.y >> t=randn(1000,1); %确定1000个随机数t >> subplot(2,2,1);rose(theta); %关于(theta )的玫瑰花图 >> subplot(2,2,2);area(x,y); %关于(x,y)的面积图 >> subplot(2,2,3);contour(Z); %关于Z 的等值线图(未填充) >> subplot(2,2,4);hist(t); %关于t 的柱状图 5 10 30 210 60 240 90270 120300150330 18000246 -1 -0.500.5 110 20 30 40 10 2030 40-4 -2 2 4 100 200 300

小波信号分解与重构的Matlab程序

首先要说明的一点是,虽然是自己编写Matlab程序,但并不是说一点也不用Matlab的自带函数。我们要编写的是实现小波变换的主要功能函数,而绘图等基本功能还是要用到Matlab函数的。而且,根据小波变换的滤波器组原理,原始信号要通过低通、高通滤波器处理,这里就涉及到卷积这一运算步骤。卷积——FFT算法的实现,相信很多朋友都能用 Matlab、C语言等来实现,不过与Matlab自带的用机器语言编写的FFT程序相比,运算速度一般会慢几倍、几十倍。所以,我的程序里边涉及卷积的就直接调用Matlab的conv()函数了。 我们知道,小波变换的一级分解过程是,原始信号分别进行低通、高通滤波,再分别进行二元下抽样,就得到低频、高频(也称为平均、细节)两部分系数;而多级分解则是对上一级分解得到的低频系数再进行小波分解,是一个递归过程。以下是一维小波分解的程序: function [cA,cD] = mydwt(x,lpd,hpd,dim); % 函数 [cA,cD]=MYDWT(X,LPD,HPD,DIM) 对输入序列x进行一维离散小波分解,输出分解序列[cA,cD] % 输入参数:x——输入序列; % lpd——低通滤波器; % hpd——高通滤波器; % dim——小波分解级数。 % 输出参数:cA——平均部分的小波分解系数; % cD——细节部分的小波分解系数。 cA=x; % 初始化cA,cD cD=[]; for i=1:dim cvl=conv(cA,lpd); % 低通滤波,为了提高运行速度,调用MATLAB 提供的卷积函数conv() dnl=downspl(cvl); % 通过下抽样求出平均部分的分解系数

基于matlab的人脸识别源代码

function varargout = FR_Processed_histogram(varargin) %这种算法是基于直方图处理的方法 %The histogram of image is calculated and then bin formation is done on the %basis of mean of successive graylevels frequencies. The training is done on odd images of 40 subjects (200 images out of 400 images) %The results of the implemented algorithm is 99.75 (recognition fails on image number 4 of subject 17) gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @FR_Processed_histogram_OpeningFcn.,.. 'gui_OutputFcn', @FR_Processed_histogram_OutputFcn.,.. 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

数字图像处理_旋转与幅度谱(含MATLAB代码)

数字图像处理实验一 15生医 一、实验内容 产生右图所示图像 f1(m,n),其中图像大小为256 ×256,中间亮条为128×32,暗处=0,亮处=100。 对其进行FFT: ①同屏显示原图f1(m,n)和FFT(f1)的幅度谱图; ②若令f2(m,n)=(-1)^(m+n)f1(m,n),重复 以上过程,比较二者幅度谱的异同,简述理由; ③若将f2(m,n)顺时针旋转90度得到f3(m,n),试显示FFT(f3)的 幅度谱,并与FFT(f2)的幅度谱进行比较; ④若将f1(m,n) 顺时针旋转90度得到f4(m,n),令f5(m,n) = f1(m,n) + f4(m,n),试显示FFT(f5)的幅度谱,指出其与 FFT(f1)和FFT(f4)的关系; ⑤若令f6(m,n)=f2(m,n)+f3(m,n),试显示FFT(f6)的幅度谱,并指出其与 FFT(f2)和FFT(f3)的关系,比较FFT(f6)和FFT(f5)的幅度谱。 二、运行环境 MATLAB R2014a 三、运行结果及分析 1.同屏显示原图f1(m,n)和FFT(f1)的幅度谱图:

50100150200250 100150200250 50100150200250 100150200250 2.令f2(m,n)=(-1)^(m+n )f1(m,n),对其进行FFT ,比较f2与f1幅度谱的异同,简述理由: 50100150200250 100150200250 50100150200250 100150200250 异同及理由:①空域:f2由于前边乘了系数(-1)^(m+n ),导致灰度值有正有负,而在MATLAB 的imshow 函数中默认把负值变为0(有些情况是取反),所以形成了如左图所示的黑白花纹。②频域:FFT(2)

matlab图像处理代码

附录 MATLAB图像处理命令  1.applylut  功能: 在二进制图像中利用lookup表进行边沿操作。 语法: A = applylut(BW,lut) 举例 lut = makelut('sum(x(:)) == 4',2); BW1 = imread('text.tif'); BW2 = applylut(BW1,lut); imshow(BW1) figure, imshow(BW2) 相关命令: makelut 2.bestblk  功能: 确定进行块操作的块大小。 语法: siz = bestblk([m n],k) [mb,nb] = bestblk([m n],k) 举例 siz = bestblk([640 800],72) siz = 64 50 相关命令: blkproc 3.blkproc  功能:

MATLAB 高级应用——图形及影像处理 320 实现图像的显式块操作。 语法: B = blkproc(A,[m n],fun) B = blkproc(A,[m n],fun,P1,P2,...) B = blkproc(A,[m n],[mborder nborder],fun,...) B = blkproc(A,'indexed',...) 举例 I = imread('alumgrns.tif'); I2 = blkproc(I,[8 8],'std2(x)*ones(size(x))'); imshow(I) figure, imshow(I2,[]); 相关命令: colfilt, nlfilter,inline 4.brighten  功能: 增加或降低颜色映像表的亮度。 语法: brighten(beta) newmap = brighten(beta) newmap = brighten(map,beta) brighten(fig,beta) 相关命令: imadjust, rgbplot 5.bwarea  功能: 计算二进制图像对象的面积。 语法: total = bwarea(BW) 举例 BW = imread('circles.tif'); imshow(BW);

matlab图像分解与重构

%程序段: clear all A=imread('鬼兰.jpg') %读入原图 B=rgb2gray(A) %转灰度图像newmap=rgb2gray(A) C=double(B); %转浮点型 nbcol=size(B,1); [cA1,cH1,cV1,cD1]=dwt2(C,'db1'); %第一次分解dec1d=[cA1,cH1;cV1,cD1]; [cA2,cH2,cV2,cD2]=dwt2(cA1,'db1'); %第二次分解 dec2d=[cA2,cH2;cV2,cD2] [cA3,cH3,cV3,cD3]=dwt2(cA2,'db1'); %第三次分解 dec3d=[cA3,cH3;cV3,cD3] %由二维小波分解重构原始图像 t1=size(dec3d) %第一次重构 X1=idwt2 (cA3,cH3,cV3,cD3,'db1',t1) t2=size(dec2d) %第二次重构 X2=idwt2 (X1,cH2,cV2,cD2,'db1',t2) t3=size(dec1d) %第三次重构 X3=idwt2 (X2,cH1,cV1,cD1,'db1',t3) %在同一窗口中显示以上各图像subplot(2,4,1),imshow(A),title('原图') subplot(2,4,2),imshow(B),title('灰度图像') subplot(2,4,3),imshow(dec1d,[ ]),title ('第一次分解后图像') subplot(2,4,4),imshow(dec2d,[ ]) ,title('第二次分解后图像') subplot(2,4,5),imshow(dec3d,[ ]),title('第三次分解后图像') subplot(2,4,6),imshow(X1,[ ]),title ('第一次重构') subplot(2,4,7),imshow(X2,[ ]),title ('第二次重构') subplot(2,4,8),imshow(X3,[ ]),title ('第三次重构') %db1分解及重构图像:

基于matlab程序实现人脸识别

基于m a t l a b程序实现 人脸识别 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

基于m a t l a b程序实现人脸识别 1.人脸识别流程 基于YCbCr颜色空间的肤色模型进行肤色分割。在YCbCr色彩空间内对肤色进行了建模发现,肤色聚类区域在Cb—Cr子平面上的投影将缩减,与中心区域显着不同。采用这种方法的图像分割已经能够较为精确的将人脸和非人脸分割开来。 人脸识别流程图 2.人脸识别程序 (1)人脸和非人脸区域分割程序 function result = skin(Y,Cb,Cr) %SKIN Summary of this function goes here % Detailed explanation goes here a=; b=; ecx=; ecy=; sita=; cx=; cy=; xishu=[cos(sita) sin(sita);-sin(sita) cos(sita)]; %如果亮度大于230,则将长短轴同时扩大为原来的倍 if(Y>230) a=*a; b=*b; end %根据公式进行计算 Cb=double(Cb); Cr=double(Cr);

t=[(Cb-cx);(Cr-cy)]; temp=xishu*t; value=(temp(1)-ecx)^2/a^2+(temp(2)-ecy)^2/b^2; %大于1则不是肤色,返回0;否则为肤色,返回1 if value>1 result=0; else result=1; end end (2)人脸的确认程序 function eye = findeye(bImage,x,y,w,h) %FINDEYE Summary of this function goes here % Detailed explanation goes here part=zeros(h,w); %二值化 for i=y:(y+h) for j=x:(x+w) if bImage(i,j)==0 part(i-y+1,j-x+1)=255; else part(i-y+1,j-x+1)=0; end end end [L,num]=bwlabel(part,8); %如果区域中有两个以上的矩形则认为有眼睛 if num<2 eye=0;

数字图像处理matlab代码

一、编写程序完成不同滤波器的图像频域降噪和边缘增强的算法并进行比较,得出结论。 1、不同滤波器的频域降噪 1.1 理想低通滤波器(ILPF) I1=imread('eight.tif'); %读取图像 I2=im2double(I1); I3=imnoise(I2,'gaussian',0.01); I4=imnoise(I3,'salt & pepper',0.01); figure,subplot(1,3,1); imshow(I2) %显示灰度图像 title('原始图像'); %为图像添加标题 subplot(1,3,2); imshow(I4) %加入混合躁声后显示图像 title('加噪后的图像'); s=fftshift(fft2(I4)); %将灰度图像的二维不连续Fourier 变换的零频率成分 移到频谱的中心 [M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整 n2=floor(N/2); %对N/2进行取整 d0=40; %初始化d0 for i=1:M for j=1:N d=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 if d<=d0 %点(i,j)在通带内的情况 h=1; %通带变换函数 else %点(i,j)在阻带内的情况 h=0; %阻带变换函数 end s(i,j)=h*s(i,j); %ILPF滤波后的频域表示

end end s=ifftshift(s); %对s进行反FFT移动 s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复 数的实部转化为无符号8位整数 subplot(1,3,3); %创建图形图像对象 imshow(s); %显示ILPF滤波后的图像 title('ILPF滤波后的图像(d=40)'); 运行结果: 1.2 二阶巴特沃斯低通滤波器(BLPF) I1=imread('eight.tif'); %读取图像 I2=im2double(I1); I3=imnoise(I2,'gaussian',0.01); I4=imnoise(I3,'salt & pepper',0.01); figure,subplot(1,3,1); imshow(I2) %显示灰度图像 title('原始图像'); %为图像添加标题 subplot(1,3,2); imshow(I4) %加入混合躁声后显示图像 title('加噪后的图像'); s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分 移到频谱的中心 [M,N]=size(s); %分别返回s的行数到M中,列数到N中n=2; %对n赋初值

人脸识别系统设计与仿真 基于matlab的(含matlab源程序)版权不归自己 交流使用

人脸识别系统设计与仿真基于matlab的(含matlab源程序) 交流使用参考后自行那个删除后果自负 目录 第一章绪论 (2) 1.1 研究背景 (2) 1.2 人脸图像识别的应用前景 (3) 1.3 本文研究的问题 (4) 1.4 识别系统构成 (5) 1.5 论文的内容及组织 (7) 第二章图像处理的Matlab实现 (8) 2.1 Matlab简介 (8) 2.2 数字图像处理及过程 (8) 2.2.1图像处理的基本操作 (8) 2.2.2图像类型的转换 (9) 2.2.3图像增强 (9) 2.2.4边缘检测 (10) 2.3图像处理功能的Matlab实现实例 (11) 2.4 本章小结 (15) 第三章人脸图像识别计算机系统 (16) 3.1 引言 (16) 3.2系统基本机构 (17)

3.3 人脸检测定位算法 (18) 3.4 人脸图像的预处理 (25) 3.4.1 仿真系统中实现的人脸图像预处理方法 (26) 第四章基于直方图的人脸识别实现 (29) 4.1识别理论 (29) 4.2 人脸识别的matlab实现 (29) 4.3 本章小结 (30) 第五章总结 (31) 致谢 (32) 参考文献 (33) 附录 (35)

第一章绪论 本章提出了本文的研究背景及应用前景。首先阐述了人脸图像识别意义;然后介绍了人脸图像识别研究中存在的问题;接着介绍了自动人脸识别系统的一般框架构成;最后简要地介绍了本文的主要工作和章节结构。 1.1 研究背景 自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。 在进行人工智能的研究中,人们一直想做的事情就是让机器具有像人类一样的思考能力,以及识别事物、处理事物的能力,因此从解剖学、心理学、行为感知学等各个角度来探求人类的思维机制、以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情,而让机器来实现却很难,如人脸图像的识别,语音识别,自然语言理解等。如果能够开发出具有像人类一样的机器识别机制,就能够逐步地了解人类是如何存储信息,并进行处理的,从而最终了解人类的思维机制。 同时,进行人脸图像识别研究也具有很大的使用价依。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己

数字图像处理MATLAB相关代码

1.图像反转 MATLAB程序实现如下: I=imread('xian.bmp'); J=double(I); J=-J+(256-1); %图像反转线性变换 H=uint8(J); subplot(1,2,1),imshow(I); subplot(1,2,2),imshow(H); 2.灰度线性变换 MATLAB程序实现如下: I=imread('xian.bmp'); subplot(2,2,1),imshow(I); title('原始图像'); axis([50,250,50,200]); axis on; %显示坐标系 I1=rgb2gray(I); subplot(2,2,2),imshow(I1); title('灰度图像'); axis([50,250,50,200]); axis on; %显示坐标系 J=imadjust(I1,[0.1 0.5],[]); %局部拉伸,把[0.1 0.5]内的灰度拉伸为[0 1] subplot(2,2,3),imshow(J); title('线性变换图像[0.1 0.5]'); axis([50,250,50,200]); grid on; %显示网格线 axis on; %显示坐标系 K=imadjust(I1,[0.3 0.7],[]); %局部拉伸,把[0.3 0.7]内的灰度拉伸为[0 1] subplot(2,2,4),imshow(K); title('线性变换图像[0.3 0.7]'); axis([50,250,50,200]); grid on; %显示网格线 axis on; %显示坐标系 3.非线性变换 MATLAB程序实现如下: I=imread('xian.bmp'); I1=rgb2gray(I); subplot(1,2,1),imshow(I1); title('灰度图像'); axis([50,250,50,200]); grid on; %显示网格线 axis on; %显示坐标系 J=double(I1); J=40*(log(J+1)); H=uint8(J);

Matlab中图像函数大全

图像增强 1. 直方图均衡化的Matlab 实现 1.1 imhist 函数 功能:计算和显示图像的色彩直方图 格式:imhist(I,n) imhist(X,map) 说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X, map) 就算和显示索引色图像X 的直方图,map 为调色板。用stem(x,coun ts) 同样可以显示直方图。 1.2 imcontour 函数 功能:显示图像的等灰度值图 格式:imcontour(I,n),imcontour(I,v) 说明:n 为灰度级的个数,v 是有用户指定所选的等灰度级向量。 1.3 imadjust 函数 功能:通过直方图变换调整对比度 格式:J=imadjust(I,[low high],[bottom top],gamma) newmap=imadjust(map,[low high],[bottom top],gamma) 说明:J=imadjust(I,[low high],[bottom top],gamma) 其中,gamma 为校正量r,[low high] 为原图像中要变换的灰度范围,[bottom top] 指定了变换后的灰度范围;newmap=imadjust(map,[low high],[bottom top],gamm a) 调整索引色图像的调色板map 。此时若[low high] 和[bottom top] 都为2×3的矩阵,则分别调整R、G、B 3个分量。

1.4 histeq 函数 功能:直方图均衡化 格式:J=histeq(I,hgram) J=histeq(I,n) [J,T]=histeq(I,...) newmap=histeq(X,map,hgram) newmap=histeq(X,map) [new,T]=histeq(X,...) 说明:J=histeq(I,hgram) 实现了所谓“直方图规定化”,即将原是图象I 的直方图变换成用户指定的向量hgram 。hgram 中的每一个元素都在[0,1] 中;J=histeq(I,n) 指定均衡化后的灰度级数n ,缺省值为64;[J,T]=histeq(I,...)返回从能将图像I 的灰度直方图变换成图像J 的直方图的变换T ;newma p=histeq(X,map) 和[new,T]=histeq(X,...) 是针对索引色图像调色板的直方图均衡。 2. 噪声及其噪声的Matlab 实现 imnoise 函数 格式:J=imnoise(I,type) J=imnoise(I,type,parameter) 说明:J=imnoise(I,type) 返回对图像I 添加典型噪声后的有噪图像J ,参数type 和parameter 用于确定噪声的类型和相应的参数。 3. 图像滤波的Matlab 实现 3.1 conv2 函数 功能:计算二维卷积

(完整word版)基于MATLAB的人脸识别

图像识别 题目:基于MATLAB的人脸识别 院系:计算机科学与应用系 班级: 姓名: 学号: 日期:

目录 引言 (1) 1 人脸识别技术 (2) 1.1人脸识别的研究内容 (2) 1.1.1人脸检测(Face Detection) (2)

1.1.2人脸表征(Face Representation) (2) 1.2几种典型的人脸识别方法 (3) 1.2.1基于几何特征的人脸识别方法 (3) 1.2.2基于K-L变换的特征脸方法 (4) 1.2.3神经网络方法 (4) 1.2.4基于小波包的识别方法 (5) 1.2.5支持向量机的识别方法 (5) 2 人脸特征提取与识别 (5) 2.1利用PCA进行特征提取的经典算法——Eigenface算法 (6) 2.2 PCA人脸识别流程 (6) 2.3特征向量选取 (8) 2.4距离函数的选择 (9) 2.5 基于PCA的人脸识别 (9) MATLAB人脸识别程序 (10) 3 MATLAB软件程序编写 (10) 3.1.创建图片数据库 (10) 3.2 主程序 (11) 3.3最终程序结果 (12) 4 心得与体会 (12) 参考文献 (13)

引言 随着社会的发展及技术的进步,社会各方面对快速高效的自动身份验证的需求可以说无处不在,并与日俱增。例如,某人是否是我国的居民,是否有权进入某安全系统,是否有权进行特定的交易等。尤其是自2001年美国“9.1l”恐怖袭击发生以来,如何在车站、机场等公共场所利用高科技手段,迅速而准确地发现并确认可疑分子成了目前世界各国在反恐斗争中普遍关注的问题。为此,各国都投入大量人力、物力研究发展各类识别技术,使得生物特征识别技术得到了极大的发展。生物特征识别技术主要包括:人脸识别、虹膜识别、指纹识别、步态识别、语音识别、笔迹识别、掌纹识别以及多生物特征融合识别等。人类通过视觉识别文字,感知外界信息。在客观世界中,有75%的信息量都来自视觉,因此让计算机或机器人具有视觉,是人工智能的重要环节。由于生物特征是人的内在属性,具有很强的稳定性和个体差异性,因此是身份验证最理想的依据。与虹膜、指纹、基因、掌纹等其他人体生物特征识别系统相比,人脸识别系统更加直接、方便、友好,易于为用户所接受,并且通过人脸的表情、姿态分析,还能获得其它识别系统难以得到的一些信息。 人脸识别技术在国家重要机关及社会安防领域具有广泛用途。例如:公安系统的罪犯识别、信用卡验证、医学、档案管理、视频会议、人机交互系统等身份识别和各类卡持有人的身份验证。同其他人体生物特征(如:指纹、掌纹、虹膜、语音等)识别技术相比,人脸识别技术的隐性最好,人脸识别系统更直接、友好,是当今国际反恐和安防最重视的科技手段和攻关标志之一。虽然人类能毫不费力地识别出人脸及表情,但对人脸的机器自动识别确实一个难度极大的课题,它涉及到模式识别、图像处理及生理、心理学等诸多方面的知识。人脸识别技术的研究虽然己经取得了一定的可喜成果,但在实际应用中仍存在着许多严峻的问题。人脸的非刚体性、姿态、表情、发型以及化妆的多样性都给正确识别带来了困难,要让计算机像人一样方便地识别出大量的人脸,尚需不同科学研究领域的科学家共同不懈的努力。

图像处理实例(含Matlab代码)

信号与系统实验报告——图像处理 学院:信息科学与工程学院 专业:2014级通信工程 组长:** 组员:** 2017.01.02

目录 目录 (2) 实验一图像一的细胞计数 (3) 一、实验内容及步骤 (3) 二、Matlab程序代码 (3) 三、数据及结果 (4) 实验二图像二的图形结构提取 (5) 一、实验内容及步骤 (5) 二、Matlab程序代码 (5) 三、数据及结果 (6) 实验三图像三的图形结构提取 (7) 一、实验内容及步骤 (7) 二、Matlab程序代码 (7) 三、数据及结果 (8) 实验四图像四的傅里叶变化及巴特沃斯低通滤波 (9) 一、实验内容及步骤 (9) 二、Matlab程序代码 (9) 三、数据及结果 (10) 实验五图像五的空间域滤波与频域滤波 (11) 一、实验内容及步骤 (11) 二、Matlab程序代码 (11) 三、数据及结果 (12)

实验一图像一的细胞计数 一、实验内容及步骤 将该图形进行一系列处理,计算得到途中清晰可见细胞的个数。 首先,由于原图为RGB三色图像处理起来较为麻烦,所以转为灰度图,再进行二值化化为黑白图像,得到二值化图像之后进行中值滤波得到细胞分布的初步图像,为了方便计数对图像取反,这时进行一次计数,发现得到的个数远远多于实际个数,这时在进行一次中值滤波,去掉一些不清晰的像素点,剩下的应该为较为清晰的细胞个数,再次计数得到大致结果。 二、Matlab程序代码 clear;close all; Image = imread('1.jpg'); figure,imshow(Image),title('原图'); Image=rgb2gray(Image); figure,imshow(Image),title('灰度图'); Theshold = graythresh(Image); Image_BW = im2bw(Image,Theshold); Reverse_Image_BW22=~Image_BW; figure,imshow(Image_BW),title('二值化图像'); Image_BW_medfilt= medfilt2(Image_BW,[3 3]); figure,imshow(Image_BW_medfilt),title('中值滤波后的二值化图像'); Reverse_Image_BW = ~Image_BW_medfilt; figure,imshow(Reverse_Image_BW),title('图象取反'); Image_BW_medfilt2= medfilt2(Reverse_Image_BW,[20 20]); figure,imshow(Image_BW_medfilt2),title('第二次中值滤波的二值化图像'); [Label, Number]=bwlabel(Image_BW_medfilt,8);Number [Label, Number]=bwlabel(Image_BW_medfilt2,8);Number

matlab图像去噪算法设计(精)

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。实验一:均值滤波对高斯噪声的效果 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9 subplot(2,3,3);imshow(K1); title('改进后的图像1'); subplot(2,3,4); imshow(K2); title('改进后的图像2');

人脸识别MATLAB代码

1.色彩空间转换 function [r,g]=rgb_RGB(Ori_Face) R=Ori_Face(:,:,1); G=Ori_Face(:,:,2); B=Ori_Face(:,:,3); R1=im2double(R); % 将uint8型转换成double型G1=im2double(G); B1=im2double(B); RGB=R1+G1+B1; row=size(Ori_Face,1); % 行像素 column=size(Ori_Face,2); % 列像素 for i=1:row for j=1:column rr(i,j)=R1(i,j)/RGB(i,j); gg(i,j)=G1(i,j)/RGB(i,j); end end rrr=mean(rr); r=mean(rrr); ggg=mean(gg); g=mean(ggg); 2.均值和协方差 t1=imread('D:\matlab\皮肤库\1.jpg');[r1,g1]=rgb_RGB(t1); t2=imread('D:\matlab\皮肤库\2.jpg');[r2,g2]=rgb_RGB(t2); t3=imread('D:\matlab\皮肤库\3.jpg');[r3,g3]=rgb_RGB(t3); t4=imread('D:\matlab\皮肤库\4.jpg');[r4,g4]=rgb_RGB(t4); t5=imread('D:\matlab\皮肤库\5.jpg');[r5,g5]=rgb_RGB(t5); t6=imread('D:\matlab\皮肤库\6.jpg');[r6,g6]=rgb_RGB(t6); t7=imread('D:\matlab\皮肤库\7.jpg');[r7,g7]=rgb_RGB(t7); t8=imread('D:\matlab\皮肤库\8.jpg');[r8,g8]=rgb_RGB(t8);

基于MATLAB图像处理报告

基于M A T L A B图像处理报告一、设计题目 图片叠加。 二、设计要求 将一幅礼花图片和一幅夜景图片做叠加运算,使达到烟花夜景的美图效果。 三、设计方案 、设计思路 利用matlab强大的图像处理功能,通过编写程序,实现对两幅图片的像素进行线性运算,利用灰度变换的算法使图片达到预期的效果。 、软件介绍 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB 也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户直接进行下载就可以用。

数字图像处理(matlab版)第八章 图像融合算法

第八章图像融合算法 8.1 图像融合技术的发展过程 随着科学的发展和技术的进步,采集图像数据的手段不断完善,出现了各种新的图像获取技术。如今,图像融合方法已经运用于社会的很多领域,像遥感卫星图像,光图像,红外图像,医学图像,尤其是多传感器图像融合应用以来,它已成为计算机视觉,目标识别,机器人以及军事等方面研究的重要方面。

8.2基于小波变换图像融合的基本原理 如果一个图像进行L 层小波分解,我们将得到(3L +1)层子带,其中包括低频的基带和层的高频子带。用代表源图像,记为,设尺度系数和小波函数对应的滤波器系数矩阵分别为,则二维小波分解算法可描述为: j C 3L ,h v d D D D 和(,)f x y 0C ()x Φ()x ΨH G 与11 1 j h j j v j j d j j C HC H D GC H D HC G D GC G +++′ =??′=??′=??′=?j+1(0,1, (1) j J =?(8-1)

小波重构算法为: 基于二维DWT 的融合过程如图1.1所示,ImageA 和 ImageB 代表两幅源图像A 和B ,ImageF 代表融合后的图像,具体步骤如下:(1)图像的预处理: 1h v d j j j j j C H C H G D H H D G G D G ?′′′′=+++(,1, (1) j J J =?(8-2) 图8.1 基于DWT 图像融合过程

①图像滤波 ②图像配准 (2)对ImageA和ImageB进行二维DWT分解,得到图像的低频和高频分量。 (3)根据低频和高频分量的特点,按照各自的融合算法进行融合。 (4)对以上得到的高低频分量,经过小波逆变换重构得到融合图像ImageF。 8.3 融合效果性能评价指标 8.3.1均值和标准差

基于matlab的图像去雾算法详细讲解与实现-附matlab实现源代码

本文主要介绍基于Retinex理论的雾霭天气图像增强及其实现。并通过编写两个程序来实现图像的去雾功能。 1 Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。 根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。 图-1 Retinex理论示意图 对于观察图像S中的每个点(x,y),用公式可以表示为: S(x,y)=R(x,y)×L(x,y) (1.3.1)实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。 2 基于Retinex理论的图像增强的基本步骤 步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即: S'(x, y)=r(x, y)+l(x, y)=log(R(x, y))+log(L(x, y)); 步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数: D(x, y)=S(x, y) *F(x, y); 步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G (x, y): G(x,y)=S'(x, y)-log(D(x, y)) ;

图像放大算法总结及MATLAB源程序

1,插值算法(3种): (1)最邻近插值(近邻取样法): 最邻近插值的的思想很简单,就是把这个非整数坐标作一个四舍五入,取最近的整数点坐标处的点的颜色。可见,最邻近插值简单且直观,速度也最快,但得到的图像质量不高。 最邻近插值法的MATLAB源代码为: A=imread('F:\lena.jpg');%读取图像信息 imshow(A);%显示原图 title('原图128*128'); Row=size(A,1);Col=size(A,2);%图像行数和列数 nn=8;%放大倍数 m=round(nn*Row);%求出变换后的坐标的最大值 n=round(nn*Col); B=zeros(m,n,3);%定义变换后的图像 for i=1:m for j=1:n x=round(i/nn);y=round(j/nn);%最小临近法对图像进行插值 if x==0x=1;end if y==0y=1;end if x>Row x=Row;end if y>Col y=Col;end B(i,j,:)=A(x,y,:); end end B=uint8(B);%将矩阵转换成8位无符号整数 figure; imshow(B); title('最邻近插值法放大8倍1024*1024'); 运行程序后,原图如图1所示:

图1 用最邻近插值法放大4倍后的图如图2所示: 图2 (2)双线性内插值法: 在双线性内插值法中,对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v),其中i、j均为非负整数,u、v为[0,1)区间的浮点数,则这个像素得值f(i+u,j+v)可由原图像中坐标为(i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:f(i+u,j+v)=(1-u)(1-v)f(i,j)+(1-u)vf(i,j+1)+u(1-v)f(i+1,j)+uvf(i+1,j+1) 其中f(i,j)表示源图像(i,j)处的的像素值,以此类推。 这就是双线性内插值法。双线性内插值法计算量大,但缩放后图像质量高,不会出现像素值不连续的的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使图像轮廓在一定程度上变得模糊。 在MATLAB中,可用其自带的函数imresize()来实现双线性内插值算法。

相关文档
相关文档 最新文档